首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The protein tyrosine kinase Ack1 has been linked to cancer when over-expressed. Ack1 has also been suggested to function in clathrin-mediated endocytosis and in down-regulation of the epidermal growth factor (EGF) receptor (EGFR). We have studied the intracellular localization of over-expressed Ack1 and found that Ack1 co-localizes with the EGFR upon EGF-induced endocytosis in cells with moderate over-expression of Ack. This co-localization is mainly observed in early endosomes. Furthermore, we found that over-expression of Ack1 retained the EGFR at the limiting membrane of early endosomes, inhibiting sorting to inner vesicles of multivesicular bodies. Down-regulation of Ack1 in HeLa cells resulted in reduced rate of (125)I-EGF internalization, whereas internalization of (125)I-transferrin was not affected. In cells where Ack1 had been knocked down by siRNA, recycling of internalized (125)I-EGF was increased, while degradation of (125)I-EGF was inhibited. Together, these data suggest that Ack1 is involved in an early step of EGFR desensitization.  相似文献   

2.
Ligand-mediated endocytosis is an important regulatory mechanism of epidermal growth factor (EGF) receptor (EGFR) signal transduction. Coordinated EGFR internalization and degradation function to regulate the spatial and temporal components of EGFR-effector interactions. In an effort to better understand the molecular mechanisms that control these events, we examined the role of rab5 in the endocytic trafficking of the EGFR. Rab5 is a 25-kDa guanine nucleotide binding protein that has previously been shown to be involved in the early stages of endocytic trafficking. Using adenovirally expressed dominant negative and constitutively active rab5 [rab5(S34N) and rab5(Q79L)] in cells with endogenous EGFRs, we have found that the guanine nucleotide binding state of rab5 has no bearing on the rate of EGFR endocytosis. However, expression of dominant negative rab5 affects downstream endocytic trafficking by slowing the ligand-induced disappearance of total cellular EGFR. Using confocal microscopy to examine EGF/EGFR and rab5 localization indicates that the activity of rab5 governs whether internalized EGF/EGFR and rab5 co-localize. Transferrin, which internalizes via a constitutively internalized cell surface receptor, co-sediments with rab5(WT), but not rab5(S34N) on sucrose gradients. Taken together, these data are consistent with rab5 functioning to regulate intracellular endocytic trafficking distal from the plasma membrane.  相似文献   

3.
Receptor tyrosine kinases such as the epidermal growth factor receptor (EGFR) elicit proliferation, migration, and differentiation in a wide spectrum of cell types through various signal transduction pathways. These activities are attenuated by receptor internalization, intracellular trafficking through endosomes, and degradation in lysosomes, resulting in decreased receptor expression. However, there is now considerable evidence that EGFRs continue to signal in endosomes, forcing us to reevaluate the outcomes of receptor trafficking. An exciting revelation is that internalized receptors extend some signaling activities but not others, suggesting that certain responses, such as cell motility, must be mediated at the cell surface. Still, only when the effects of decreased receptor populations and signaling compartmentalization are integrated can we hope to understand and manipulate receptor function at the molecular level.  相似文献   

4.
The rapid internalization of receptor tyrosine kinases after ligand binding has been assumed to be a negative modulation of signal transduction. However, accumulating data indicate that signal transduction from internalized cell surface receptors also occurs from endosomes. We show that a substantial fraction of tyrosine-phosphorylated epidermal growth factor receptor (EGFR) and Shc, Grb2 and Cbl after internalization relocates from early endosomes to compartments which are negative for the early endosomes, recycling vesicle markers EEA1 and transferrin in EGF-stimulated cells. These compartments contained the multivesicular body and late endosome marker CD63, and the late endosome and lysosome marker LAMP-1, and showed a multivesicular morphology. Subcellular fractionation revealed that activated EGFR, adaptor proteins and activated ERK 1 and 2 were located in EEA1-negative and LAMP-1-positive fractions. Co-immunoprecipitations showed EGFR in complex with both Shc, Grb2 and Cbl. Treatment with the weak base chloroquine or inhibitors of lysosomal enzymes after EGF stimulation induced an accumulation of tyrosine-phosphorylated EGFR and Shc in EEA1-negative and CD63-positive vesicles after a 120-min chase period. This was accompanied by a sustained activation of ERK 1 and 2. These results suggest that EGFR signaling is not spatially restricted to the plasma membrane, primary vesicles and early endosomes, but is continuing from late endocytic trafficking organelles maturing from early endosomes.  相似文献   

5.
After the intraportal injection of EGF, the EGF receptor (EGFR) is rapidly internalized into hepatic endosomes where it remains largely receptor bound (Lai et al., 1989. J. Cell Biol. 109:2751-2760). In the present study, we evaluated the phosphotyrosine content of EGFRs at the cell surface and in endosomes in order to assess the consequences of internalization. Quantitative estimates of specific radioactivity of the EGFR in these two compartments revealed that tyrosine phosphorylation of the EGFR was observed at the cell surface within 30 s of ligand administration. However, the EGFR was also highly phosphorylated in endosomes reaching levels of tyrosine phosphorylation significantly higher than those of the cell surface receptor at 5 and 15 min after EGF injection. A 55-kD tyrosine phosphorylated polypeptide (pyp55) was observed in association with the EGFR at the cell surface within 30 s of EGF injection. The protein was also found in association with the EGFR in endosomes as evidenced by coprecipitation studies using a mAb to the EGFR as well as by coelution with the EGR in gel permeation chromatography. Limited proteolysis of isolated endosomes indicated that the tyrosine phosphorylated domains of the EGFR and associated pyp55 were cytosolically oriented while internalized EGF was intraluminal. The identification of pyp55 in association with EGFR in both hepatic plasma membranes and endosomes may be relevant to EGFR function and/or trafficking of the EGFR.  相似文献   

6.
This review article describes the pathways and mechanisms of endocytosis and post-endocytic sorting of the EGF receptor (EGFR/ErbB1) and other members of the ErbB family. Growth factor binding to EGFR accelerates its internalization through clathrin-coated pits which is followed by the efficient lysosomal targeting of internalized receptors and results in receptor down-regulation. The role of EGFR interaction with the Grb2 adaptor protein and Cbl ubiquitin ligase, and receptor ubiquitination in the clathrin-dependent internalization and sorting of EGFR in multivesicular endosomes is discussed. Activation and phosphorylation of ErbB2, ErbB3 and ErbB4 also results in their ubiquitination. However, these ErbBs are internalized and targeted to lysosomes less efficiently than EGFR. When overexpressed endocytosis-impaired ErbBs may inhibit the internalization and degradation of EGFR.  相似文献   

7.
This review article describes the pathways and mechanisms of endocytosis and post-endocytic sorting of the EGF receptor (EGFR/ErbB1) and other members of the ErbB family. Growth factor binding to EGFR accelerates its internalization through clathrin-coated pits which is followed by the efficient lysosomal targeting of internalized receptors and results in receptor down-regulation. The role of EGFR interaction with the Grb2 adaptor protein and Cbl ubiquitin ligase, and receptor ubiquitination in the clathrin-dependent internalization and sorting of EGFR in multivesicular endosomes is discussed. Activation and phosphorylation of ErbB2, ErbB3 and ErbB4 also results in their ubiquitination. However, these ErbBs are internalized and targeted to lysosomes less efficiently than EGFR. When overexpressed endocytosis-impaired ErbBs may inhibit the internalization and degradation of EGFR.  相似文献   

8.
Ligand-induced activation of the epidermal growth factor receptor (EGFR) initiates trafficking events that relocalize the receptors from the cell surface to intracellular endocytic compartments. We recently reported that leucine-rich repeat kinase 1 (LRRK1) is involved in the trafficking of EGFR from early to late endosomes. In this study, we demonstrate that EGFR regulates the kinase activity of LRRK1 via tyrosine phosphorylation and that this is required for proper endosomal trafficking of EGFR. Phosphorylation of LRRK1 at Tyr-944 results in reduced LRRK1 kinase activity. Mutation of LRRK1 Tyr-944 (Y944F) abolishes EGF-stimulated tyrosine phosphorylation, resulting in hyperactivation of LRRK1 kinase activity and enhanced motility of EGF-containing endosomes toward the perinuclear region. The compartments in which EGFR accumulates are mixed endosomes and are defective in the proper formation of intraluminal vesicles of multivesicular bodies. These results suggest that feedback down-regulation of LRRK1 kinase activity by EGFR plays an important role in the appropriate endosomal trafficking of EGFR.  相似文献   

9.
After binding of epidermal growth factor (EGF), the EGF receptor (EGFR) becomes autophosphorylated via tyrosine. The ligand-activated receptor is internalized by endocytosis and subsequently degraded in the lysosomal pathway. To follow EGFR activation after EGF stimulation, we generated antisera to the EGFR phosphotyrosine sites pY992 and pY1173. The SH2 region of Shc binds to both these sites. Both antisera identified EGFR after EGF binding and did not crossreact with the unactivated receptor. The intracellular distribution of phosphorylated EGFR after ligand binding was traced by two-color immunofluorescence confocal microscopy and immunoelectron microscopy. Before EGF stimulation EGFR was primarily located along the cell surface. When internalization of activated EGFR was inhibited by incubation with EGF on ice, Y992- and Y1173-phosphorylated EGFR were located along the plasma membrane. Ten minutes after internalization at 37C, Y992- and Y1173-phosphorylated EGFR were almost exclusively located in early endosomes, as shown by co-localization with EEA1. Immunoelectron microscopy confirmed that phosphorylated EGFR was located in intracellular vesicles resembling early endosomes. After EGF stimulation, the adaptor protein Shc redistributed to EGFR-containing early endosomes. Our results indicate that EGFR activation of Shc via tyrosine-phosphorylated Y992 and Y1173 occurred in early endocytic compartments, and support a role for membrane trafficking in intracellular signaling.  相似文献   

10.
11.
Activated epidermal growth factor receptors (EGFRs) recruit intracellular proteins that mediate receptor signaling and endocytic trafficking. Rin1, a multifunctional protein, has been shown to regulate EGFR internalization (1). Here we show that EGF stimulation induces a specific, rapid, and transient membrane recruitment of Rin1 and that recruitment is dependent on the Src homology 2 (SH2) domain of Rin1. Immunoprecipitation of EGFR is accompanied by co-immunoprecipitation of Rin1 in a time- and ligand-dependent manner. Association of Rin1 and specifically the SH2 domain of Rin1 with the EGFR was dependent on tyrosine phosphorylation of the intracellular domain of the EGFR. The recruitment of Rin1, observed by light microscopy, indicated that although initially cytosolic, Rin1 was recruited to both plasma membrane and endosomes following EGF addition. Moreover, the expression of the SH2 domain of Rin1 substantially impaired the internalization of EGF without affecting internalization of transferrin. Finally, we found that Rin1 co-immunoprecipitated with a number of tyrosine kinase receptors but not with cargo endocytic receptors. These results indicate that Rin1 provides a link via its SH2 domain between activated tyrosine kinase receptors and the endocytic pathway through the recruitment and activation of Rab5a.  相似文献   

12.
The adenovirus-encoded receptor internalization and degradation (RID) protein (previously named E3-10.4K/14.5K), which is composed of RIDalpha and RIDbeta subunits, down-regulates a number of cell surface receptors in the tumor necrosis factor (TNF) receptor superfamily, namely Fas, TRAIL receptor 1, and TRAIL receptor 2. Down-regulation of these "death" receptors protects adenovirus-infected cells from apoptosis induced by the death receptor ligands Fas ligand and TRAIL. RID also down-regulates certain tyrosine kinase cell surface receptors, especially the epidermal growth factor receptor (EGFR). RID-mediated Fas and EGFR down-regulation occurs via endocytosis of the receptors into endosomes followed by transport to and degradation within lysosomes. However, the molecular interactions underlying this function of RID are unknown. To investigate the molecular determinants of RIDbeta that are involved in receptor down-regulation, mutations within the cytoplasmic tail of RIDbeta were constructed and the mutant proteins were analyzed for their capacity to internalize and degrade Fas and EGFR and to protect cells from death receptor ligand-induced apoptosis. The results demonstrated the critical nature of a tyrosine residue near the RIDbeta C terminus; mutation of this residue to alanine abolished RID function. Mutating the tyrosine to phenylalanine did not abolish the function of RID, arguing that phosphorylation of the tyrosine is not required for function. These data suggest that this tyrosine residue forms part of a tyrosine-based sorting signal (Yxxphi). Additional mutations that target another potential sorting motif and several possible protein-protein interaction motifs had no discernible effect on RID function. It was also demonstrated that mutation of serine 116 to alanine eliminated phosphorylation of RIDbeta but did not affect any of the functions of RID that were examined. These results suggest a model in which the tyrosine-based sorting signal in RID plays a role in RID's ability to down-regulate receptors.  相似文献   

13.
Ligand binding to cell surface receptors initiates both signal transduction and endocytosis. Although signaling may continue within the endocytic compartment, down-regulation is the major mechanism that controls the concentration of cell surface receptors, their ability to receive environmental signals, and the ultimate strength of biological signaling. Internalization, recycling, and trafficking of receptor tyrosine kinases (RTKs) within the endosome compartment are each regulated to control the overall process of down-regulation. We have identified the Na(+)/H(+) exchanger regulatory factor (NHERF) as an important molecular component that stabilizes epidermal growth factor receptors (EGFRs) at the cell surface to restrict receptor down-regulation. The NH(2)-terminal PDZ domain (PDZ 1) of NHERF specifically binds to an internal peptide motif located within the COOH-terminal regulatory domain of EGFR. Expression of NHERF slows the rate of EGF-induced receptor degradation. A point mutation that abolishes the PDZ 1 recognition sequence of EGFR enhances the rate of ligand-induced endocytosis and down-regulation of EGFR. Similarly, expression of a dominant negative mutant of NHERF enhances EGF-induced receptor down-regulation. In contrast to beta-adrenergic receptors where NHERF enhances recycling of internalized receptors, NHERF stabilizes EGFR at the cell surface and slows the rate of endocytosis without affecting recycling. Although the mechanisms differ, for both RTKs and G protein-coupled receptors, the overall effect of NHERF is to enhance the fraction of receptors present at the cell surface.  相似文献   

14.
Current models put forward that the epidermal growth factor receptor (EGFR) is efficiently internalized via clathrin-coated pits only in response to ligand-induced activation of its intrinsic tyrosine kinase and is subsequently directed into a lysosomal-proteasomal degradation pathway by mechanisms that include receptor tyrosine phosphorylation and ubiquitylation. Herein, we report a novel mechanism of EGFR internalization that does not require ligand binding, receptor kinase activity, or ubiquitylation and does not direct the receptor into a degradative pathway. Inhibition of basal protein kinase A (PKA) activity by H89 and the cell-permeable substrate peptide Myr-PKI induced internalization of 40-60% unoccupied, inactive EGFR, and its accumulation into early endosomes without affecting endocytosis of transferrin and mu-opioid receptors. This effect was abrogated by interfering with clathrin function. Thus, the predominant distribution of inactive EGFR at the plasma membrane is not simply by default but involves a PKA-dependent restrictive condition resulting in receptor avoidance of endocytosis until it is stimulated by ligand. Furthermore, PKA inhibition may contribute to ligand-induced EGFR endocytosis because epidermal growth factor inhibited 26% of PKA basal activity. On the other hand, H89 did not alter ligand-induced internalization of EGFR but doubled its half-time of down-regulation by retarding its segregation into degradative compartments, seemingly due to a delay in the receptor tyrosine phosphorylation and ubiquitylation. Our results reveal that PKA basal activity controls EGFR function at two levels: 1) residence time of inactive EGFR at the cell surface by a process of "endocytic evasion," modulating the accessibility of receptors to stimuli; and 2) sorting events leading to the down-regulation pathway of ligand-activated EGFR, determining the length of its intracellular signaling. They add a new dimension to the fine-tuning of EGFR function in response to cellular demands and cross talk with other signaling receptors.  相似文献   

15.
The current activation model of the EGF receptor (EGFR) predicts that binding of EGF results in dimerization and oligomerization of the EGFR, leading to the allosteric activation of the intracellular tyrosine kinase. Little is known about the regulatory mechanism of receptor oligomerization. In this study, we have employed FRET between identical fluorophores (homo-FRET) to monitor the dimerization and oligomerization state of the EGFR before and after receptor activation. Our data show that, in the absence of ligand, ~40% of the EGFR molecules were present as inactive dimers or predimers. The monomer/predimer ratio was not affected by deletion of the intracellular domain. Ligand binding induced the formation of receptor oligomers, which were found in both the plasma membrane and intracellular structures. Ligand-induced oligomerization required tyrosine kinase activity and nine different tyrosine kinase substrate residues. This indicates that the binding of signaling molecules to activated EGFRs results in EGFR oligomerization. Induction of EGFR predimers or pre-oligomers using the EGFR fused to the FK506-binding protein did not affect signaling but was found to enhance EGF-induced receptor internalization. Our data show that EGFR oligomerization is the result of EGFR signaling and enhances EGFR internalization.  相似文献   

16.
Membrane receptors are internalized either constitutively or upon ligand engagement. Whereas there is evidence for differential regulation of the two processes, little is known about the molecular machinery involved. Previous studies have shown that an unidentified kinase substrate is required for endocytosis of the epidermal growth factor receptor (EGFR), the prototypical ligand-inducible receptor, but not of the transferrin receptor (TfR), the prototypical constitutively internalized receptor. Eps15, an endocytic protein that is tyrosine phosphorylated by EGFR, is a candidate for such a function. Here, we show that tyrosine phosphorylation of Eps15 is necessary for internalization of the EGFR, but not of the TfR. We mapped Tyr 850 as the major in vivo tyrosine phosphorylation site of Eps15. A phosphorylation-negative mutant of Eps15 acted as a dominant negative on the internalization of the EGFR, but not of the TfR. A phosphopeptide, corresponding to the phosphorylated sequence of Eps15, inhibited EGFR endocytosis, suggesting that phosphotyrosine in Eps15 serves as a docking site for a phosphotyrosine binding protein. Thus, tyrosine phosphorylation of Eps15 represents the first molecular determinant, other than those contained in the receptors themselves, which is involved in the differential regulation of constitutive vs. regulated endocytosis.  相似文献   

17.
Occupancy-induced down-regulation of cell surface epidermal growth factor (EGF) receptors attenuates signal transduction. To define mechanisms through which down-regulation of this class of growth factor receptors occurs, we have investigated the relative roles of ligand-induced internalization and recycling in this process. Occupied, kinase-active EGF receptors were internalized through a high affinity, saturable endocytic system at rates up to 10-fold faster than empty receptors. In contrast, full length EGF receptors lacking tyrosine kinase activity underwent internalization at a rate independent of occupancy. This "kinase-independent" internalization rate appeared to reflect constitutive receptor internalization since it was similar to the internalization rate of both receptors lacking a cytoplasmic domain and of antibodies bound to empty receptors. EGF internalized by either kinase-active or kinase-inactive receptors was efficiently recycled and was found within endosomes containing recycling transferrin receptors. However, targeting of internalized receptors to lysosomes did not require receptor kinase activity. All receptors that displayed ligand-induced internalization also underwent down-regulation, indicating that the proximal cause of down-regulation is occupancy-induced endocytosis. Tyrosine kinase activity greatly enhances this process by stabilizing receptor association with the endocytic apparatus.  相似文献   

18.
The epidermal growth factor (EGF) receptor (EGFR) is a ubiquitously expressed receptor tyrosine kinase that regulates diverse cell functions that are dependent upon cell type, the presence of downstream effectors, and receptor density. In addition to activating biochemical pathways, ligand stimulation causes the EGFR to enter the cell via clathrin-coated pits. Endocytic trafficking influences receptor signaling by controlling the duration of EGFR phosphorylation and coordinating the receptor's association with downstream effectors. To better understand the individual contributions of cell surface and cytosolic EGFRs on cell physiology, we used EGF that was conjugated to 900 nm polystyrene beads (EGF-beads). EGF-beads can stimulate the EGFR and retain the activated receptor at the plasma membrane. In MDA-MB-468 cells, a breast cancer cell line that over-expresses the EGFR, only internalized, activated EGFRs stimulate caspase-3 and induce cell death. Conversely, signaling cascades triggered from activated EGFR retained at the cell surface inhibit caspase-3 and promote cell proliferation. Thus, through endocytosis, the activated EGFR can differentially regulate cell growth in MDA-MB-468 cells.  相似文献   

19.
The reggie/flotillin proteins are implicated in membrane trafficking and, together with the cellular prion protein (PrP), in the recruitment of E-cadherin to cell contact sites. Here, we demonstrate that reggies, as well as PrP down-regulation, in epithelial A431 cells cause overlapping processes and abnormal formation of adherens junctions (AJs). This defect in cell adhesion results from reggie effects on Src tyrosine kinases and epidermal growth factor receptor (EGFR): loss of reggies reduces Src activation and EGFR phosphorylation at residues targeted by Src and c-cbl and leads to increased surface exposure of EGFR by blocking its internalization. The prolonged EGFR signaling at the plasma membrane enhances cell motility and macropinocytosis, by which junction-associated E-cadherin is internalized and recycled back to AJs. Accordingly, blockage of EGFR signaling or macropinocytosis in reggie-deficient cells restores normal AJ formation. Thus, by promoting EGFR internalization, reggies restrict the EGFR signaling involved in E-cadherin macropinocytosis and recycling and regulate AJ formation and dynamics and thereby cell adhesion.  相似文献   

20.
The amount of cell-surface Epidermal Growth Factor Receptor (EGFR) available to secreted ligand (EGF) dictates a cell's ability to mediate cell proliferation, differentiation or migration. Multiple factors regulate EGFR cell-surface expression including the rates of protein synthesis and protein degradation, and the endocytic trafficking of both stimulated and unstimulated EGFR. Rab5 is a 25 kDa protein that is localized to the plasma membrane and the early endosome. Its exact molecular function, however, remains controversial. We have used stable and transient expression systems in HeLa cells to examine the consequence of continual, overexpression of wild-type and activated mutants of rab5 on EGFR localization and signaling. Continual expression of constitutively activated mutants of rab5 causes a ligand-independent redistribution of EGFRs into intracellular vesicles that can not be blocked with an antagonistic antibody. The net result is a decrease in the level of cell-surface EGFRs available for ligand stimulation. Thus, rab5 activation regulates EGFR signaling by facilitating the internalization of the unliganded EGFR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号