首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
In rice, the characterization of OsEBP-89 is inducible by various stress-or hormone-stimuli, including ethylene, abscisic acid (ABA), jasmonate acid (JA), drought and cold. Here, we report the investigation of essential DNA region within OsEBP-89 promoter for methyl jasmonic acid (MeJA) induction. PLACE analysis indicates that this promoter sequence contains multiple potential elements in response to various stimuli. First, we fused this promoter with GUS gene and analyzed its expression under MeJA treatment through Agrobacterium infiltration mediating transient expression in tobacco leaves. Our results revealed that this chimeric gene could be inducible by MeJA in tobacco leaves. To further determine the crucial sequences responsible for MeJA induction, we generated a series of deletion promoters which were fused with GUS reporter gene respectively. The results of transient expression of GUS gene driven by these mutant promoters show that the essential region for MeJA induction is positioned in the region between −1200 and −800 in OsEBP-89 promoter containing a G-box (−1127), which is distinct from the essential region containing ERE (−562) for ACC induction. In all, our finding is helpful in understanding the molecular mechanism of OsEBP-89 expression under different stimuli. OsEBP-89, essential DNA region, methyl jasmonic acid, transient assay, promoter, tobacco leaves Contributed equally to this work Supported by the National Basic Research Program of China (Grant No. 2006CB101700) and the National Natural Science Foundation of China (Grant Nos. 30671135, 30525034 and 30730060)  相似文献   

7.
Two new vector types for plastid transformation were developed and uidA reporter gene expression was compared to standard transformation vectors. The first vector type does not contain any plastid promoter, instead it relies on extension of existing plastid operons and was therefore named “operon-extension” vector. When a strongly expressed plastid operon like psbA was extended by the reporter gene with this vector type, the expression level was superior to that of a standard vector under control of the 16S rRNA promoter. Different insertion sites, promoters and 5′-UTRs were analysed for their effect on reporter gene expression with standard and operon-extension vectors. The 5′-UTR of phage 7 gene 10 in combination with a modified N-terminus was found to yield the highest expression levels. Expression levels were also strongly dependent on external factors like plant or leaf age or light intensity. In the second vector type, named “split” plastid transformation vector, modules of the expression cassette were distributed on two separate vectors. Upon co-transformation of plastids with these vectors, the complete expression cassette became inserted into the plastome. This result can be explained by successive co-integration of the split vectors and final loop-out recombination of the duplicated sequences. The split vector concept was validated with different vector pairs.  相似文献   

8.
The RcsA and RcsB proteins of Erwinia amylovora and Escherichia coli were expressed in E. coli and purified. Their DNA-binding activity was examined using a 1-kb DNA region containing the putative promoter of the ams operon of Ew. amylovora, which is responsible for the biosynthesis of the exopolysaccharide amylovoran. Mobility shift assays indicated specific binding of RcsA and RcsB to a region of 78 bp spanning nucleotide positions −578 to −501 relative to the translational start of the first open reading frame of the operon. This region includes stretches of homology to E. coliσ 70 promoter consensus sequences and to the E. coli cps promoter region. Binding of the Rcs proteins was not found at a JUMPstart consensus, typical for various promoters of polysaccharide gene clusters. DNA-binding activity was not detected for RcsA alone and only high concentrations of RcsB were able to interact with the ams promoter in our assay. The two proteins bind cooperatively at the indicated region of the ams promoter and further evidence is provided showing that the DNA-protein complex formed involves a heterodimer of RcsA and RcsB. The specific activity of RcsA, but not of RcsB, was enhanced when the protein was expressed in E. coli at 28° C, relative to expression at 37° C. In addition, DNA-protein complex formation is affected by temperature. The E. coli RcsA/RcsB proteins bind to the same region of the ams promoter and are able to interact with the Rcs proteins from Ew. amylovora. Received: 26 February 1997 / Accepted: 23 May 1997  相似文献   

9.
10.
Transformation of potato plastids is limited by low transformation frequencies and low transgene expression in tubers. In order to improve the transformation efficiency, we modified the regeneration procedure and prepared novel vectors containing potato flanking sequences for transgene integration by homologous recombination in the Large Single Copy region of the plastome. Vector delivery was performed by the biolistic approach. By using the improved regeneration procedure and the potato flanking sequences, we regenerated about one shoot every bombardment. This efficiency corresponds to 15–18-fold improvement compared to previous results with potato and is comparable to that usually achieved with tobacco. Further, we tested five promoters and terminators, and four 5′-UTRs, to increase the expression of the gfp transgene in tubers. In leaves, accumulation of GFP to about 4% of total soluble protein (TSP) was obtained with the strong promoter of the rrn operon, a synthetic rbcL-derived 5′-UTR and the bacterial rrnB terminator. GFP protein was detected in tubers of plants transformed with only four constructs out of eleven. Best results (up to approximately 0.02% TSP) were achieved with the rrn promoter and rbcL 5′-UTR construct, described above, and another containing the same terminator, but with the promoter and 5′-UTR from the plastid clpP gene. The results obtained suggest the potential use of clpP as source of novel regulatory sequences in constructs aiming to express transgenes in amyloplasts and other non-green plastids. Furthermore, they represent a significant advancement of the plastid transformation technology in potato, of relevance to its implementation in potato breeding and biotechnology.  相似文献   

11.
12.
The E8 gene is related to ethylene biosynthesis in plants. To explore the effect of the expression pattern of the E8 gene on different E8 promoters, the molecular evolution of E8 promoters was investigated. A total of 16 E8 promoters were cloned from 16 accessions of seven tomato species, and were further analysed. The results from 19 E8 promoters including three previously cloned E8 promoters (X13437, DQ317599 and AF515784) showed that the size of the E8 promoters varied from 2101 bp (LA2150) to 2256 bp (LA2192); their sequences shared 69.9% homology and the average A/T content was 74.9%. Slide-window analysis divided E8 promoters into three regions — A, B and C — and the sequence identity in these regions was 72.5%, 41.2% and 70.8%, respectively. By searching the cis-elements of E8 promoters in the PLACE database, mutant nucleotides were found in some functional elements, and deletions or insertions were also found in regions responsible for ethylene biosysnthesis (−1702 to −1274) and the negative effect region (−1253 to −936). Our results indicate that the size of the functional region for ethylene biosynthesis in the E8 promoter could be shortened from 429 bp to 113 bp (−1612 to −1500). The results of molecular evolution analysis showed that the 19 E8 promoters could be classified into four clade groups, which is basically consistent with evolution of the tomato genome. Southern blot analysis results showed that the copy number of E8 promoters in tomato and some other wild species changed from 1 to 4. Taken together, our study provides important information for further elucidating the E8 gene expression pattern in tomato, analysing functional elements in the E8 promoter and reconstructing the potent E8 promoter. Electronic Supplementary Material  Supplementary material is available for this article at and is accessible for authorized users. Supplementary material pertaining to this article is available on the Journal of Biosciences Website at  相似文献   

13.
Different strategies have been employed to achieve high-level expression of single-copy genes encoding secreted enzymes in Bacillus subtilis. A model system was developed which utilizes the aprL gene from Bacillus clausii as a reporter gene for monitoring expression levels during stationary phase. An exceptionally strong promoter was constructed by altering the nuceotide sequence in the −10 and −35 regions of the promoter for the amyQ gene of Bacillus amyloliquefaciens. In addition, two or three tandem copies of this promoter were shown to increase expression levels substantially in comparison to the monomer promoter alone. Finally, the promoter and mRNA stabilization sequences derived from the cry3A gene of Bacillus thuringiensis were used in combination with the mutant amyQ promoter to achieve the highest levels of aprL expression. These promoters were shown to be fully functional in a high-expressing Bacillus strain grown under industrial fermentation conditions. The ability to obtain maximum expression levels from a single copy gene now makes it feasible to construct environmentally friendly, marker-free industrial strains of B. subtilis. Journal of Industrial Microbiology & Biotechnology (2000) 25, 204–212. Received 05 January 2000/ Accepted in revised form 26 June 2000  相似文献   

14.
15.
16.
GTP cyclohydrolase I (GTPCH) is a key enzyme in the de novo synthesis of tetrahydrobiopterin. Previously, the Drosophila melanogaster GTPCH gene has been shown to be expressed from two different promoters (P1 and P2). In our study, the 5′-flanking DNA regions required for P1 and P2 promoter activities were characterized using transient expression assay. The DNA regions between −98 and +31, and between −73 and +35 are required for efficient P1 and P2 promoter activities, respectively. The regions between −98 and −56 and between −73 and −41 may contain critical elements required for the expression of GTPCH in Drosophila. By aligning the nucleotide sequences in the P1 and P2 promoter regions of the Drosophila melanogaster and Drosophila virilis GTPCH genes, several conserved elements including palindromic sequences in the regions critical for P1 and P2 promoter activities were identified. Western blot analysis of transgenic flies transformed using P1 or P2 promoter-lacZ fusion plasmids further revealed that P1 promoter expression is restricted to the late pupae and adult developmental stages but that the P2 promoter driven expression of GTPCH is constitutive throughout fly development. In addition, X-gal staining of the embryos and imaginal discs of transgenic flies suggests that the P2 promoter is active from stage 13 of embryo and is generally active in most regions of the imaginal discs at the larval stages.  相似文献   

17.
Plastome is thought to be a very conservative part of plant genome but little is known about the evolution of plastome promoters. It was previously shown that one light-regulated promoter (LRPpsbD) is highly conserved in different flowering plant species and in black pine. We have undertaken search and demonstrated that gene ndhF is located in a plastome region that rarely underwent substantial rearrangements in terrestrial plants. However, alignment of sequences upstream ndhF suggests that promoters of this gene underwent comparatively rapid evolution in flowering plants. Probably, the ancestor of two basal Magnoliophyta branches (magnoliids and eudicotyledons) had the promoter PA-ndhF, which was substituted with other promoters—PB-ndhF and PC-ndhF—in some phylogenetic lineages of dicots. We failed to reveal conservative sequences with potential promoters of −10/−35 type upstream ndhF genes of monocotyledonous plants, including nine representatives of the grass family (Poaceae). Multiple alignments of sequences from related taxa showed that the predicted ndhF promoters (A–C) underwent frequent mutations and these mutations are not only nucleotide substitutions but also small insertions and deletions. Thus, we can assume that at least some plastome promoters evolve rapidly.  相似文献   

18.
Nattokinase (NK) is a health product for the prevention and potential control of thrombosis diseases. To explore the possibility of enhancing NK production in Bacillus subtilis by altering the promoter of NK gene (PaprN), we tested several methods. We substituted the wild-type −10 box (TACAAT) of PaprN with the consensus sequence (TATAAT) of σA-dependent promoters, mutated the original −35 box (TACTAA) to a partial consensus sequence (TACACA), and expressed aprN from two tandem promoters, respectively. The efficacies of these changes were monitored by fibrinolytic activity, SDS-PAGE, and northern blotting analyses. Fibrinolytic activity analysis showed that altering the −10 region of PaprN could increase NK production by 136%. This production is significantly higher than those reported in the literatures. Similar results were obtained in SDS-PAGE and northern blotting analyses. This engineered promoter was also able to enhance the expression of β-glucuronidase (GUS) by 249%. Partial alteration of the −35 element could slightly improve the production of NK by 13%, while two tandem promoters just had marginal effects on the production of NK. Our study showed that alteration of −10 or −35 elements in PaprN, especially −10 element, is an effective way to enhance the production of heterologous proteins in B. subtilis.  相似文献   

19.
20.
We constructed a library of synthetic stationary-phase promoters for Escherichia coli. For designing the promoters, the known −10 consensus sequence, as well as the extended −10 region, and an A/T-rich region downstream of the −10 region were kept constant, whereas sequences from −37 to −14 were partially or completely randomised. For detection and selection of stationary-phase promoters, green fluorescent protein (GFP) with enhanced fluorescence was used. To establish the library, 33 promoters were selected, which differ in strength from 670 to more than 13,000 specific fluorescence units, indicating that the strength of promoters can be modulated by the sequence upstream of the −10 region. DNA sequencing revealed a preferential insertion of nucleotides depending on the position. By expressing the promoters in an rpoS-deficient strain, a special group of stationary-phase promoters was identified, which were expressed exclusively or preferentially by RNA polymerase holoenzyme Eσs. The DNA sequence of these promoters differed significantly in the region from −25 to −16. Furthermore, it was shown that the DNA curvature of the promoter region had no effect on promoter strength. The broad range of promoter activities make these promoters very suitable for fine-tuning of gene expression and for cost-effective large-scale applications in industrial bioprocesses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号