首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report the complete DNA sequence of the Escherichia coli elt A gene, which codes for the A subunit of the heat-labile enterotoxin, LT. The amino acid sequence of the LT A subunit has been deduced from the DNA sequence of elt A. The LT A subunit starts with methionine, ends with leucine, and comprises 254 amino acids. The computed molecular weight of LT A is 29,673. The A subunit of cholera toxin (CT A) has been shown to be structurally and functionally related to the LT A subunit. Comparison of the primary structure of LT A with the known partial amino acid sequence of CT A indicates that the 2 polypeptides share considerable homology throughout their sequences. The NH2-terminal regions exhibit the highest degree of homology (91%), while the COOH-terminal region, containing the sole cystine residue in each toxin is less conserved (approximately 52%). Alignment of homologous residues in the COOH-terminal regions of LT A and CT A indicates that a likely site for proteolytic cleavage of LT A is after Arg residue 188. The resulting A2 polypeptide would be 46 amino acids long, would contain a single cysteine residue, and have Mr = 5261. The elt A nucleotide sequence further predicts that the LT A protein is synthesized in a precursor form, possessing an 18-amino acid signal sequence at its NH2 terminus.  相似文献   

2.
The enterotoxin regions of the heat-labile and heat-stable enterotoxin (LT+ ST+) plasmid, pJY11, originating in a clinically isolated Escherichia coli strain, have been isolated as various-sized deoxyribonucleic acid (DNA) fragments by using cloning vehicles. The structure of the LT+ region and its neighboring DNA regions was studied by utilizing these recombinant plasmids. The LT+ region consisted of at least two genes, toxA and toxB, which could complement each other in trans. The toxA- and toxB-encoded polypeptides (LT subunits A and B, respectively) were identified by their immunological cross-reactivity with Vibrio cholerae enterotoxin subunit A or B. These tox genes and the promoter(s) were localized with respect to the restriction endonuclease cleavage map. The LT+ region was flanked by repeated DNA sequences (designated as beta). Another tox gen(s), encoding ST (designated as toxS), which was also flanked by inverted, repeated DNA sequences (designated as alpha), was located between one of the beta sequences and the LT+ region. These novel DNA structures (beta-alpha-toxS-alpha-toxA-toxB-beta) suggest the possibility that the LT+ region is on a transposon containing an ST transposon within the structure.  相似文献   

3.
4.
The deoxyribonucleic acid (DNA) of the Vibrio cholerae fertility factor P was isolated by the dye-buoyant density method and hybridized to V. cholerae chromosomal DNA. The DNA of this fertility plasmid had between 35 to 40% homology with the V. cholerae chromosomal DNA. Little or no homology was detected between the P factor DNA and DNA of the Escherichia coli sex factor F.  相似文献   

5.
6.
Nucleotide sequence of the Escherichia coli mutH gene.   总被引:8,自引:1,他引:8       下载免费PDF全文
The complete nucleotide sequence of mutH gene from E. coli has been determined. Based on the deduced amino acid sequence, the MutH protein has a molecular weight of 25.4 kdaltons in agreement with the previous estimates based on SDS-polyacrylamide gel electrophoresis of the purified protein. Deletion analysis of the DNA sequences upstream of mutH has identified the promoter region for this gene. Two independently isolated temperature sensitive alleles of the mutH gene have also been sequenced. One mutation results in an amino acid change at position 27 (thr to leu) while the other occurs at position 156 (asp to asn).  相似文献   

7.
The xylose isomerase gene from Bacillus subtilis was cloned from a genomic BamH1 library by complementation of an isomerase defective Escherichia coli strain as previously described. The ATG initiation codon is preceded by a Shine-Dalgarno sequence and two hexamers being characteristic for the promoter region of Bacillus genes. The structural gene consists of 1320 base pairs, thus coding for a polypeptide chain of 440 amino acids with a molecular weight of 49 680. The polypeptide primary structure shows over 50% homology to that of the E. coli xylose isomerase.  相似文献   

8.
Type IIb heat-labile enterotoxin (LT-IIb) is produced by Escherichia coli 41. Restriction fragments of total cell DNA from strain 41 were cloned into a cosmid vector, and one cosmid clone that encoded LT-IIb was identified. The genes for LT-IIb were subcloned into a variety of plasmids, expressed in minicells, sequenced, and compared with the structural genes for other members of the Vibrio cholerae-E. coli enterotoxin family. The A subunits of these toxins all have similar ADP-ribosyltransferase activity. The A genes of LT-IIa and LT-IIb exhibited 71% DNA sequence homology with each other and 55 to 57% homology with the A genes of cholera toxin (CT) and the type I enterotoxins of E. coli (LTh-I and LTp-I). The A subunits of the heat-labile enterotoxins also have limited homology with other ADP-ribosylating toxins, including pertussis toxin, diphtheria toxin, and Pseudomonas aeruginosa exotoxin A. The B subunits of LT-IIa and LT-IIb differ from each other and from type I enterotoxins in their carbohydrate-binding specificities. The B genes of LT-IIa and LT-IIb were 66% homologous, but neither had significant homology with the B genes of CT, LTh-I, and LTp-I. The A subunit genes for the type I and type II enterotoxins represent distinct branches of an evolutionary tree, and the divergence between the A subunit genes of LT-IIa and LT-IIb is greater than that between CT and LT-I. In contrast, it has not yet been possible to demonstrate an evolutionary relationship between the B subunits of type I and type II heat-labile enterotoxins. Hybridization studies with DNA from independently isolated LT-II producing strains of E. coli also suggested that additional variants of LT-II exist.  相似文献   

9.
10.
11.
A temperate phage designated obeta1 (omicron beta) was mitomycin C induced and isolated from heat-labile enterotoxin (LT)-producing Escherichia coli E2631-C2. Phage obeta1 infected the nonlysogenic, nontoxigenic, mitomycin C-sensitive strain of E. coli K-12 (CSH38) and converted it to lysogeny and enterotoxigenicity. After the establishment of lysogeny, E. coli CSH38(obeta1) produced produced LT and phage particles at maximal levels following mitomycin C induction. The LT Tox+ character is carried by the temperate phage obeta1.  相似文献   

12.
Cellular location of heat-labile enterotoxin in Escherichia coli.   总被引:16,自引:6,他引:10       下载免费PDF全文
We demonstrated that both the A and B subunits of heat-labile enterotoxin from Escherichia coli are located in the periplasm. The toxin was shown to form aggregates in Tris-EDTA buffers which are routinely used for isolating membranes. The aggregates pellet upon centrifugation, and this may explain why several previous investigators have concluded that enterotoxin is associated with membranes.  相似文献   

13.
Release of heat-labile enterotoxin subunits by Escherichia coli.   总被引:3,自引:2,他引:1       下载免费PDF全文
Most of the heat-labile enterotoxin (LT) synthesized by Escherichia coli is cell associated; however, a small portion of LT (approximately 10%) is released by bacterial cells into the culture supernatant. The LT subunit B (LT-B) produced by a cloned LT-B gene (tox B) was released in amounts equal to the parent LT release. In contrast, no release of LT subunit A (LT-A) or its smaller derivatives was observed in strains containing cloned toxA genes. The data suggest that LT-B is necessary for the release of LT-A across the bacterial membrane.  相似文献   

14.
15.
16.
Nucleotide sequence of the tolC gene of Escherichia coli.   总被引:5,自引:1,他引:4       下载免费PDF全文
  相似文献   

17.
Nucleotide sequence of the tag gene from Escherichia coli.   总被引:14,自引:3,他引:11       下载免费PDF全文
We have determined the complete nucleotide sequence of the tag gene, encoding 3-methyladenine DNA glycosylase I from Escherichia coli. From the nucleotide sequence it is deduced that the tag enzyme consists of 187 amino-acids and has a calculated molecular weight of 21.1 kdaltons. The tag enzyme is unusually rich in cysteine (8 residues) with a cluster of three consecutive cysteines near the C-terminal end. The tag coded DNA glycosylase does not show significant sequence homology to the alkA coded glycosylase in spite of that both of these enzymes catalyze the release of free 3-methyladenine from alkylated DNA.  相似文献   

18.
19.
Nucleotide sequence of the Escherichia coli replication gene dnaZX.   总被引:21,自引:8,他引:13       下载免费PDF全文
The Escherichia coli 2.2 kilobase dnaZX region contains one 1929 nucleotide reading frame which directs the synthesis of two protein products involved in DNA polymerization. The larger consists of 643 amino acids in a deduced 71,114 dalton chain which could be the tau subunit of DNA polymerase III. The smaller, the DNA polymerase III gamma subunit, is encoded by the same reading frame as the larger. The dnaZX sequence contains a region homologous to ATP binding sites, suggesting that these replication factors are adenine nucleotide binding proteins.  相似文献   

20.
Nucleotide sequence of the Escherichia coli entE gene   总被引:11,自引:0,他引:11  
The Escherichia coli entE gene encodes a polypeptide necessary in the latter stages of biosynthesis of the siderophore enterobactin. The entE gene and adjacent DNA were sequenced. The predicted EntE polypeptide consists of 536 amino acids and has a Mr of 58,299 and a net charge of -7.33. Genetic evidence combined with this and previous sequencing data indicate that the genes entCEB(G)A are transcribed as unit from a promoter upstream of entC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号