首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
STI-571: an anticancer protein-tyrosine kinase inhibitor   总被引:5,自引:0,他引:5  
STI-571 (imatinib, Gleevec, Glivec, CGP 57148) is an inhibitor of the Abl group of protein-tyrosine kinases. One of these enzymes, the Bcr-Abl oncoprotein, results from the fusion of the BCR and ABL genes that result from the reciprocal chromosomal translocation that forms the Philadelphia chromosome. The Philadelphia chromosome occurs in 95% of people with chronic myeloid leukemia. ABL is the cellular homologue of the oncogene found in murine Abelson leukemia virus, and BCR refers to breakpoint cluster region. The Bcr-Abl oncoprotein exhibits elevated protein-tyrosine kinase activity, which is strongly implicated in the mechanism of development of chronic myeloid leukemia. STI-571 is effective in the treatment of the stable phase of chronic myeloid leukemia. The c-Abl protein kinase domain exists in an active and inactive conformation. STI-571 binds only to the inactive state of the enzyme as shown by X-ray crystallography. The drug binds to a portion of the ATP-binding site and extends from there into adjacent hydrophobic regions. STI-571 is a competitive inhibitor of Abl kinase with respect to ATP. Resistance to STI-571 is often the result of mutations in residues of the Bcr-Abl kinase that ordinarily bind to the drug. Inhibition of target protein kinases represents an emerging therapeutic strategy for the treatment of cancer.  相似文献   

3.
Structural basis for the autoinhibition of c-Abl tyrosine kinase   总被引:28,自引:0,他引:28  
c-Abl is normally regulated by an autoinhibitory mechanism, the disruption of which leads to chronic myelogenous leukemia. The details of this mechanism have been elusive because c-Abl lacks a phosphotyrosine residue that triggers the assembly of the autoinhibited form of the closely related Src kinases by internally engaging the SH2 domain. Crystal structures of c-Abl show that the N-terminal myristoyl modification of c-Abl 1b binds to the kinase domain and induces conformational changes that allow the SH2 and SH3 domains to dock onto it. Autoinhibited c-Abl forms an assembly that is strikingly similar to that of inactive Src kinases but with specific differences that explain the differential ability of the drug STI-571/Gleevec/imatinib (STI-571) to inhibit the catalytic activity of Abl, but not that of c-Src.  相似文献   

4.
5.
Human Werner Syndrome is characterized by early onset of aging, elevated chromosomal instability, and a high incidence of cancer. Werner protein (WRN) is a member of the recQ gene family, but unlike other members of the recQ family, it contains a unique 3'-->5' exonuclease activity. We have reported previously that human Ku heterodimer interacts physically with WRN and functionally stimulates WRN exonuclease activity. Because Ku and DNA-PKcs, the catalytic subunit of DNA-dependent protein kinase (DNA-PK), form a complex at DNA ends, we have now explored the possibility of functional modulation of WRN exonuclease activity by DNA-PK. We find that although DNA-PKcs alone does not affect the WRN exonuclease activity, the additional presence of Ku mediates a marked inhibition of it. The inhibition of WRN exonuclease by DNA-PKcs requires the kinase activity of DNA-PKcs. WRN is a target for DNA-PKcs phosphorylation, and this phosphorylation requires the presence of Ku. We also find that treatment of recombinant WRN with a Ser/Thr phosphatase enhances WRN exonuclease and helicase activities and that WRN catalytic activity can be inhibited by rephosphorylation of WRN with DNA-PK. Thus, the level of phosphorylation of WRN appears to regulate its catalytic activities. WRN forms a complex, both in vitro and in vivo, with DNA-PKC. WRN is phosphorylated in vivo after treatment of cells with DNA-damaging agents in a pathway that requires DNA-PKcs. Thus, WRN protein is a target for DNA-PK phosphorylation in vitro and in vivo, and this phosphorylation may be a way of regulating its different catalytic activities, possibly in the repair of DNA dsb.  相似文献   

6.
DNA double-strand breaks (DSBs) are a highly mutagenic and potentially lethal damage that occurs in all organisms. Mammalian cells repair DSBs by homologous recombination and non-homologous end joining, the latter requiring DNA-dependent protein kinase (DNA-PK). Werner syndrome is a disorder characterized by genomic instability, aging pathologies and defective WRN, a RecQ-like helicase with exonuclease activity. We show that WRN interacts directly with the catalytic subunit of DNA-PK (DNA-PK(CS)), which inhibits both the helicase and exonuclease activities of WRN. In addition we show that WRN forms a stable complex on DNA with DNA-PK(CS) and the DNA binding subunit Ku. This assembly reverses WRN enzymatic inhibition. Finally, we show that WRN is phosphorylated in vitro by DNA-PK and requires DNA-PK for phosphorylation in vivo, and that cells deficient in WRN are mildly sensitive to ionizing radiation. These data suggest that DNA-PK and WRN may function together in DNA metabolism and implicate WRN function in non-homologous end joining.  相似文献   

7.
A myristoyl/phosphotyrosine switch regulates c-Abl   总被引:16,自引:0,他引:16  
The c-Abl tyrosine kinase is inhibited by mechanisms that are poorly understood. Disruption of these mechanisms in the Bcr-Abl oncoprotein leads to several forms of human leukemia. We found that like Src kinases, c-Abl 1b is activated by phosphotyrosine ligands. Ligand-activated c-Abl is particularly sensitive to the anti-cancer drug STI-571/Gleevec/imatinib (STI-571). The SH2 domain-phosphorylated tail interaction in Src kinases is functionally replaced in c-Abl by an intramolecular engagement of the N-terminal myristoyl modification with the kinase domain. Functional studies coupled with structural analysis define a myristoyl/phosphotyrosine switch in c-Abl that regulates docking and accessibility of the SH2 domain. This mechanism offers an explanation for the observed cellular activation of c-Abl by tyrosine-phosphorylated proteins, the intracellular mobility of c-Abl, and it provides new insights into the mechanism of action of STI-571.  相似文献   

8.
Ionizing radiation (IR) treatment results in activation of the nonreceptor tyrosine kinase c-Abl because of phosphorylation by ATM. In vitro evidence indicates that DNA-dependent protein kinase (DNA-PK) can also phosphorylate and thus potentially activate Abl kinase activity in response to IR exposure. To unravel the role of ATM and DNA-PK in the activation of Abl, we assayed Abl, ATM, and DNA-PK activity in ATM- and DNA-PKcs-deficient cells after irradiation. Our results show that despite the presence of higher than normal levels of DNA-PK kinase activity, c-Abl fails to become activated after IR exposure in ATM-deficient cells. Conversely, normal activation of both ATM and c-Abl occurs in DNA-PKcs-deficient cells, indicating that ATM but not DNA-PK is required for activation of Abl in response to IR treatment. Moreover, activation of Abl kinase activity by IR correlates well with activation of ATM activity in all phases of the cell cycle. These results indicate that ATM is primarily responsible for activation of Abl in response to IR exposure in a cell cycle-independent fashion. Examination of DNA-PK activity in response to IR treatment in Abl-deficient cells expressing mutant forms of Abl or in normal cells exposed to an inhibitor of Abl suggests an in vivo role for Abl in the down-regulation of DNA-PK activity. Collectively, these results suggest a convergence of the ATM and DNA-PK pathways in the cellular response to IR through c-Abl kinase.  相似文献   

9.
The tyrosine kinase inhibitor STI-571 potently blocks BCR-Abl, platelet-derived growth factor (PDGF) alpha- and beta-receptors, and c-Kit kinase activity. Flt3, a receptor tyrosine kinase closely related to PDGF receptors and c-Kit is, however, not inhibited by STI-571. Sequence alignments of different kinases and indications from the crystal structure of the STI-571 Abl kinase complex revealed amino acid residues that are probably crucial for this activity profile. It was predicted that Flt3 Phe-691 in the beta5 strand may sterically prevent interaction with STI-571. The point mutants Flt3 F691T and PDGFbeta-receptor T681F were constructed, and kinase assays showed that the Flt3 mutant but not the PDGFbeta-receptor mutant is inhibited by STI-571. Docking of STI-571 into computer models of the PDGFbeta-receptor and Flt3 kinase domains and comparison with the crystal structure of the STI-571 Abl kinase complex indicated very similar binding sites among the three nonphosphorylated kinases, suggesting corresponding courses of their Asp-Phe-Gly motifs and activation loops. Accordingly, we observed reduced sensitivity of preactivated compared with nonactivated PDGFR-beta for the inhibition by STI-571. Courses of the activation loop that collide with STI-571 binding explain its inactivity at other kinases as the insulin receptor. The binding site models of PDGFR-beta and Flt3 were applied to predict structural approaches for more selective PDGFbeta-receptor inhibitors.  相似文献   

10.
Phospholipid scramblase 1 (PLSCR1) is a plasma membrane protein that has been proposed to play a role in the transbilayer movement of plasma membrane phospholipids. PLSCR1 contains multiple proline-rich motifs resembling Src homology 3 (SH3) domain-binding sites. An initial screen against 13 different SH3 domains revealed a marked specificity of PLSCR1 for binding to the Abl SH3 domain. Binding between intracellular PLSCR1 and c-Abl was demonstrated by co-immunoprecipitation of both proteins from several cell lines. Deletion of the proline-rich segment in PLSCR1 (residues 1--118) abolished its binding to the Abl SH3 domain. PLSCR1 was Tyr-phosphorylated by c-Abl in vitro. Phosphorylation was abolished by mutation of Tyr residues Tyr(69)/Tyr(74) within the tandem repeat sequence (68)VYNQPVYNQP(77) of PLSCR1, implying that these residues are the likely sites of phosphorylation. Cellular PLSCR1 was found to be constitutively Tyr-phosphorylated in several cell lines. The Tyr phosphorylation of PLSCR1 was increased upon overexpression of c-Abl and significantly reduced either upon cell treatment with the Abl kinase inhibitor STI571, or in Abl-/- mouse fibroblasts, suggesting that cellular PLSCR1 is a normal substrate of c-Abl. Cell treatment with the DNA-damaging agent cisplatin activated c-Abl kinase and increased Tyr phosphorylation of PLSCR1. The cisplatin-induced phosphorylation of PLSCR1 was inhibited by STI571 and was not observed in Abl-/- fibroblasts. These findings indicate that c-Abl binds and phosphorylates PLSCR1, and raise the possibility that an interaction between c-Abl and plasma membrane PLSCR1 might contribute to the cellular response to genotoxic stress.  相似文献   

11.
A large and diverse spectrum of oncogenes has been implicated as a contributor to angiogenesis in solid tumors based, in part, on its ability to induce proangiogenic growth factors such as vascular endothelial growth factor (VEGF), and the fact that various anti-oncogenic signaling inhibitor drugs have been shown to reverse such proangiogenic effects both in vitro and in vivo. Because leukemias are now also considered to be angiogenesis-dependent malignancies, we asked whether a similar paradigm might exist for the BCR-ABL oncogene and the Bcr-Abl targeting drug, STI-571 (imatinib mesylate), in the context of chronic myelogenous leukemia (CML) cells. We found that levels of VEGF expression in BCR-ABL-positive K562 cells were reduced in vitro by treatment with STI-571 in a dose-dependent fashion. Transfection of BCR-ABL into murine myeloid 32D and human megakaryocyte MO7e hematopoietic cells resulted in enhanced VEGF expression, which could be further elevated by the exposure to cytokines such as interleukin 3 and granulocyte macrophage colony-stimulating factor. We also found that conditioned media taken from 32D-p210-transfected cells could stimulate human umbilical vein endothelial cells by increasing phosphorylation of VEGF-R2/KDR and the downstream serine/threonine kinase PKB/Akt, an important regulator of endothelial cell survival. Moreover, amplification of BCR-ABL in STI-571-resistant cells was associated with elevated VEGF expression levels which could be reversed by treatment with higher concentrations of STI-571. Taken together, our results implicate BCR-ABL as a possible regulator of CML angiogenesis and raise the possibility that STI-571 could mediate some of its anti-CML properties in vivo through an angiogenesis-dependent mechanism.  相似文献   

12.
The bcr-abl oncogene plays a critical role in the pathogenesis of chronic myelogenous leukemia (CML). The fusion of Bcr sequences to Abl constitutively activates the Abl protein tyrosine kinase. We have recently shown that expression of Bcr-Abl in bone marrow cells by retroviral transduction efficiently induces in mice a myeloproliferative disease resembling human CML and that Abl kinase activity is essential for Bcr-Abl to induce a CML-like myeloproliferative disease. However, it is not known if activation of the Abl kinase alone is sufficient to induce a myeloproliferative disease. In this study, we examined the role of the Abl SH3 domain of Bcr-Abl in induction of myeloproliferative disease and tested whether c-Abl activated by SH3 deletion can induce a CML-like disease. We found that Bcr-Abl with an Abl SH3 deletion still induced a CML-like disease in mice. In contrast, c-Abl activated by SH3 deletion induced only lymphoid malignancies in mice and did not stimulate the growth of myeloid colonies from 5-fluorouracil-treated bone marrow cells in vitro. These results indicate that Bcr sequences in Bcr-Abl play additional roles in inducing myeloproliferative disease beyond simply activating the Abl kinase domain and that functions of the Abl SH3 domain are either not required or redundant in Bcr-Abl-induced myeloproliferative disease. The results also suggest that the type of hematological neoplasm induced by an abl oncogene is influenced not only by what type of hematopoietic cells the oncogene is targeted into but also by the intrinsic oncogenic properties of the particular abl oncogene. In addition, we found that DeltaSH3 c-Abl induced less activation of Akt and STAT5 than did Bcr-Abl, suggesting that activation of these pathways plays a critical role in inducing a CML-like disease.  相似文献   

13.
The chimeric oncoprotein BCR-Abl exhibits deregulated protein tyrosine kinase activity and is responsible for the pathogenesis of certain human leukemias, such as chronic myelogenous leukemia. The activities of cellular Abl (c-Abl) and BCR-Abl are stringently regulated and the cellular mechanisms involved in their inactivation are poorly understood. Protein tyrosine phosphatases can negatively regulate Abl mediated signaling by dephosphorylating the kinase and/or its substrates. This study investigated the ability of the intracellular T cell protein tyrosine phosphatase (TCPTP/PTPN2) to dephosphorylate and regulate the functions of BCR-Abl and c-Abl. TCPTP is expressed as two alternately spliced isoforms — TC48 and TC45, which differ in their C-termini and localize to the cytoplasm and nucleus respectively. We show that TC48 dephosphorylates BCR-Abl but not c-Abl and inhibits its activity towards its substrate, CrkII. Y1127 and Y1294 residues whose phosphorylation corresponds with BCR-Abl activation status were the primary sites targeted by TC48. Co-localization and immunoprecipitation experiments showed that TC48 interacted with BCR-Abl but not with c-Abl, and BCR domain was sufficient for interaction. TC48 expression resulted in the stabilization of Bcr-Abl protein dependent on its phosphatase activity. Inactivation of cellular TC48 in K562 cells by stable expression of a dominant negative catalytically inactive mutant TC48, enhanced proliferation. TC48 expressing K562 clones showed reduced proliferation and enhanced sensitivity to STI571 compared to control clones suggesting that TC48 can repress the growth of CML cells. This study identifies a novel cellular regulator that specifically inhibits the activity of oncogenic BCR-Abl but not that of the cellular Abl kinase.  相似文献   

14.
Activation of the initiator caspase-9 is essential for induction of apoptosis by developmental signals, oncogenic transformation, and genotoxic stress. The c-Abl tyrosine kinase is also involved in the apoptotic response to DNA damage. The present results demonstrate that c-Abl binds directly to caspase-9. We show that c-Abl phosphorylates caspase-9 on Tyr-153 in vitro and in cells treated with DNA damaging agents. Moreover, inhibition of c-Abl with STI571 blocked DNA damage-induced autoprocessing of caspase-9 to the p35 subunit and activation of caspase-3. Caspase-9(Y153F) also attenuated DNA damage-induced processing of caspase-9 to p35, activation of caspase-3, and apoptosis. These findings indicate that caspase-9 autoprocessing is regulated by c-Abl in the apoptotic response to genotoxic stress.  相似文献   

15.
Chronic myelogenous leukaemia (CML) is induced by the Bcr-Abl fusion protein. Inhibition of Bcr-Abl by STI571 is widely used to treat CML patients. Unlike in most cancer types, the frequency of p53 mutations in CML is low. Here, we investigated the effect of STI571 treatment of CML cells on p53 regulation. Exposure of CML cells, including established cell lines and freshly isolated cells from patients, to STI571 reduced p53 protein levels, and severely impaired its accumulation in response to DNA damage. This may be explained by the status of p53 serine 20 phosphorylation. In non-stressed CML cells, serine 20 of p53 is constitutively phosphorylated by Chk1, and is inhibited by STI571. In response to DNA damage, however, this phosphorylation is mediated by Chk1 and Chk2, and is only partially inhibited by STI571. CML cells expressing wild-type p53 are more resistant to treatment with STI571, but moderately more sensitive to DNA damage, than CML cells lacking p53. An enhanced induction of apoptosis by STI571 and DNA damage is observed in CML cells bearing wild-type p53, but not in cells lacking functional p53. This implies that the status of p53 may affect the response of CML cells to this combined treatment.  相似文献   

16.
Werner syndrome (WS) is a premature aging disorder caused by mutations in the WS gene (WRN). Although WRN has been suggested to play an important role in DNA metabolic pathways, such as recombination, replication and repair, its precise role still remains to be determined. WRN possesses ATPase, helicase and exonuclease activities. Previous studies have shown that the WRN exonuclease is inhibited in vitro by certain lesions induced by oxidative stress and positioned in the digested strand of the substrate. The presence of the 70/86 Ku heterodimer (Ku), participating in the repair of double-strand breaks (DSBs), alleviates WRN exonuclease blockage imposed by the oxidatively induced DNA lesions. The current study demonstrates that WRN exonuclease is inhibited by several additional oxidized bases, and that Ku stimulates the WRN exonuclease to bypass these lesions. Specific lesions present in the non-digested strand were shown also to inhibit the progression of the WRN exonuclease; however, Ku was not able to stimulate WRN exonuclease to bypass these lesions. Thus, this study considerably broadens the spectrum of lesions which block WRN exonuclease progression, shows a blocking effect of lesions in the non-digested strand, and supports a function for WRN and Ku in a DNA damage processing pathway.  相似文献   

17.
Mutations in the WRN or the TP53 genes lead to spontaneous genetic instability, an elevated risk of tumor formation, and sensitivity to compounds that interfere with DNA replication, such as camptothecin and DNA interstrand cross-linking drugs. We investigated the hypothesis that WRN and TP53 are involved in cellular responses to DNA replication-blocking lesions by exposing WRN deficient and TP53 mutant lymphoblastoid cell lines (LCLs) to 1-beta-d-arabinofuranosylcytosine (AraC) and bleomycin. Loss of WRN or TP53 function resulted in induction of apoptosis and lesser proliferative survival in response to AraC and bleomycin. WRN and TP53 operate in a shared DNA damage response pathway, since in cells in which TP53 was inactivated by SV-40 transformation, no difference in AraC and bleomycin sensitivity was found regardless of WRN status. In contrast to TP53 mutant LCLs, WRN-deficient cells showed unaffected cell cycle arrest after AraC and bleomycin exposure, which indicates that WRN is not involved in DNA damage-activated cell cycle arrest. Neither WRN nor TP53 deficiency affected cellular recovery from exposure to AraC and bleomycin, which disagrees with a direct role in repair of these DNA lesions. Our results indicate that WRN and TP53 perform different functions in a shared DNA damage response pathway.  相似文献   

18.
Inhibition of integrins αvβ3/αvβ5 by the cyclic function-blocking peptide, RGDfV (Arg-Gly-Asp-Phe-Val) can induce apoptosis in both normal cells and tumor cells. We show that RGDfV induced apoptosis in ECV-304 carcinoma cells, increased activity and mRNA expression of acid sphingomyelinase (ASM), and increased ceramides C(16), C(18∶0), C(24∶0) and C(24∶1) while decreasing the corresponding sphingomyelins. siRNA to ASM decreased RGDfV-induced apoptosis as measured by TUNEL, PARP cleavage, mitochondrial depolarization, and caspase-3 and caspase-8 activities, as well as by annexinV in a 3D collagen model. These findings indicate a causal role for ASM in RGDfV-induced apoptosis in ECV-304. We have shown that c-Abl, a non-receptor tyrosine kinase, also mediates RGDfV-induced apoptosis. However, c-Abl, has not been previously linked to ASM in any system. Here we show that STI-571 (imatinib, inhibitor of c-Abl) inhibited RGDfV-induced ASM activity. Furthermore, STI-571 and c-Abl-siRNA both inhibited RGDfV-induced increase in ASM mRNA, but ASM-siRNA did not affect c-Abl phosphorylation or expression, supporting that c-Abl regulates the RGDfV-induced increase in ASM expression. These studies implicate ASM as a mediator of apoptosis induced by inhibition of integrins αvβ3/αvβ5, and for the first time place c-Abl as an upstream regulator of ASM expression and activity.  相似文献   

19.
Mdm2 and Mdmx are oncoproteins that have essential yet nonredundant roles in development and function as part of a multicomponent ubiquitinating complex that targets p53 for proteasomal degradation. However, in response to DNA damage, Mdm2 and Mdmx are phosphorylated and protect p53 through various mechanisms. It has been predicted that Mdm2-Mdmx complex formation modulates Mdm2 ligase activity, yet the mechanism that promotes formation of Mdm2-Mdmx complexes is unknown. Here, we show that optimal Mdm2-Mdmx complex formation requires c-Abl phosphorylation of Mdm2 both in vitro and in vivo. In addition, Abl phosphorylation of Mdm2 is required for efficient ubiquitination of Mdmx in vitro, and eliminating c-Abl signaling, using c-Abl(-/-) knock-out murine embryonic fibroblasts, led to a decrease in Mdmx ubiquitination. Further, p53 levels are not induced as efficiently in c-Abl(-/-) murine embryonic fibroblasts following DNA damage. Overall, these results define a direct link between genotoxic stress-activated c-Abl kinase signaling and Mdm2-Mdmx complex formation. Our results add an important regulatory mechanism for the activation of p53 in response to DNA damage.  相似文献   

20.
The molecular mechanism behind what causes an infection of Enterovirus 71 (EV71) in young children to result in severe neurological diseases is unclear. Herein, we show that Cdk5, a critical signalling effector of various neurotoxic insults in the brain, is activated by EV71 infection of neuronal cells. EV71-induced neuronal apoptosis could be effectively repressed by blocking either Cdk5 kinase activity or its protein expression. Moreover, EV71-induced Cdk5 activation was modulated by c-Abl. The suppression of c-Abl kinase activity by STI571 notably repressed both the Cdk5 activation and neuronal apoptosis in cells infected with EV71. Although EV71 also induces apoptosis in non-neuronal cells, it did not affect Abl and Cdk5 activities in several non-neuronal cell lines. Intriguingly, coxsackievirus A16 (CA16), a genetically closely related serotype to EV71 that usually does not induce severe neurological disorders, could only weakly stimulate Abl, but not Cdk5 kinase activity. Taken together, our data suggest a serotype- and cell type-specific mechanism, by which EV71 induces Abl kinase activity, which in turn triggers Cdk5-signalling for neuronal apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号