首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Voltage-dependent potassium currents were measured in Xenopus oocytes previously injected with RNAs generated in vitro from each of three cloned cDNAs (RBK1, RBK2, and RGK5). The currents differed in their sensitivities to blockade by tetraethylammonium (TEA; respective KDs 0.3, greater than 100, and 10 mM) and in their inactivation during a depolarizing pulse. Injections of RNA combinations (RBK1/RBK2 and RBK1/RGK5) caused currents that had TEA sensitivities different from those expected from the sum, in any proportion, of the two native channels. It is concluded that novel potassium channels are formed by the oocytes injected with two RNAs, presumably by heteropolymerization of subunits; such heteropolymerization would contribute functional diversity to voltage-dependent potassium channels in addition to that provided by a large gene family.  相似文献   

2.
Extracellular tetraethylammonium (TEA) inhibits currents in Xenopus oocytes that have been injected with mRNAs encoding voltage-dependent potassium channels. Concentration-response curves were used to measure the affinity of TEA; this differed up to 700-fold among channels RBK1 (KD 0.3 mM), RGK5 (KD 11 mM), and RBK2 (KD greater than 200 mM). Studies in which chimeric channels were expressed localized TEA binding to the putative extracellular loop between trans-membrane domains S5 and S6. Site-directed mutagenesis of residues in this region identified the residue Tyr379 of RBK1 as a crucial determinant of TEA sensitivity; substitution of Tyr in the equivalent positions of RBK2 (Val381) and RGK5 (His401) made these channels as sensitive to TEA as RBK1. Nonionic forces are involved in TEA binding because (i) substitution of the Phe for Tyr379 in RBK1 increased its affinity, (ii) protonation of His401 in RGK5 selectively reduced its affinity, and (iii) the affinity of TEA was unaffected by changes in ionic strength. The results suggest an explanation for the marked differences in TEA sensitivity that have been observed among naturally occurring and cloned potassium channels and indicate that the amino acid corresponding to residue 379 in RBK1 lies within the external mouth of the ion channel.  相似文献   

3.
Four copies of the coding sequence for a voltage-dependent potassium channel (RBK1, rat Kv1.1) were ligated contiguously and transcribed in vitro. The resulting RNA encodes four covalently linked subunit domains ([4]RBK1). Injection of this RNA into Xenopus oocytes resulted in the expression of voltage-dependent potassium currents. A single amino acid substitution, Tyr-->Val, located within the outer mouth of the pore, introduced into the equivalent position of any of the four domains, reduced affinity for external tetraethylammonium by approximately the same amount. In constructs containing 0, 1, 2, 3, or 4 Tyr residues the free energy of binding tetraethylammonium was linearly related to the number of Tyr residues. A different amino acid substitution, Leu-->Ile, located in the S4 region, was made in the equivalent position of one, two, three, or four domains. The depolarization required for channel activation increased approximately linearly with the number of Ile residues, whereas models of independent gating of each domain predict marked nonlinearity. Expression of this concatenated channel provides direct evidence that voltage-dependent potassium channels have four subunits positioned symmetrically around a central permeation pathway and that these subunits interact cooperatively during channel activation.  相似文献   

4.
5.
State-dependent inactivation of the Kv3 potassium channel.   总被引:7,自引:1,他引:6  
Inactivation of Kv3 (Kv1.3) delayed rectifier potassium channels was studied in the Xenopus oocyte expression system. These channels inactivate slowly during a long depolarizing pulse. In addition, inactivation accumulates in response to a series of short depolarizing pulses (cumulative inactivation), although no significant inactivation occurs within each short pulse. The extent of cumulative inactivation does not depend on the voltage during the depolarizing pulse, but it does vary in a biphasic manner as a function of the interpulse duration. Furthermore, the rate of cumulative inactivation is influenced by changing the rate of deactivation. These data are consistent with a model in which Kv3 channel inactivation is a state-dependent and voltage-independent process. Macroscopic and single channel experiments indicate that inactivation can occur from a closed (silent) state before channel opening. That is, channels need not open to inactivate. The transition that leads to the inactivated state from the silent state is, in fact, severalfold faster then the observed inactivation of current during long depolarizing pulses. Long pulse-induced inactivation appears to be slow, because its rate is limited by the probability that channels are in the open state, rather than in the silent state from which they can inactivate. External potassium and external calcium ions alter the rates of cumulative and long pulse-induced inactivation, suggesting that antagonistic potassium and calcium binding steps are involved in the normal gating of the channel.  相似文献   

6.
The NAD(+)-dependent D-lactate dehydrogenase was purified to apparent homogeneity from Lactobacillus bulgaricus and its complete amino acid sequence determined. Two gaps in the polypeptide chain (10 residues) were filled by the deduced amino acid sequence of the polymerase chain reaction amplified D-lactate dehydrogenase gene sequence. The enzyme is a dimer of identical subunits (specific activity 2800 +/- 100 units/min at 25 degrees C). Each subunit contains 332 amino acid residues; the calculated subunit M(r) being 36,831. Isoelectric focusing showed at least four protein bands between pH 4.0 and 4.7; the subunit M(r) of each subform is 36,000. The pH dependence of the kinetic parameters, Km, Vm, and kcat/Km, suggested an enzymic residue with a pKa value of about 7 to be involved in substrate binding as well as in the catalytic mechanism. Treatment of the enzyme with group-specific reagents 2,3-butanedione, diethylpyrocarbonate, tetranitromethane, or N-bromosuccinimide resulted in complete loss of enzyme activity. In each case, inactivation followed pseudo first-order kinetics. Inclusion of pyruvate and/or NADH reduced the inactivation rates manyfold, indicating the presence of arginine, histidine, tyrosine, and tryptophan residues at or near the active site. Spectral properties of chemically modified enzymes and analysis of kinetics of inactivation showed that the loss of enzyme activity was due to modification of a single arginine, histidine, tryptophan, or tyrosine residue. Peptide mapping in conjunction with peptide purification and amino acid sequence determination showed that Arg-235, His-303, Tyr-101, and Trp-19 were the sites of chemical modification. Arg-235 and His-303 are involved in the binding of 2-oxo acid substrate whereas other residues are involved in binding of the cofactor.  相似文献   

7.
K Sankaran  K Gan  B Rash  H Y Qi  H C Wu    P D Rick 《Journal of bacteriology》1997,179(9):2944-2948
Phosphatidylglycerol:prolipoprotein diacylglyceryl transferase (Lgt) is the first enzyme in the posttranslational sequence of reactions resulting in the lipid modification of lipoproteins in bacteria. A previous comparison of the primary sequences of the Lgt enzymes from phylogenetically distant bacterial species revealed several highly conserved amino acid sequences throughout the molecule; the most extensive of these was the region 103HGGLIG108 in the Escherichia coli Lgt (H.-Y. Qi, K. Sankaran, K. Gan, and H. C. Wu, J. Bacteriol. 177:6820-6824, 1995). These studies also revealed that the kinetics of inactivation of E. coli Lgt with diethylpyrocarbonate were consistent with the modification of a single essential histidine or tyrosine residue. The current study was conducted in an attempt to identify this essential amino acid residue in order to further define structure-function relationships in Lgt. Accordingly, all of the histidine residues and seven of the tyrosine residues of E. coli Lgt were altered by site-directed mutagenesis, and the in vitro activities of the altered enzymes, as well the abilities of the respective mutant lgt alleles to complement the temperature-sensitive phenotype of E. coli SK634 defective in Lgt activity, were determined. The data obtained from these studies, in conjunction with additional chemical inactivation studies, support the conclusion that His-103 is essential for Lgt activity. These studies also indicated that Tyr-235 plays an important role in the function of this enzyme. Although other histidine and tyrosine residues were not found to be essential for Lgt activity, alterations of His-196 resulted in a significant reduction of in vitro activity.  相似文献   

8.
o-Succinylbenzoyl coenzyme A (OSB-CoA) synthetase, when treated with diethylpyrocarbonate (DEP), showed a time-dependent loss of enzyme activity. The inactivation follows pseudo-first-order kinetics with a second-order rate constant of 9.2 x 10(-4) +/- 1.4 x 10(-4) microM(-1) min(-1). The difference spectrum of the modified enzyme versus the native enzyme showed an increase in A242 that is characteristic of N-carbethoxyhistidine and was reversed by treatment with hydroxylamine. Inactivation due to nonspecific secondary structural changes in the protein and modification of tyrosine, lysine, or cysteine residues was ruled out. Kinetics of enzyme inactivation and the stoichiometry of histidine modification indicate that of the eight histidine residues modified per subunit of the enzyme, a single residue is responsible for the enzyme activity. A plot of the log reciprocal of the half-time of inactivation against the log DEP concentration further suggests that one histidine residue is involved in the catalysis. Further, the enzyme was partially protected from inactivation by either o-succinylbenzoic acid (OSB), ATP, or ATP plus Mg2+ while inactivation was completely prevented by the presence of the combination of OSB, ATP, and Mg2+. Thus, it appears that a histidine residue located at or near the active site of the enzyme is essential for activity. When His341 present in the previously identified ATP binding motif was mutated to Ala, the enzyme lost 65% of its activity and the Km for ATP increased 5.4-fold. Thus, His341 of OSB-CoA synthetase plays an important role in catalysis since it is probably involved in the binding of ATP to the enzyme.  相似文献   

9.
Reaction of phospholipase A2 (Naja naja naja) with p-bromophenacyl bromidine leads to almost complete loss of enzymatic activity. The rate of inactivation is pH-dependent with pKa equals 6.9 for the ionizing residue. p-Bromophenacyl bromide modifies 0.5 mol of histidine/mol of enzyme as judged by amino acid analysis and incorporation studies with 14C-labeled reagent. The rate of inactivation is affected by various cations; a saturating concentration of Ca2+ decreases the rate 5-fold, while Mn2+ increases the rate by a factor of 2. Triton X-100, which by itself has little affinity for the enzyme, protects against inactivation, presumably by sequestering p-bromophenacyl bromide into the apolar micellar core. The mixed micelle system of Triton X-100, dipalmitoyl phosphatidylcholine, and Ba2+ offers the best protection, lowering the inactivation rate by at least 50-fold. This suggests an active site role for the histidine residue. Ethoxyformic anhydride also modifies phospholipase A2, by acylation of the two amino groups, a tyrosine, and 0.5 mol of histidine/mol of enzyme without totally inactivating the enzyme. Removal of the ethoxyformyl group from the histidine does not reactivate the enzyme. Thus, modification of 0.5 mol of histidine with this reagent is not responsible for the 85% loss of activity seen. Ethoxyformylated enzyme, with 0.5 mol of acylated histidine/mol of enzyme, can be further inactivated by treatment with p-bromophenacyl bromide. The resulting derivative contains 0.4 mol of the 14C-labeled p-bromophenacyl group. Other modifiable groups do not show this half-residue reactivity. For example, oxidation of phospholipase A2 with N-bromosuccinimide leads to rapid destruction of 1.0 tryptophan residue and 5% residual activity. The results of these chemical modification experiments can be interpreted in terms of a model in which the active species of enzyme interacting with mixed micelles is a dimer (or possibly higher order aggregate). The dimer, though composed of identical subunits, is asymmetric; the histidine of one subunit is accessible to ethoxyformic anhydride, while the other histidine is near a hydrophobic region of the enzyme and is chemically reactive toward p-bromophenacyl bromide.  相似文献   

10.
11.
In Kv1.5, protonation of histidine 463 in the S5-P linker (turret) increases the rate of depolarization-induced inactivation and decreases the peak current amplitude. In this study, we examined how amino acid substitutions that altered the physico-chemical properties of the side chain at position 463 affected slow inactivation and then used the substituted cysteine accessibility method (SCAM) to probe the turret region (E456-P468) to determine whether residue 463 was unique in its ability to modulate the macroscopic current. Substitutions at position 463 of small, neutral (H463G and H463A) or large, charged (H463R, H463K, and H463E) side groups accelerated inactivation and induced a dependency of the current amplitude on the external potassium concentration. When cysteine substitutions were made in the distal turret (T462C-P468C), modification with either the positively charged [2-(trimethylammonium)ethyl] methanethiosulfonate bromide (MTSET) or negatively charged sodium (2-sulfonatoethyl) methanethiosulfonate reagent irreversibly inhibited current. This inhibition could be antagonized either by the R487V mutation (homologous to T449V in Shaker) or by raising the external potassium concentration, suggesting that current inhibition by MTS reagents resulted from an enhancement of inactivation. These results imply that protonation of residue 463 does not modulate inactivation solely by an electrostatic interaction with residues near the pore mouth, as proposed by others, and that residue 463 is part of a group of residues within the Kv1.5 turret that can modulate P/C-type inactivation. electrophysiology; voltage-gated potassium channels; substituted cysteine accessibility method  相似文献   

12.
The site of hemolytic activity of a toxin isolated from Aspergillus fumigatus designated Asp-hemolysin was determined by photooxidation techniques. The hemolytic activity of this toxin was strongly inhibited by photooxidation with methylene blue, rose bengal, riboflavin, or eosin G as a sensitizer, whereas crystal violet, hematoxylin, naphthol yellow S, bromothymol blue, methyl orange, and cresol red had no effect. pH dependence of the inactivation with methylene blue was observed in the narrow range of pH values from 7.0 to 8.0, like that of the inactivation with rose bengal or riboflavin. The histidine, cysteine, methionine, tryptophan, and tyrosine content of methylene blue-photooxidized Asp-hemolysin was significantly decreased, while other amino acids were not affected. The hemolytic activity of the toxin was lost more slowly than the histidine residue, being maintained at about 50% even at the time when the histidine residue was completely lost after 30 min. Photooxidation of Asp-hemolysin in the presence of rose bengal also caused a decrease in histidine, methionine, and threonine content. These findings suggest that residues of cysteine, methionine, threonine, tryptophan, and/or tyrosine but not histidine may play an important role through stereostructure in the manifestation of the hemolytic activity of Asp-hemolysin.  相似文献   

13.
Butane-2,3-dione inactivates the aspartyl proteinases from Penicillium roqueforti and Penicillium caseicolum, as well as pig pepsin, penicillopepsin and Rhizopus pepsin, at pH 6.0 in the presence of light but not in the dark. The inactivation is due to a photosensitized modification of tryptophan and tyrosine residues. In the dark none of the amino acid residues, not even arginine residues, is modified even after several days. In the light one arginine residue in pig pepsin is lost at a rate that is comparable with the rate of inactivation; however, the loss of the single arginine residue in the aspartyl proteinase of P. roqueforti and the second arginine residue of pig pepsin is slower than the loss of activity; penicillopepsin is devoid of arginine. Loss of most of the activity is accompanied by the following amino acid losses: P. roqueforti aspartyl proteinase, about two tryptophan and six tyrosine residues; penicillopepsin, about two tryptophan and three tyrosine residues; pig pepsin, about four tryptophan and most of the tyrosine residues. Modification of histidine residues was too slow to contribute to inactivation. None of the other residues, including half-cystine and methionine residues (when present), was modified even after prolonged incubation. The inactivation of P. roqueforti aspartyl proteinase and pig pepsin appears due to non-specific modification of several residues. With penicillopepsin, however, the reaction is more limited and initially affects only those tryptophan and tyrosine residues that lie in the active-site groove. In the presence of pepstatin the rate of inactivation is considerably diminished. After prolonged reaction a general structural breakdown occurs.  相似文献   

14.
1. Pig heart lactate dehydrogenase is inhibited by addition of one equivalent of diethyl pyrocarbonate. The inhibition is due to the acylation of a unique histidine residue which is 10-fold more reactive than free histidine. No other amino acid side chains are modified. 2. The carbethoxyhistidine residue slowly decomposes and the enzyme activity reappears. 3. The essential histidine residue is only slightly protected by the presence of NADH but is completely protected when substrate and substrate analogues bind to the enzyme-NADH complex. The protection is interpreted in terms of a model in which substrates can only bind to the enzyme in which the histidine residue is protonated and is thus not available for reaction with the acylating agent. 4. The apparent pK(a) of the histidine residue in the apoenzyme is 6.8+/-0.2. In the enzyme-NADH complex it is 6.7+/-0.2. 5. Acylated enzyme binds NADH with unchanged affinity. The enzyme is inhibited because substrates and substrate analogues cannot bind at the acylated histidine residue in the enzyme-NADH complex.  相似文献   

15.
The group-specific protein reagents, N-bromacetamide (NBA) and N- bromosuccinimide (NBS), modify sodium channel gating when perfused inside squid axons. The normal fast inactivation of sodium channels is irreversibly destroyed by 1 mM NBA or NBS near neutral pH. NBA apparently exhibits an all-or-none destruction of the inactivation process at the single channel level in a manner similar to internal perfusion of Pronase. Despite the complete removal of inactivation by NBA, the voltage-dependent activation of sodium channels remains unaltered as determined by (a) sodium current turn-on kinetics, (b) sodium tail current kinetics, (c) voltage dependence of steady-state activation, and (d) sensitivity of sodium channels to external calcium concentration. NBA and NBS, which can cleave peptide bonds only at tryptophan, tyrosine, or histidine residues and can oxidize sulfur- containing amino acids, were directly compared with regard to effects on sodium inactivation to several other reagents exhibiting overlapping protein reactivity spectra. N-acetylimidazole, a tyrosine-specific reagent, was the only other compound examined capable of partially mimicking NBA. Our results are consistent with recent models of sodium inactivation and support the involvement of a tyrosine residue in the inactivation gating structure of the sodium channel.  相似文献   

16.
The time course of inactivation of voltage‐activated potassium (Kv) channels is an important determinant of the firing rate of neurons. In many Kv channels highly unsaturated lipids as arachidonic acid, docosahexaenoic acid and anandamide can induce fast inactivation. We found that these lipids interact with hydrophobic residues lining the inner cavity of the pore. We analysed the effects of these lipids on Kv1.1 current kinetics and their competition with intracellular tetraethylammonium and Kvβ subunits. Our data suggest that inactivation most likely represents occlusion of the permeation pathway, similar to drugs that produce ‘open‐channel block’. Open‐channel block by drugs and lipids was strongly reduced in Kv1.1 channels whose amino acid sequence was altered by RNA editing in the pore cavity, and in Kv1.x heteromeric channels containing edited Kv1.1 subunits. We show that differential editing of Kv1.1 channels in different regions of the brain can profoundly alter the pharmacology of Kv1.x channels. Our findings provide a mechanistic understanding of lipid‐induced inactivation and establish RNA editing as a mechanism to induce drug and lipid resistance in Kv channels.  相似文献   

17.
In some A-type voltage-gated K channels, rapid inactivation is achieved through the binding of an N-terminal domain of the pore-forming alpha-subunit or an associated beta-subunit to a cytoplasmic acceptor located at or near the channel pore using the ball-and-chain machinery (1-5). This inactivation involving the N terminus is known as N-type inactivation. Here, we describe an erbstatin (Erb) analogue as a small molecule inhibitor of the N-type inactivation in channels of Kv1.4 and Kv1.1+Kvbeta1. We show that this inhibition of inactivation (designated as "disinactivation") is potent and selective for N-type inactivation in heterologous cells (Chinese hamster ovary and Xenopus oocytes) expressing these A-type channels. In Chinese hamster ovary cells, Erb increased the inactivation time constant of Kv1.4 from 86.5 +/- 9.5 to 150 +/- 10 ms (n = 6, p < 0.0 1). Similarly, Erb increased the inactivation time constant of Kv1.1+Kvbeta1 from 10 +/- 0.9 to 49.3 +/- 7 ms (n = 7, p < 0.01). The EC(50) for disinactivating Kv1.1+Kvbeta1 was 10.4 +/- 0.9 microm (n = 2-9). Erb had no effect upon another A-channel, Kv4.3, which does not utilize the ball-and-chain mechanism. The mechanism of Erb-induced disinactivation was also investigated. Neither cysteine oxidation nor tyrosine kinase inhibition was involved. The results demonstrate that Erb can be used as a base structure to identify potent, selective small molecule inhibitors of intracellular protein-protein interactions, and that these disinactivators may offer another therapeutic approach to the treatment of seizure disorders.  相似文献   

18.
3-Ketovalidoxylamine A C-N lyase of Flavobacterium saccharophilum is a monomeric protein with a molecular weight of 36,000. Amino acid analysis revealed that the enzyme contains 5 histidine residues and no cysteine residue. The enzyme was inactivated by diethylpyrocarbonate (DEP) following pseudo-first order kinetics. Upon treatment of the inactivated enzyme with hydroxylamine, the enzyme activity was completely restored. The difference absorption spectrum of the modified versus native enzyme exhibited a prominent peak around 240 nm, but there was no absorbance change above 270 nm. The pH-dependence of inactivation suggested the involvement of an amino acid residue having a pKa of 6.8. These results indicate that the inactivation is due to the modification of histidine residues. Substrates of the lyase, p-nitrophenyl-3-ketovalidamine, p-nitrophenyl-alpha-D-3-ketoglucoside, and methyl-alpha-D-3-ketoglucoside, protected the enzyme against the inactivation, suggesting that the modification occurred at or near the active site. Although several histidine residues were modified by DEP, a plot of log (reciprocal of the half-time of inactivation) versus log (concentration of DEP) suggested that one histidine residue has an essential role in catalysis.  相似文献   

19.
Single sodium channel currents were analysed in cell attached patches from single ventricular cells of guinea pig hearts in the presence of a novel cardiotonic compound DPI 201-106. The mean single channel conductance of DPI-treated Na channels was not changed by DPI (20.8 +/- 4 pS, control, 3 patches; 21.3 +/- 1 pS with DPI, 5 mumol/1,3 patches). DPI voltage-dependently prolongs the cardiac sodium channel openings by removal of inactivation at potentials positive to -40 mV. At potentials negative to -40 mV a clustering of short openings at the very beginning of the depolarizing voltage steps can be observed causing a transient time course of the averaged currents. Long openings induced an extremely slow inactivation. Short openings, long openings and nulls appeared in groups referring to a modal gating behaviour of DPI-treated sodium channels. DPI-modified Na channels showed a monotonously prolonged mean open time with increased depolarizing voltage steps, e.g. the open state probability within a sweep was increased. However, the number of non-empty sweeps was decreased with the magnitude of the depolarizing steps, e.g. the probability of the channel being open as calculated from the averaged currents was voltage-dependently decreased by DPI (50% decrease at -50.7 +/- 9 9 mV, 3 patches). Short and long openings of DPI-modified channels could be separated by variation of the holding potential. The occurrence of long Na channel openings was much more suppressed by reducing the holding potential (half maximum inactivation at -112 +/- 8 mV, 4 patches) than that of short openings (half maximum inactivation at -88 +/- 8 mV, 4 patches). Otherwise, short living openings completely disappeared at potentials positive to -40 mV where the occurrence of long openings was favoured. The differential voltage dependence of blocking and activating effects of DPI on cardiac Na channels as well as the differential voltage dependence of the appearance of short and long openings refers to a modal gating behaviour of cardiac Na channels.  相似文献   

20.
Uridine phosphorylase from Escherichia coli is inactivated by diethyl pyrocarbonate at pH 7.1 and 10 degrees C with a second-order rate constant of 840 M-1.min-1. The rate of inactivation increases with pH, suggesting participation of an amino acid residue with pK 6.6. Hydroxylamine added to the inactivated enzyme restores the activity. Three histidine residues per enzyme subunit are modified by diethyl pyrocarbonate. Kinetic and statistical analyses of the residual enzymic activity, as well as the number of modified histidine residues, indicate that, among the three modifiable residues, only one is essential for enzyme activity. The reactivity of this histidine residue exceeded 10-fold the reactivity of the other two residues. Uridine, though at high concentration, protects the enzyme against inactivation and the very reactive histidine residue against modification. Thus it may be concluded that uridine phosphorylase contains only one histidine residue in each of its six subunits that is essential for enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号