首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 0 毫秒
1.
Estrogen-responsive genes in human breast cancer cells often have an estrogen response element (ERE) positioned next to an Sp1 binding site. In chromatin immunoprecipitation (ChIP) assays, we investigated the binding of estrogen receptor alpha (ER), Sp1, and Sp3 to the episomal and native estrogen-responsive trefoil factor 1 (TFF1; formerly pS2) promoter in MCF-7 breast cancer cells. Mutation of the Sp site upstream of the ERE reduced estrogen responsiveness and prevented binding of Sp1 and Sp3, but not ER to the episomal promoter. In the absence of estradiol (E2), Sp1, Sp3, histone deacetylase 1 (HDAC), and HDAC2, and low levels of acetylated H3 and H4 are associated with the native promoter, with the histones being engaged in dynamic reversible acetylation. Following E2 addition, levels of ER and acetylated H3 and H4 bound to the native promoter increases. There is clearance of Sp1, but not of Sp3, from the promoter while HDAC1 and HDAC2 remain bound. These data are consistent with a model in which Sp1 or Sp3 aid in recruitment of HDACs and histone acetyltransferases (HATs) to mediate dynamic acetylation of histones associated with the TFF1 promoter, which is in a state of readiness to respond to events occurring following the addition of estrogen.  相似文献   

2.
TFF1 is a cysteine-rich protein that forms a characteristic trefoil domain through disulfide bonds, which render it resistant to vigorous conditions and it involves in maintaining the integrity of the gastric mucosa. Decreased expression of TFF1 gene plays a role in the development of gastric cancer. We examined the association between the promoter polymorphisms of the TFF1 gene and the risk of development of gastric cancer, in a case-control study including 199 controls and 141 patients with gastric cancer. Assessment of single nucleotide polymorphisms in the promoter region of the TFF1 gene was performed by sequencing and polymerase chain reaction-based restriction fragment length polymorphism. We found a statistically significant increased risk of gastric cancer associated with − 394 TT genotypes (OR = 8.78, CI = 2.85-27.05, p < 0.001) and CT (OR = 1.64, CI = 1.04-2.60, p = 0.033). This single nucleotide polymorphism occurs naturally in an estrogen response element. According to induction of the TFF1 gene by estrogen, it is possible that the substitution of C to T results in a decreased estrogen receptor binding affinity to the estrogen response element and in turn it decreases the expression of the TFF1 gene that may be involved in development of gastric cancer over a lifetime.  相似文献   

3.
4.
5.
6.
7.
Cholesterol is a unique molecule in terms of high level of in-built stringency, fine tuned by natural evolution for its ability to optimize physical properties of higher eukaryotic cell membranes in relation to biological functions. We previously demonstrated the requirement of membrane cholesterol in maintaining the ligand binding activity of the hippocampal serotonin1A receptor. In order to test the molecular stringency of the requirement of cholesterol, we depleted cholesterol from native hippocampal membranes followed by replenishment with desmosterol. Desmosterol is an immediate biosynthetic precursor of cholesterol in the Bloch pathway differing only in a double bond at the 24th position in the alkyl side chain. Our results show that replenishment with desmosterol does not restore ligand binding activity of the serotonin1A receptor although replenishment with cholesterol led to significant recovery of ligand binding. This is in spite of similar membrane organization (order) in these membranes, as monitored by fluorescence anisotropy measurements. The requirement for restoration of ligand binding activity therefore appears to be more stringent than the requirement for the recovery of overall membrane order. These novel results have potential implications in understanding the interaction of membrane lipids with this important neuronal receptor in diseases such as desmosterolosis.  相似文献   

8.
The requirement of membrane cholesterol in maintaining ligand binding activity of the hippocampal serotonin(1A) receptor has previously been demonstrated. In order to test the stringency of the requirement of cholesterol, we depleted cholesterol from native hippocampal membranes followed by replenishment with 7-dehydrocholesterol. The latter sterol is an immediate biosynthetic precursor of cholesterol differing only in a double bond at the 7th position in the sterol ring. Our results show, for the first time, that replenishment with 7-dehydrocholesterol does not restore ligand binding activity of the serotonin(1A) receptor, in spite of recovery of the overall membrane order. The requirement for restoration of ligand binding activity therefore is more stringent than the requirement for the recovery of overall membrane order. These novel results have potential implications in understanding the interaction of membrane lipids with this important neuronal receptor under pathogenic conditions such as the Smith-Lemli-Opitz syndrome.  相似文献   

9.
The serotonin1A receptor is an important member of the G-protein coupled receptor family, and is involved in the generation and modulation of a variety of cognitive, behavioral, and developmental functions. Solubilization of the hippocampal serotonin1A receptor by 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS) is accompanied by loss of membrane cholesterol which results in a reduction in specific agonist binding activity. Replenishment of cholesterol to solubilized membranes restores the cholesterol content of the membrane and significantly enhances specific agonist binding activity. In order to test the stringency of the requirement of cholesterol in this process, we solubilized native hippocampal membranes followed by replenishment with 7-dehydrocholesterol (7-DHC). 7-DHC is an immediate biosynthetic precursor of cholesterol differing only in a double bond at the 7th position in its sterol ring. Our results show, for the first time, that replenishment of solubilized hippocampal membranes with 7-DHC does not restore ligand binding activity of the serotonin1A receptor, in spite of recovery of the overall membrane order. This observation shows that the requirement for restoration of ligand binding activity is more stringent than the requirement for the recovery of overall membrane order. These novel results have potential implications in understanding the interaction of membrane sterols with this important neuronal receptor under pathogenic conditions such as the Smith-Lemli-Opitz syndrome.  相似文献   

10.
The complexity of gonadal steroid hormone actions is reflected in their broad and diverse effects on a host of integrated systems including reproductive physiology, sexual behavior, stress responses, immune function, cognition, and neural protection. Understanding the specific contributions of androgens and estrogens in neurons that mediate these important biological processes is central to the study of neuroendocrinology. Of particular interest in recent years has been the biological role of androgen metabolites. The goal of this review is to highlight recent data delineating the specific brain targets for the dihydrotestosterone metabolite, 5alpha-androstane, 3beta,17beta-diol (3beta-Diol). Studies using both in vitro and in vivo approaches provide compelling evidence that 3beta-Diol is an important modulator of the stress response mediated by the hypothalmo-pituitary-adrenal axis. Furthermore, the actions of 3beta-Diol are mediated by estrogen receptors, and not androgen receptors, often through a canonical estrogen response element in the promoter of a given target gene. These novel findings compel us to re-evaluate the interpretation of past studies and the design of future experiments aimed at elucidating the specific effects of androgen receptor signaling pathways.  相似文献   

11.
12.
13.
Ma Q  Liu S  Zhuang Z  Lin L  Sun Z  Liu C  Ma H  Su Y  Tang Q 《Gene》2012,493(1):92-104
Growth hormone (GH) is a polypeptide which is an important regulator of development and somatic growth in teleosts, and may be associated with the mechanisms which drive sexual growth dimorphism in the Half-smooth tongue sole (Cynoglossus semilaevis). In this study, the full length gh cDNA was cloned from C. semilaevis by homology cloning and the rapid amplification of cDNA ends polymerase chain reaction (RACE-PCR). The full-length gh cDNA is 826 bp and contains an open reading frame (ORF) of 603 bp encoding a protein of 200 amino acids (AA). The precursor of gh consists of a 17 amino-acid signal peptide followed by a 183 amino-acid mature polypeptide. GH gene sequences obtained from female and male adults consist of 3428 bp and 3371 bp, respectively, each of which includes six exons and five introns, and the difference in the GH gene size was mainly caused by the microsatellites. When 14 tissues from females, normal males and extra-large male adults were analyzed for sex-specific tissue expression, the gh mRNA was found to be predominantly expressed in the pituitary, and the expression levels in females were 3.6 times as much as those in normal males, while the mRNA expression in extra-large males was 1.7 times as much as those in normal males. Sex differences in gh mRNA expression during development were also examined by using a full-sib family of C. semilaevis, and the gh mRNA was detected at all of the 12 time points sampled from 10 to 380 days-old. A significant increase in gh mRNA was detected starting in 80 day old fish and was then followed by a drop to very low levels starting at 230 day old fish. Differential expression indicated that the gh expression level in females was significantly higher than males (P < 0.01) at all of the stages except for 10 days-old. Two microsatellite loci were identified in the second intron of the GH gene. Using these two polymorphic markers to genotype 224 individuals, there was no significant difference between the females and males in the Bohai Sea, the Yellow Sea and the hatchery samples.  相似文献   

14.
The hypothalamic–pituitary–gonadal axis (HPG) plays vital roles in reproduction and steroid hormone production in both sexes. The focus of this review is upon gene structures, receptor structures and the signaling pathways of gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH) and follicle-stimulating hormone (FSH). The hormones' functions in reproduction as well as consequences resulting from mutations are also summarized. Specific characteristics of hormones such as the pulsatile secretions of GnRH are also covered. The different regulators of the HPG axis are introduced including kisspeptin, activin, inhibin, follistatin, androgens and estrogen. This review includes not only their basic information, but also their unique function in the HPG axis. Here we view the HPG axis as a whole, so relations between ligands and receptors are well described crossing different levels of the HPG axis. Hormone interactions and transformations are also considered. The major information of this article is depicted in three figures summarizing the current discoveries on the HPG axis. This article systematically introduces the basic knowledge of the HPG axis and provides information of the current advances relating to reproductive hormones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号