首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new allele of the Chlamydomonas oda4 flagellar mutant (oda4-s7) possessing abnormal outer dynein arms was isolated. Unlike the previously described oda4 axoneme lacking all three (alpha, beta, and gamma) outer-arm dynein heavy chains, the oda4-s7 axoneme contains the alpha and gamma heavy chains and a novel peptide with a molecular mass of approximately 160 kD. The peptide reacts with a mAb (18 beta B) that recognizes an epitope on the NH2-terminal part of the beta heavy chain. These observations indicate that this mutant has a truncated beta heavy chain, and that the NH2-terminal part of the beta heavy chain is important for the stable assembly of the outer arms. In averaged electron microscopic images of outer arms from cross sections of axonemes, the mutant outer arm lacks its mid-portion, producing a forked appearance. Together with our previous finding that the mutant oda11 lacks the alpha heavy chain and the outermost portion of the arm (Sakakibara, H., D. R. Mitchell, and R. Kamiya. 1991. J. Cell Biol. 113:615-622), this result defines the approximate locations of the three outer arm heavy chains in the axonemal cross section. The swimming velocity of oda4-s7 is 65 +/- 8 microns/s, close to that of oda4 which lacks the entire outer arm (62 +/- 8 microns/s) but significantly lower than the velocities of wild type (194 +/- 23 microns/s) and oda11 (119 +/- 17 microns/s). Thus, the lack of the beta heavy chain impairs outer-arm function more seriously than does the lack of the alpha heavy chain, suggesting that the alpha and beta chains play different roles in outer arm function.  相似文献   

2.
The outer dynein arm of Chlamydomonas flagella contains three heavy chains (alpha, beta, and gamma), each of which exhibits motor activity. How they assemble and cooperate is of considerable interest. Here we report the isolation of a novel mutant, oda2-t, whose gamma heavy chain is truncated at about 30% of the sequence. While the previously isolated gamma chain mutant oda2 lacks the entire outer arm, oda2-t retains outer arms that contain alpha and beta heavy chains, suggesting that the N-terminal sequence (corresponding to the tail region) is necessary and sufficient for stable outer-arm assembly. Thin-section electron microscopy and image analysis localize the gamma heavy chain to a basal region of the outer-arm image in the axonemal cross section. The motility of oda2-t is lower than that of the wild type and oda11 (lacking the alpha heavy chain) but higher than that of oda2 and oda4-s7 (lacking the motor domain of the beta heavy chain). Thus, the outer-arm dynein lacking the gamma heavy-chain motor domain is partially functional. The availability of mutants lacking individual heavy chains should greatly facilitate studies on the structure and function of the outer-arm dynein.  相似文献   

3.
The highly conserved LC8/DYNLL family proteins were originally identified in axonemal dyneins and subsequently found to function in multiple enzyme systems. Genomic analysis uncovered a third member (LC10) of this protein class in Chlamydomonas. The LC10 protein is extracted from flagellar axonemes with 0.6 M NaCl and cofractionates with the outer dynein arm in sucrose density gradients. Furthermore, LC10 is specifically missing only from axonemes of those strains that fail to assemble outer dynein arms. Previously, the oda12-1 insertional allele was shown to lack the Tctex2-related dynein light chain LC2. The LC10 gene is located approximately 2 kb from that of LC2 and is also completely missing from this mutant but not from oda12-2, which lacks only the 3' end of the LC2 gene. Although oda12-1 cells assemble outer arms that lack only LC2 and LC10, this strain exhibits a flagellar beat frequency that is consistently less than that observed for strains that fail to assemble the entire outer arm and docking complex (e.g., oda1). These results support a key regulatory role for the intermediate chain/light chain complex that is an integral and highly conserved feature of all oligomeric dynein motors.  相似文献   

4.
The cytoplasmic dynein regulatory factor Lis1, which induces a persistent tight binding to microtubules and allows for transport of cargoes under high-load conditions, is also present in motile cilia/flagella. We observed that Lis1 levels in flagella of Chlamydomonas strains that exhibit defective motility due to mutation of various axonemal substructures were greatly enhanced compared with wild type; this increase was absolutely dependent on the presence within the flagellum of the outer arm dynein α heavy chain/light chain 5 thioredoxin unit. To assess whether cells might interpret defective motility as a "high-load environment," we reduced the flagellar beat frequency of wild-type cells through enhanced viscous load and by reductive stress; both treatments resulted in increased levels of flagellar Lis1, which altered the intrinsic beat frequency of the trans flagellum. Differential extraction of Lis1 from wild-type and mutant axonemes suggests that the affinity of outer arm dynein for Lis1 is directly modulated. In cytoplasm, Lis1 localized to two punctate structures, one of which was located near the base of the flagella. These data reveal that the cell actively monitors motility and dynamically modulates flagellar levels of the dynein regulatory factor Lis1 in response to imposed alterations in beat parameters.  相似文献   

5.
To help understand the functional properties of inner and outer dynein arms in axonemal motility, sliding velocities of outer doublets were measured in disintegrating axonemes of Chlamydomonas mutants lacking either of the arms. Measurements under improved solution conditions yielded significantly higher sliding velocities than those observed in a previous study [Okagaki and Kamiya, 1986, J. Cell Biol. 103:1895-1902]. As in the previous study, it was found that the velocities in axonemes of wild type (wt) and a mutant (oda1) missing the outer arm differ greatly: 18.5 +/- 4.1 microns/sec for wt and 4.4 +/- 2.3 microns/sec for oda1 at 0.5 mM Mg-ATP. In contrast, axonemes of two types of mutants (ida2 and ida4) that lacked different sets of two inner-arm heavy chains displayed velocities almost identical with the wild-type velocity. Moreover, axonemes of a non-motile double mutant ida2 X ida4 underwent sliding disintegration at a similar high velocity, although less frequently than in axonemes of single mutants. These observations support the hypothesis that the inner and outer dynein arms in disintegrating axonemes drive microtubules at different speeds and it is the faster outer arm that determines the overall speed when both arms are present. The inner arm may be important for the initiation of sliding. The axoneme thus appears to be equipped with two (or more) types of motors with different intrinsic speeds.  相似文献   

6.
Tctex1 and Tctex2 were originally described as potential distorters/sterility factors in the non-Mendelian transmission of t-haplotypes in mice. These proteins have since been identified as subunits of cytoplasmic and/or axonemal dyneins. Within the Chlamydomonas flagellum, Tctex1 is a subunit of inner arm I1. We have now identified a second Tctex1-related protein (here termed LC9) in Chlamydomonas. LC9 copurifies with outer arm dynein in sucrose density gradients and is missing only in those strains completely lacking this motor. Zero-length cross-linking of purified outer arm dynein indicates that LC9 interacts directly with both the IC1 and IC2 intermediate chains. Immunoblot analysis revealed that LC2, LC6, and LC9 are missing in an IC2 mutant strain (oda6-r88) that can assemble outer arms but exhibits significantly reduced flagellar beat frequency. This defect is unlikely to be due to lack of LC6, because an LC6 null mutant (oda13) exhibits only a minor swimming abnormality. Using an LC2 null mutant (oda12-1), we find that although some outer arm dynein components assemble in the absence of LC2, they are nonfunctional. In contrast, dyneins from oda6-r88, which also lack LC2, retain some activity. Furthermore, we observed a synthetic assembly defect in an oda6-r88 oda12-1 double mutant. These data suggest that LC2, LC6, and LC9 have different roles in outer arm assembly and are required for wild-type motor function in the Chlamydomonas flagellum.  相似文献   

7.
《The Journal of cell biology》1988,107(6):2253-2258
35 strains of Chlamydomonas mutant missing the entire outer dynein arm were isolated by screening slow-swimming phenotypes. They comprised 10 independent genetic loci (odal-10) including those of previously isolated mutants oda38 and pf28. The 10 loci were distinct from pf13 and pf22, loci for nonmotile mutants missing the outer arm. These results indicate that at least 12 genes are responsible for the assembly of the outer dynein arms. There were no mutants lacking partial structures of the outer arm, suggesting that lack of a single component results in failure of assembly of entire outer arms. Temporary dikaryons derived from mating of two different oda strains often, but not always, recovered the wild-type motility within 2 h of mating. Hence, outer arms can be transported and attached to the outer doublets independently of flagellar growth.  相似文献   

8.
Microtubule binding and translocation by inner dynein arm subtype I1   总被引:10,自引:0,他引:10  
Structural, biochemical, and genetic evidence has demonstrated there are three inner dynein arm subforms, I1, I2, and I3, which differ in organization and composition (see Piperno et al.: J. Cell Biol. 110:379-389, 1990). Using dynein extracted from Chlamydomonas outer dynein armless mutant pf28, we have begun to define the structural and functional properties of isolated inner arm subforms. Inner dynein arm I1 was purified either by sucrose density gradient centrifugation or microtubule binding affinity. I1, composed of heavy chains 1 alpha and 1 beta, sedimented at 21S and selectively bound to and cross-linked purified microtubules in an ATP-sensitive manner. Deep etch electron microscopy revealed that the 21S sedimenting fraction contained two-headed structures in which large globular heads are connected by long, flexible-stem domains. In contrast, components derived from I2 and I3 sedimented as a mixture of 11S particles with single globular heads which did not bind to purified microtubules. Both the 21S and 11S sedimenting fractions supported microtubule translocation in in vitro motility assays. In 1 mM MgATP the I1-containing fraction produced very slow microtubule-gliding velocities (0.76 microns/sec) compared to the I2,I3-containing fraction (4.1 microns/sec).  相似文献   

9.
The outer dynein arm from Chlamydomonas flagella contains two redox-active thioredoxin-related light chains associated with the alpha and beta heavy chains; these proteins belong to a distinct subgroup within the thioredoxin family. This observation suggested that some aspect of dynein activity might be modulated through redox poise. To test this, we have examined the effect of sulfhydryl oxidation on the ATPase activity of isolated dynein and axonemes from wildtype and mutant strains lacking various heavy chain combinations. The outer, but not inner, dynein arm ATPase was stimulated significantly following treatment with low concentrations of dithionitrobenzoic acid; this effect was readily reversible by dithiol, and to a lesser extent, monothiol reductants. Mutational and biochemical dissection of the outer arm revealed that ATPase activation in response to DTNB was an exclusive property of the gamma heavy chain, and that enzymatic enhancement was modulated by the presence of other dynein components. Furthermore, we demonstrate that the LC5 thioredoxin-like light chain binds to the N-terminal stem domain of the alpha heavy chain and that the beta heavy chain-associated LC3 protein also interacts with the gamma heavy chain. These data suggest the possibility of a dynein-associated redox cascade and further support the idea that the gamma heavy chain plays a key regulatory role within the outer arm.  相似文献   

10.
Members of the LC7/Roadblock family of light chains (LCs) have been found in both cytoplasmic and axonemal dyneins. LC7a was originally identified within Chlamydomonas outer arm dynein and associates with this motor's cargo-binding region. We describe here a novel member of this protein family, termed LC7b that is also present in the Chlamydomonas flagellum. Levels of LC7b are reduced approximately 20% in axonemes isolated from strains lacking inner arm I1 and are approximately 80% lower in the absence of the outer arms. When both dyneins are missing, LC7b levels are diminished to <10%. In oda9 axonemal extracts that completely lack outer arms, LC7b copurifies with inner arm I1, whereas in ida1 extracts that are devoid of I1 inner arms it associates with outer arm dynein. We also have observed that some LC7a is present in both isolated axonemes and purified 18S dynein from oda1, suggesting that it is also a component of both the outer arm and inner arm I1. Intriguingly, in axonemal extracts from the LC7a null mutant, oda15, which assembles approximately 30% of its outer arms, LC7b fails to copurify with either dynein, suggesting that it interacts with LC7a. Furthermore, both the outer arm gamma heavy chain and DC2 from the outer arm docking complex completely dissociate after salt extraction from oda15 axonemes. EDC cross-linking of purified dynein revealed that LC7b interacts with LC3, an outer dynein arm thioredoxin; DC2, an outer arm docking complex component; and also with the phosphoprotein IC138 from inner arm I1. These data suggest that LC7a stabilizes both the outer arms and inner arm I1 and that both LC7a and LC7b are involved in multiple intradynein interactions within both dyneins.  相似文献   

11.
The Chlamydomonas outer dynein arm contains three distinct heavy chains (alpha, beta, and gamma) that exhibit different motor properties. The LC4 protein, which binds 1-2 Ca2+ with KCa = 3 x 10-5 m, is associated with the gamma heavy chain and has been proposed to act as a sensor to regulate dynein motor function in response to alterations in intraflagellar Ca2+ levels. Here we genetically dissect the outer arm to yield subparticles containing different motor unit combinations and assess the microtubule-binding properties of these complexes both prior to and following preincubation with tubulin and ATP, which was used to inhibit ATP-insensitive (structural) microtubule binding. We observed that the alpha heavy chain exhibits a dominant Ca2+-independent ATP-sensitive MT binding activity in vitro that is inhibited by attachment of tubulin to the structural microtubule-binding domain. Furthermore, we show that ATP-sensitive microtubule binding by a dynein subparticle containing only the beta and gamma heavy chains does not occur at Ca2+ concentrations below pCa 6 but is maximally activated above pCa 5. This activity was not observed in mutant dyneins containing small deletions in the microtubule-binding region of the beta heavy chain or in dyneins that lack both the alpha heavy chain and the motor domain of the beta heavy chain. These findings strongly suggest that Ca2+ binding directly to a component of the dynein complex regulates ATP-sensitive interactions between the beta heavy chain and microtubules and lead to a model for how individual motor units are controlled within the outer dynein arm.  相似文献   

12.
Ciliary and flagellar axonemes contain multiple inner arm dyneins of which the functional difference is largely unknown. In this study, a Chlamydomonas mutant, ida9, lacking inner arm dynein c was isolated and shown to carry a mutation in the DHC9 dynein heavy chain gene. The cDNA sequence of DHC9 was determined, and its information was used to show that >80% of it is lost in the mutant. Electron microscopy and image analysis showed that the ida9 axoneme lacked electron density near the base of the S2 radial spoke, indicating that dynein c localizes to this site. The mutant ida9 swam only slightly slower than the wild type in normal media. However, swimming velocity was greatly reduced when medium viscosity was modestly increased. Thus, dynein c in wild type axonemes must produce a significant force when flagella are beating in viscous media. Because motility analyses in vitro have shown that dynein c is the fastest among all the inner arm dyneins, we can regard this dynein as a fast yet powerful motor.  相似文献   

13.
A specific type of inner dynein arm is located primarily or exclusively in the proximal portion of Chlamydomonas flagella. This dynein is absent from flagella less than 6 microns long, is assembled during the second half of flagellar regeneration time and is resistant to extraction under conditions causing complete solubilization of two inner arm heavy chains and partial solubilization of three other heavy chains. This and other evidence described in this report suggest that the inner arm row is composed of five distinct types of dynein arms. Therefore, the units of three inner arms that repeat every 96 nm along the axoneme are composed of different dyneins in the proximal and distal portions of flagella.  相似文献   

14.
Flagellar dynein activity is regulated by phosphorylation. One critical phosphoprotein substrate in Chlamydomonas is the 138-kDa intermediate chain (IC138) of the inner arm dyneins (Habermacher, G., and Sale, W. S. (1997) J. Cell Biol. 136, 167-176). In this study, several approaches were used to determine that casein kinase I (CKI) is physically anchored in the flagellar axoneme and regulates IC138 phosphorylation and dynein activity. First, using a videomicroscopic motility assay, selective CKI inhibitors rescued dynein-driven microtubule sliding in axonemes isolated from paralyzed flagellar mutants lacking radial spokes. Rescue of dynein activity failed in axonemes isolated from these mutant cells lacking IC138. Second, CKI was unequivocally identified in salt extracts from isolated axonemes, whereas casein kinase II was excluded from the flagellar compartment. Third, Western blots indicate that within flagella, CKI is anchored exclusively to the axoneme. Analysis of multiple Chlamydomonas motility mutants suggests that the axonemal CKI is located on the outer doublet microtubules. Finally, CKI inhibitors that rescued dynein activity blocked phosphorylation of IC138. We propose that CKI is anchored on the outer doublet microtubules in position to regulate flagellar dynein.  相似文献   

15.
Chlamydomonas reinhardtii can use their flagella for two distinct types of movement: swimming through liquid or gliding on a solid substrate. Cells switching from swimming to gliding motility undergo a reversible flagellar quiescence. This phenomenon appears to involve the outer dynein arms, since mutants having altered outer arm beta and gamma dyneins (sup-pf-1 and sup-pf-2) show a diminished ability to quiesce. Sup-pf-1 and sup-pf-2 were originally isolated as gain-of-function mutations that suppress the flagellar paralysis resulting from radial spoke or central pair defects. Defective quiescence is also a gain-of-function phenomenon, as cells completely lacking outer arm heavy chains show a normal quiescence phenotype. These data suggest that regulation of outer arm dynein activity is essential for flagellar quiescence and furthermore that regulation of quiescence involves a signal transduction pathway that shares elements with the radial spoke/central pair system.  相似文献   

16.
《The Journal of cell biology》1994,126(5):1255-1266
Strains of Chlamydomonas reinhardtii with a mutant allele at the BOP2 locus swim slowly and have an abnormal flagellar waveform similar to previously identified strains with defects in the inner arm region. Double mutant strains with the bop2-1 allele and any of 17 different mutations that affect the dynein arm region swim more slowly than either parent, which suggests that the bop2-1 mutation does not affect solely the outer dynein arms, the I1 or ida4 inner dynein arms, or the dynein regulatory complex. Flagellar axonemes isolated from bop2-1 cells are missing a phosphorylated polypeptide of 152 kD. Electron microscopic analysis shows that bop2-1 axonemes are missing density in the inner dynein arm region. Surprisingly, two populations of images were observed in longitudinal sections of axonemes from the bop2-1 strain. In the 10 longitudinal axonemes examined, a portion of the dynein regulatory complex and a newly identified structure, the projection, are affected. In five of these 10 longitudinal axonemes examined, two lobes of the ida4 inner arm are also missing. By examining the cross-sectional images of wild-type and bop2-1 axonemes at each outer doublet position around the axoneme, we have determined that the bop2-1 mutation affects the assembly of inner arm region components in a doublet specific manner. Doublets 5, 6, and 8 have the most severe deficiency, doublet 9 has an intermediate phenotype, and doublets 2, 3, 4, and 7 have the least severe phenotype. The bop2-1 mutation provides the first evidence of radial asymmetry in the inner dynein arm region.  相似文献   

17.
Dyneins are molecular motors that translocate towards the minus ends of microtubules. In Chlamydomonas flagellar outer arm dynein, light chain 1 (LC1) associates with the nucleotide binding region within the gamma heavy chain motor domain and consists of a central leucine-rich repeat section that folds as a cylindrical right handed spiral formed from six beta-beta-alpha motifs. This central cylinder is flanked by terminal helical subdomains. The C-terminal helical domain juts out from the cylinder and is adjacent to a hydrophobic surface within the repeat region that is proposed to interact with the dynein heavy chain. The position of the C-terminal domain on LC1 and the unexpected structural similarity between LC1 and U2A' from the human spliceosome suggest that this domain interacts with the dynein motor domain.  相似文献   

18.
We have isolated and sequenced a full-length cDNA clone encoding the 78,000 Mr intermediate chain (IC78) of the Chlamydomonas outer arm dynein. This protein previously was shown to be located at the base of the solubilized dynein particle and to interact with alpha tubulin in situ, suggesting that it may be involved in binding the outer arm to the doublet microtubule. The sequence predicts a polypeptide of 683 amino acids having a mass of 76.5 kD. Sequence comparison indicates that IC78 is homologous to the 69,000 M(r) intermediate chain (IC69) of Chlamydomonas outer arm dynein and to the 74,000 M(r) intermediate chain (IC74) of cytoplasmic dynein. The similarity between the chains is greatest in their COOH-terminal halves; the NH(2)-terminal halves are highly divergent. The COOH-terminal half of IC78 contains six short imperfect repeats, termed WD repeats, that are thought to be involved in protein-protein interactions. Although not previously reported, these repeated elements also are present in IC69 and IC74. Using the IC78 cDNA as a probe, we screened a group of slow-swimming insertional mutants and identified one which has a large insertion in the IC78 gene and seven in which the IC78 gene is completely deleted. Electron microscopy of three of these IC78 mutants revealed that each is missing the outer arm, indicating that IC78 is essential for arm assembly or attachment to the outer doublet. Restriction fragment length polymorphism mapping places the IC78 gene on the left arm of chromosome XII/XIII, at or near the mutation oda9, which also causes loss of the outer arm. Mutants with defects in the IC78 gene do not complement the oda9 mutation in stable diploids, strongly suggesting that ODA9 is the structural gene for IC78.  相似文献   

19.
Flagellar motility is generated by the activity of multiple dynein motors, but the specific role of each dynein heavy chain (Dhc) is largely unknown, and the mechanism by which the different Dhcs are targeted to their unique locations is also poorly understood. We report here the complete nucleotide sequence of the Chlamydomonas Dhc1 gene and the corresponding deduced amino acid sequence of the 1alpha Dhc of the I1 inner dynein arm. The 1alpha Dhc is similar to other axonemal Dhcs, but two additional phosphate binding motifs (P-loops) have been identified in the NH(2)- and COOH-terminal regions. Because mutations in Dhc1 result in motility defects and loss of the I1 inner arm, a series of Dhc1 transgenes were used to rescue the mutant phenotypes. Motile cotransformants that express either full-length or truncated 1alpha Dhcs were recovered. The truncated 1alpha Dhc fragments lacked the dynein motor domain, but still assembled with the 1beta Dhc and other I1 subunits into partially functional complexes at the correct axoneme location. Analysis of the transformants has identified the site of the 1alpha motor domain in the I1 structure and further revealed the role of the 1alpha Dhc in flagellar motility and phototactic behavior.  相似文献   

20.
Intraflagellar transport (IFT), which is the bidirectional movement of particles within flagella, is required for flagellar assembly. IFT particles are composed of approximately 16 proteins, which are organized into complexes A and B. We have cloned Chlamydomonas reinhardtii and mouse IFT46, and show that IFT46 is a highly conserved complex B protein in both organisms. A C. reinhardtii insertional mutant null for IFT46 has short, paralyzed flagella lacking dynein arms and with central pair defects. The mutant has greatly reduced levels of most complex B proteins, indicating that IFT46 is necessary for complex B stability. A partial suppressor mutation restores flagellar length to the ift46 mutant. IFT46 is still absent, but levels of the other IFT particle proteins are largely restored, indicating that complex B is stabilized in the suppressed strain. Axonemal ultrastructure is restored, except that the outer arms are still missing, although outer arm subunits are present in the cytoplasm. Thus, IFT46 is specifically required for transporting outer arms into the flagellum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号