首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasma patterns of prostaglandin F2 alpha (PGF2 alpha) and sex hormones (progesterone, androgens and 17 beta-estradiol) have been studied in the female crested newt, Triturus carnifex (Laur.), during the annual sexual cycle. The effects of exogenous PGF2 alpha on sex hormones were determined. In addition, the effects of one week's captivity on plasma PGF2 alpha and sex hormones were reported. PGF2 alpha plasma level peaked in April, was low in summer, and progressively increased during the autumn to peak again in December. The April PGF2 alpha coincided with a 17 beta-estradiol rise, and with a progesterone drop. The autumn PGF2 alpha increase was coupled to a 17 beta-estradiol rise, and therefore it has been tentatively related to ovary and oviduct development. In newts collected in April, moreover, a PGF2 alpha-dependent 17 beta-estradiol synthesis could occur, since PGF2 alpha injection induced a significant 17 beta-estradiol plasma increase. These findings led us to suppose that PGF2 alpha intervenes in spring breeding season termination through the induction of a 17 beta-estradiol synthesis as in other amphibian species. PGF2 alpha injection caused a progesterone decrease, probably by inducing corpora lutea lysis. The patterns of plasma sex hormones were consistent with the results reported for the same newt species.  相似文献   

2.
Plasma patterns of prostaglandin F2α (PGF2α) and sex hormones (progesterone, androgens and 17ß-estradiol) have been studied in the male crested newt, Triturus carnifex (Laur.), during the sexual cycle. The effects of exogenous PGF2α on sex steroids have also been observed. In addition, effects of one week's captivity are reported. The patterns of plasma sex hormones, during the annual cycle, are consistent with the results previously reported for the same newt species. PGF2α plasma level peaks in April, is low in summer, and progressively increases during autumn to peak again in December. The April PGF2α peak coincides with a plasma estradiol increase and with an adrogens drop. In April-collected newts, moreover, PGF2α treatment induces a significant estradiol increase. These findings lead us to suppose that at the end of the breeding season (April) a PGF2α-dependent estradiol synthesis occurs which could be implied in reproductive peroid termination. In several vertebrates, including some amphibian species, in fact, chronic administration of estradiol results in a strong inhibition of testicular endocrine tissue activity. The putative role of PGF2α-dependent estradiol production in the gonadal regulation in amphibia living in temperate zones is discussed. The autumn PGF2α increase has been tentatively related to the recovery gonadal processes and secondary sexual character development.  相似文献   

3.
The present study was carried out to evaluate the in vitro brain release of prostaglandin F2 alpha (PGF2 alpha), prostaglandin E2 (PGE2), androgens, and 17 beta-estradiol in male and female crested newt, Triturus carnifex, during three different periods of the annual sexual cycle; in addition, the effects of mammalian gonadotropin-releasing hormone (mGnRH), PGF2 alpha, and PGE2 on prostaglandins and steroids release by the brain were evaluated during the same periods. In brain incubations of both sexes, PGF2 alpha and estradiol were higher during postreproduction, while PGE2 and androgens were higher during reproduction. In both sexes, mGnRH increased PGF2 alpha and estradiol during postreproduction, and PGE2 during reproduction; PGF2 alpha increased estradiol secretion during postreproduction. Only in the male, did both mGnRH and PGE2 increase androgens during reproduction. It could be suggested that in Triturus carnifex, the regulation of the reproductive activity in the central nervous system (CNS) depends on the relationships among mGnRH, prostaglandins and steroids. In particular, PGF2 alpha and PGE2 seem to play different roles in the CNS of the newt: PGF2 alpha is involved in the postreproductive processes, through estradiol secretion, while PGE2 in the reproductive ones (through androgens secretion?).  相似文献   

4.
Prostaglandin F2 alpha (PGF2 alpha), prostaglandin E2 (PGE2), progesterone, androgens, and 17 beta-estradiol in vitro release by the abdominal gland of the crested newt, Triturus carnifex (Laur.), was studied during the prereproductive, reproductive and postreproductive periods. In addition, the in vitro effects of the PGF2 alpha and/or PGE2 on progesterone, androgens and estradiol release by the abdominal gland were evaluated. PGF2 alpha, PGE2 and progesterone release was higher during the reproductive period, and in the same period, PGE2 treatment induced a progesterone increase. PGF2 alpha induced an increase of abdominal gland estradiol release at the end of the reproductive period. These results seemed to confirm the pheromonal role assigned to progesterone, and suggested a PGE2 stimulatory role in inducing progesterone release, even if pheromonal activity of PGF2 alpha and PGE2 cannot be excluded. In addition, PGF2 alpha-dependent estradiol increase at the end of reproduction could be interpreted as a mechanism for interruption of the abdominal gland activity.  相似文献   

5.
Plasma prostaglandin E2 (PGE2), prostaglandin F2 alpha (PGF2 alpha), androgens and estradiol-17 beta were measured in the male water frog, Rana esculenta, during the annual sexual cycle. In vivo experiments were carried out to study the effects of PGE2 and PGF2 alpha on plasma sex steroids during the following periods: prereproduction (April), reproduction (May), postreproduction (June) and recovery (October). In the same months, in vitro experiments were performed to evaluate the effects of these two prostaglandins (PGs) on testicular release of sex steroids. The PGE2 plasma levels peaked in April. PGE2 treatment in vivo increased androgens in April and October, while PGF2 alpha increased estradiol-17 beta in June and October. In in vitro experiments, PGE2 increased androgens in April, while PGF2 alpha increased estradiol-17 beta in October. These results suggest that PGE2 could induce the breeding activity, probably through androgens synthesis. PGF2 alpha could interrupt the breeding, through estradiol-17 beta secretion.  相似文献   

6.
Using radioimmunoassay procedures, the levels of plasma, uterine and ovarian prostaglandin (PG) F2alpha, and those of plasma estradiol and progesterone were measured in intact, hysterectomized or ovariectomized immature female rats pretreated with PMS and subsequent HCG. Occurrence of ovulation was confirmed at 8 hours after the HCG administration not only in the intact rats but also in the hysterectomzied rats. The levels of plasma estradiol and progesterone, and of uterine and ovarian PGF2alpha rose with the PMS injection alone, but they did not reach the peaks before the HCG administration. Both plasma estradiol and uterine PGF2alpha showed a peak at 2 hours after the HCG injection. These peaks were antecedent 2 or 6 hours before the peaks of ovarian and plasma PGF2alpha, respectively. However, such increase of uterine PGF2alpha does not seem to be indispensable for ovulation, because ovulation could occur in the hysterectomized rats. The levels of ovarian PGF2alpha showed a high plateau from 4 to 8 hours after the HCG injection, and then rapidly decreased after ovulation. The levels of plasma PGF2alpha peaked not only in the intact rats but also in the hysterectomized rats at 8 hours after the HCG treatment. But in the ovariectomized rats, this plasma PGF2alpha peak at 8 hours disappeared and there was no statistical change of plasma PGF2alpha throughout the PMS-HCG treatment. Plasma progesterone gradually increased and reached the maximum at 10 hours after the HCG injection. These results conclude that the main source of increased plasma PGF2alpha during the ovulatory process induced with the PMS-HCG treatment is the ovary, and it is strongly suggested that a rapid increase of PGF2alpha in the ovary may play some important role(s) in the ovulatory process.  相似文献   

7.
Prostaglandins, produced from membrane phospholipids by the action of phospholipase A2, cyclooxygenase, and specific prostaglandin synthases, are important regulators of ovulation, luteolysis, implantation, and parturition in reproductive tissues. Destruction of the corpus luteum at the end of the estrous cycle in nonpregnant animals is brought about by the pulsatile secretion of prostaglandin F(2alpha) (PGF(2alpha)) from the endometrium. It has been known for many years that progesterone, estradiol, and oxytocin are the hormones responsible for luteolysis. To achieve luteolysis, two independent processes have to be coordinated; the first is an increase in the prostaglandin synthetic capability of the endometrium and the second is an increase in oxytocin receptor number. Although progesterone and estradiol can modulate the expression of the enzymes involved in prostaglandin synthesis, the primary reason for the initiation of luteolysis is the increase in oxytocin receptor on the endometrial epithelial cells. Results of many in vivo studies have shown that progesterone and estradiol are required for luteolysis, but it is still not fully understood exactly how these steroid hormones act. The purpose of this article is to review the recent data related to how progesterone and estradiol could regulate (initiate and then turn off) the uterine pulsatile secretion of PGF(2alpha) observed at luteolysis.  相似文献   

8.
Luteolysis in the cow depends upon an interaction between prostaglandin F(2alpha) (PGF(2alpha)) and oxytocin. The objectives of our study were 1) to determine oxytocin concentrations in postpartum dairy cows and 2) to identify the temporal relationship between oxytocin and PGF(2alpha) release patterns during luteolysis in normal and abbreviated estrous cycles in the postpartum period. Serum oxytocin and PGF(2alpha) metabolite (PGFM) concentrations from nine cows which had short estrous cycles (< 17 d) were compared with those of six cows which had normal estrous cycles. Serum basal oxytocin concentrations in short estrous cycle cows (23.7 to 31.1 pg/ml) were higher (P<0.05) than those of normal estrous cycle cows (14.6 to 19.8 pg/ml). Oxytocin concentrations increased to peak values in both short and normal cycle cows, during luteolysis. Basal PGFM concentrations (112.2 to 137.4 pg/ml) were higher in cows with short cycle (P<0.05) than in cows with normal cycles (62.9 to 87.5 pg/ml). The increase in PGFM concentrations during luteolysis was significant in both normal cycle and short cycle cows (P<0.05). Increases in serum PGFM concentrations were always associated with increases in serum oxytocin concentrations in normal cycle and short cycle cows and the levels decreased simultaneously before the subsequent estrus. Results support the idea of a positive relationship between PGF(2alpha) and oxytocin concentration during the estrous cycle as well as a possible synergistic action of these hormones in the induction of luteolysis in dairy cattle.  相似文献   

9.
10.
Summary In many vertebrates, seasonal activation of sexual and territorial behaviors coincides with seasonal gonadal activation and is caused by the increase in sex steroid hormones. Both male and femaleSceloporus jarrovi are territorial, but in this species territorial behavior is seasonally activated in late April, months before seasonal gonadal maturation, which occurs in August prior to the fall mating season. Measurements of seasonal changes in circulating levels of the sex steroid hormones testosterone, progesterone, and estradiol indicated that testosterone levels in both sexes are elevated when territorial behavior is expressed, even during the period of nonbreeding-season territoriality during the summer. This suggests that a nonbreeding season behavior is activated by a sex steroid hormone in this species.  相似文献   

11.
We previously proposed that an endothelin-angiotensin-atrial natriuretic peptide system may contribute to inducing ovulation of mature bovine follicles by modulating follicular secretion of steroids and prostaglandins (PGs). Thus, this study aimed to determine the real-time changes in the local release of angiotensin II (Ang II), endothelin (ET), atrial natriuretic peptide (ANP), PGF(2alpha), and steroid hormones from bovine mature follicles during the periovulatory period in vivo. Seven cows were treated for superovulation using FSH and PGF(2alpha) injections. Two dialysis capillary membranes per follicle were surgically implanted into the theca layer of mature follicles and connected to a microdialysis system (MDS). Fractions of the perfusate were collected from Day -1 (Day 0 = LH surge) to Day 3. Five out of seven treated cows were normally ovulated, and the newly formed corpora lutea were observed at the end of the experiment. In these five ovulated cows, the release of estradiol, androstenedione, and progesterone in the theca layer increased (P < 0.05) synchronously with the LH surge. Acute increases in PGF(2alpha) and Ang II concentrations in the ovarian venous plasma (OVP) were observed at 24-48 h after the peak of the LH surge, when multiple ovulations were expected to occur. The follicular Ang II release was low during the pre-LH surge period and rose (P < 0.05) at the beginning of the increase in the LH surge. On the other hand, ET-1 release dropped (P < 0.05) when plasma LH started to increase. However, no clear changes in ANP concentration in the MDS perfusate and plasma were observed. The above local changes in Ang II, PGF(2alpha), as well as steroid hormones were not observed in cows (n = 2) that did not show an LH surge and ovulation. The present results demonstrate for the first time the local release of Ang II, ET-1, and ANP from the bovine mature follicle in real-time in vivo and show that Ang II and PGF(2alpha) concentrations in the OVP acutely increase around the time of ovulation. The overall results support the concept of a local functional ET-Ang-ANP system in the bovine mature follicle that may be involved in the ovulatory process.  相似文献   

12.
Bovine viral diarrhea virus (BVDV) is a major cattle pathogen responsible for a spectrum of symptoms, including reproductive failure. This study was designed to establish the effects of BVDV infection on estradiol, progesterone and PGF2alpha secretion in the cow. Seven BVDV-free cows were challenged with non-cytopathogenic BVDV (strain Pe 515: 5x10(6) tissue culture infected dose50) so that peak viremia occurred during the initial phase of luteal development in a synchronized estrous cycle. Ovulation was also synchronized in 7 sham-infected animals. Within 2 wk of inoculation, viremia, leukopenia and serum neutralizing antibodies were recorded in all of the BVDV-infected cows but not the sham-infected animals. Between Day 4 and Day 9 post estrus the BVDV-infected cows had significantly (P<0.01) lower plasma estradiol levels than the sham-infected animals. However, the BVDV infection did not alter rectal temperatures, plasma progesterone concentrations or PGF2alpha secretion 17, 18 and 19 d post estrus. These data highlight a potential causal link between BVDV viremia, endocrine dysfunction and poor fertility in the cow.  相似文献   

13.
D J Bolt 《Prostaglandins》1979,18(3):387-396
The ability of human chorionic gonadotropin (HCG) to reduce the luteolytic effect of prostaglandin (PGF2 alpha) was demonstrated in cycling ewes. As expected, treatment with 10 mg of PGF2 alpha alone on Day 10 of the estrous cycle exerted a potent negative effect on the function and structure of corpus luteum (CL) as indicated by reduced plasma progesterone, CL progesterone, and CL weight. However, the identical PGF2 alpha treatment failed to significantly reduce either luteal function or luteal weight when administered to ewes that were also treated with HCG on Days 9 and 10 of the estrous cycle. Treatment with HCG alone had a positive effect on CL as indicated by increased plasma progesterone, CL progesterone, and CL weight. Treatment with HCG did not render the CL totally insensitive to the negative effects of PGF2 alpha because plasma progesterone was reduced when the dose of PGF2 alpha was doubled. Whether CL regressed or continued to function after treatment with both HCG and PGF2 alpha appeared to depend upon a balance between the positive and negative effects of the two hormones.  相似文献   

14.
Plasma estradiol concentrations were determined by radioimmunoassay in various endocrine disorders using antiserum to estradiol-17beta succinyl bovine serum albumin. Clinical significance and diagnostic value of plasma estradiol were assessed in hypothalamic-pituitary, adrenal and gonadal disorders. In general, estradiol concentration was correlated well with the degree of sexual maturity and was of great diagnostic use. Plasma estradiol in females mainly originated from the ovary, while the testis is the principal source of estradiol in males. The adrenal gland seemed to play a minor role as a source of estradiol at least in normal males and females. The role of estradiol in gynecomastia and in liver disease was also investigated. More than a half of the cases with gynecomastia had elevated concentrations of plasma estradiol, which probably explains the pathogenesis of this manifestation. Cirrhotic patients showed frequently hyperestrogenemia probably due to delayed disappearance of estradiol. In the study of stimulation with human chorionic gonadotropin (HCG), 3,000 IU daily for three days in ten normal men, the peripheral concentrations of esradiol showed maximum and fourfold increases 24 hours after the 1st injection of HCG. The testosterone levels, on the other hand, increased stepwise and reached a maximum of about two times preinjection levels 24 hours after the 3rd injection. In gonadal disorders, HCG produced various patterns of plasma estradiol and testosterone in accordance with the gonadal conditions and dissociated response patterns of both sex hormones were frequently found. The determination of plasma estradiol was useful in the study of the function of not only the ovary, but also the testis and the simultaneous measurement of plasma estradiol and testosterone after HCG administration presented interesting informations about pathophysiology of gonadal disorders.  相似文献   

15.
四眼斑水龟血浆生殖激素季节性变化   总被引:1,自引:0,他引:1  
为了进一步探讨四眼斑水龟(Sacalia quadriocellata)的繁殖生理周期和生殖激素分泌特征,使用放射免疫分析测定法(RIA)分别测定了8月(夏季)、10月(秋季)、1月(冬季)、3月(春季)四眼斑水龟血浆中卵泡刺激素(FSH)、促黄体生成素(IJH)、睾酮(T)、雌二醇(E2)、孕酮(P)五种生殖激素的含量.结果显示,四眼斑水龟生殖激素分泌呈现较明显的周期性,激素水平与环境温度的变化有关;雄性T含量夏季开始升高,秋季达到高峰,与精子的发生和成熟同步;雌性T水平升高促进其接受雄性爬胯,且作为雌激素合成的前体物质,间接作用于雌激素的合成;排卵会出现LH峰,E2含量排卵前几个月开始增长,刺激肝生成卵黄;排卵期间P含量较高,可能在排卵过程中发挥作用.  相似文献   

16.
Progesterone and estradiol interact to regulate secretion of prostaglandin (PG) F2 alpha from the ovine endometrium in response to oxytocin. Two experiments were conducted to determine if these effects were due to changes in activity of phospholipase C or in the second messenger responsive pathways that regulate production of PGF2 alpha. In both experiments, ovariectomized ewes were assigned to one of four treatment groups (control, estradiol, progesterone, progesterone and estradiol). Steroids were administered, in vivo, to mimic the changes that occur during the estrous cycle. On Day 16 of steroid treatment, endometrial tissue was collected and incubated, in vitro, to measure activity of phospholipase C and release of PGF2 alpha. Treatment with progesterone, in vivo, enhanced basal and oxytocin-induced activity of phospholipase C and release of PGF2 alpha, in vitro. Estradiol suppressed oxytocin-induced activity of phospholipase C, both in the presence and absence of progesterone. In contrast to its effects on phospholipase C, estradiol inhibited basal and oxytocin-induced release of PGF2 alpha when administered alone, but not when administered with progesterone. Steroids had similar effects on the release of PGF2 alpha induced by phorbol 12-myristate 13-acetate and A23187. It was concluded that progesterone and estradiol regulate endometrial release of PGF2 alpha by affecting both the activity of phospholipase C and its associated second messenger responsive pathways that may regulate production of PGF2 alpha.  相似文献   

17.
Luz MR  Bertan CM  Binelli M  Lopes MD 《Theriogenology》2006,66(6-7):1436-1441
The canine corpus luteum (CL) typically sustains elevated plasma progesterone concentrations for 2 months or more, with a peak approximately 15-25 days after ovulation, followed by a slow decline. The processes involved in the slow, protracted regression of the CL over the remaining 1.5-2-month period in nonpregnant bitches and until shortly prepartum in pregnant bitches are not well characterized. The rapid luteolysis that occurs immediately prepartum appears to be a result of a prepartum rise in peripheral PGF. The potential role of PGF in the slow regression process in the several weeks preceding parturition and in nonpregnant bitches after 15-25 days after ovulation is not known. Therefore, plasma concentrations of 13,14-dihydro-15-keto-prostaglandin F2-alpha (PGFM), progesterone (P4) and estradiol (E2) were determined and compared in bitches during nonpregnant diestrus (n = 9) or pregnancy (n = 8). During the gradual decrease in plasma concentrations of progesterone in both groups, the P4 pattern appeared unrelated to changes in either E2 or PGFM concentrations. The PGFM pattern was different between diestrus and pregnant bitches (P > 0.01); there was an apparent progressive but slow increase in PGFM in pregnant bitches from Days 30 to 60, followed by a large increase prior to parturition; concentrations declined immediately postpartum. However, there were no increases in PGFM during the same interval in nonpregnant bitches. Mean estradiol concentrations were sporadically elevated during the last third of pregnancy and less so in nonpregnant diestrus; there was no acute prepartum increase in estradiol associated with the PGFM increase. In summary, although there were no apparent changes in peripheral PGF2alpha concentration involved in regulating the slow protracted phase of luteal regression in nonpregnant bitches, modest increases in PGFM may play a role in ovarian function after mid-gestation in pregnant bitches. Furthermore, the acute prepartum rise in PGFM was not dependent on any concomitant increase in estradiol concentrations.  相似文献   

18.
It is assumed that exposure of endometrium to spontaneously secreted luteal hormones stimulates PGF2 alpha secretion and modifies oxytocin (OT) influence on the bovine uterus. At first, the time-dependent effect of endogenous luteal products on endometrial PGF2 alpha secretion was examined. Endometrial strips (100 mg) from slaughtered heifers (Days 11 to 17 of the cycle) were incubated alone or with luteal cells (1 x 10(5) cells/mL). The highest PGF2 alpha secretion by the endometrium under influence of hormones secreted from luteal cells was observed after 12 h of incubation compared with the control (P < 0.001). Then, endometrium (Days 11 to 17) was incubated with luteal cells and concomitantly with antagonists of P4 and OT. The P4 antagonist prevented the stimulatory effect of endogenous luteal hormones on PGF2 alpha secretion (P < 0.05), but the OT antagonist did not. Further, direct effects of exogenous P4, OT and estradiol (E2) on endometrial PGF2 alpha secretion (Days 11 to 17) were examined. Both OT and P4 increased PGF2 alpha secretion (P < 0.05); E2 alone had no effect on PGF2 alpha secretion, but it amplified the P4 effect (P < 0.05). Finally, we studied the effect of endogenous luteal products on OT-stimulated PGF2 alpha secretion from endometrium. When endometrium (Days 11 to 17) was incubated without luteal cells, OT stimulated PGF2 alpha secretion (P < 0.001), whereas incubation of endometrium with luteal cells abolished the stimulatory effect of OT on PGF2 alpha secretion (P < 0.001). These treatments did not affect PGF2 alpha secretion from the endometrium collected on Days 1 to 4. In conclusion, P4 stimulates PGF2 alpha secretion by the endometrium and E2 amplifies this effect. As long as the endometrium is under the influence of P4, ovarian OT does not affect PGF2 alpha secretion.  相似文献   

19.
Sex inversion as a model for the study of sex determination in vertebrates   总被引:1,自引:0,他引:1  
As a consequence of genetic sex determination, the indifferent gonadal blastema normally becomes either a testis or an ovary. This applies to mammals and to the majority of non-mammalian vertebrates. With the exception of placental mammals, however, partial or complete sex inversion can be induced in one sex by sexual steroid hormones of the opposite sex during a sensitive period of gonadogenesis. There is evidence that also during normal gonadogenesis in these species, in the XY/XX mechanism of sex determination testicular differentiation is induced by androgens, and in the ZZ/ZW mechanism, ovarian differentiation by oestrogens. In either case, the hormones may act via serological H-Y antigen as a morphogenetic factor. In contrast, in placental mammals including man, primary gonadal differentiation is independent of sexual steroid hormones, and factors directing differential gonadal development have not yet been conclusively identified. However, various mutations at the chromosome or gene level, resulting respectively in sex inversion or intersexuality, have provided clues as to some genes involved and their possible nature. In this context also, serological H-Y antigen is discussed as a possible factor acting on primordial gonadal cells and inducing differential growth or morphogenesis or both. The data available at present allow a tentative outline of the genetics of sex determination in placental mammals.  相似文献   

20.
Rats with delayed implantation, induced by ovariectomy or hypophysectomy, as well as those with normal pregnancy were used to examine the changes in uterine prostaglandin F2 alpha (PGF2 alpha) associated with implantation. In normal pregnant rats, while maximal uterine production of PGF2 alpha was found at 09:00, maximal catabolic enzyme activity (CEA) was seen at 17:00 of day 4. Uterine content of PGF2 alpha was high at 17:00 of day 4, but decreased by 80% within the next 24 h. There was no change in PGF2 alpha production during the first 6 h after injection of estradiol to hypophysectomized animals. There was, however, a dramatic decrease in production within the next 6 h. In contrast, CEA was not different in animals treated with estrogen than in those receiving only progesterone. In ovariectomized animals, uterine PGF2 alpha production also was lowered by estrogen but in these animals CEA was significantly elevated 18 h after injection of estradiol. Estrogen caused a greater increase in PGF2 alpha content in the hypophysectomized, compared to the ovariectomized, rats. The results are consistent with the view that ovarian steroids play an important role in controlling the changes in uterine PGF2 alpha around the time of implantation in rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号