共查询到20条相似文献,搜索用时 15 毫秒
1.
Yulong Qi Hong Ni Jing Zhang Ming Ge Jin-Hui Wang 《Biochemical and biophysical research communications》2009,381(1):129-133
Spike encoding at GABAergic neurons plays an important role in maintaining the homeostasis of brain functions for well-organized behaviors. The rise of intracellular Ca2+ in GABAergic neurons causes synaptic plasticity. It is not clear how intracellular Ca2+ influences their spike encoding. We have investigated this issue at GFP-labeled GABAergic cortical neurons and cerebellar Purkinje cells by whole-cell recording in mouse brain slices. Our results show that an elevation of intracellular Ca2+ by infusing adenophostin-A lowers spike encoding at GABAergic cortical neurons and enhances encoding ability at cerebellar Purkinje cells. These differential effects of cytoplasmic Ca2+ on spike encoding are mechanistically associated with Ca2+-induced changes in the refractory periods and threshold potentials of sequential spikes, as well as with various expression ratios of CaM-KII to calcineurin in GABAergic cortical neurons and cerebellar Purkinje cells. 相似文献
2.
Qiyi Wang Rongjing Ge Sudong Guan Jin-Hui Wang 《Biochemical and biophysical research communications》2009,378(4):706-228
GABAergic neurons play a critical role in maintaining the homeostasis of brain functions for well-organized behaviors. It is not known about the dynamical change in signal encoding at these neurons during postnatal development. We investigated this issue at GFP-labeled GABAergic neurons by whole-cell recording in cortical slices of mice. Our results show that the ability of spike encoding at GABAergic neurons is improved during postnatal development. This change is associated with the reduction of refractory periods and threshold potentials of sequential spikes, as well as the improvement of linear correlations between intrinsic properties and spike capacity. Therefore, the postnatal maturation of the spike encoding capacity at GABAergic neurons will stabilize the excitatory state of cerebral cortex. 相似文献
3.
Charoenphandhu N Laohapitakworn S Kraidith K Nakkrasae LI Jongwattanapisan P Tharabenjasin P Krishnamra N 《Biochemical and biophysical research communications》2011,410(4):775-779
Acidosis, associated with metabolic disorders, leads to the pathological changes of cognition and behavior in the clinical practices of neurology and psychology. The cellular mechanisms underlying these cerebral dysfunctions remain unclear. By using electrophysiological approach and changing extracellular pH, we have investigated the effects of acidic environment on cortical GABAergic neurons in terms of their abilities of firing spikes and responses to synaptic inputs. Artificial cerebral spinal fluid in low pH impairs the responses to excitatory synaptic inputs and the abilities of encoding sequential spikes at these GABAergic neurons. The impairments of neuronal spiking are associated with the increases of refractory periods and threshold potentials. Our studies reveal that acidosis may impair cortical GABAergic neurons and in turn deteriorate brain functions, in which their final targets are voltage-gated sodium channels and glutamate receptor-channels. 相似文献
4.
Tsai LH 《Journal of biomedical science》2005,12(2):255-266
-Aminobutyric acid (GABA) and L-glutamic acid (L-Glu) are transmitters of GABAergic and glutamatergic neurons in the enteric interneurons, targeting excitatory or inhibitory GABA receptors or glutamate receptors that modulate gastric motility and mucosal function. GABAergic and glutamatergic neuron immunoreactivity have been found in cholinergic enteric neurons in the stomach. GABA and L-Glu may also subserve hormonal and paracrine signaling. Disruption in gastrointestinal function following perturbation of enteric GABA receptors and glutamate receptors presents potential new target sites for drug development. 相似文献
5.
We have shown that in embryos treated with ethanol in ovo during days 1–3, a critical period of neuroembryogenesis, cholinergic neuronal phenotypic expression is decreased whereas GABAergic and catecholaminergic neuronal populations are increased as assessed by neuronal markers choline acetyltransferse (ChAT), glutamic acid decarboxylase (GAD) and tyrosine hydroxylase (TH) respectively. In this study, ethanol was administered intracerebrally to embryos at embryonic day 8, embryos were sacrificed at day 9 and ChAT and GAD activities assayed separately in cerebral hemispheres and remaining brain (diencephalon-midbrain and optic lobes). We found that ChAT activity was enhanced in the cerebral hemispheres only, whereas GAD activity was decreased in both cerebral hemispheres and remaining brain. We have concluded that the differential responses of neuronal phenotypes to ethanol may reflect compensatory mechanisms to ethanol insult. Moreover, these findings emphasize the vulnerability of the GABAergic neuronal phenotypes to ethanol neurotoxicity during early brain development in the chick. 相似文献
6.
Effect of ischemia,calcium depletion and repletion,acidosis and hypoxia on cellular taurine content 总被引:2,自引:0,他引:2
Summary. Occlusion of the left main coronary artery led to a time-dependent release of taurine from the heart. Upon reperfusion, there
was a second phase of taurine release, which exceeded the amount of taurine that exited the heart during the 45 min ischemic
insult. To obtain information on the mechanism underlying the release of taurine, three variables were examined, acidosis,
hypoxia and calcium overload. It was found that large amounts of taurine also leave the cell during the calcium paradox, a
condition induced by perfusing the heart with calcium containing buffer following a period of calcium free perfusion. However,
little taurine effluxes the hearts exposed to buffer whose pH was lowered to 6.6. Isolated neonatal cardiomyocytes subjected
to chemical hypoxia also lost large amounts of taurine. However, the amount of taurine leaving the cells appeared to be correlated
with the intracellular sodium concentration, [Na+]i. The data suggest that taurine efflux is regulated by [Na+]i and cellular osmolality, but not by cellular pH.
Received November 15, 2001 Accepted January 15, 2002 Published online October 3, 2002
Acknowledgements This study was supported with a grant from the Taisho Pharmaceutical Company.
Authors' address: Dr. Stephen W. Schaffer, Department of Pharmacology, University of South Alabama, School of Medicine, Mobile, Alabama, U.S.A.,
E-mail: sschaffe@jaguarl.usouthal.edu 相似文献
7.
Kim SY Kang JJ Lee HH Kang JJ Kim B Kim CG Park TK Kang H 《Biochemical and biophysical research communications》2011,415(2):224-228
The patients suffering from acidosis usually sign psychological deficits. The cerebral dysfunction is reportedly caused by an acid-induced functional impairment of GABAergic neurons; however, the role of pyramidal neurons in this process remains unclear. By using electrophysiological method and changing extracellular pH, we investigated the influence of acidic environment on pyramidal neurons in the cortical slices, such as their ability of firing spikes and response to synaptic inputs. A low pH of artificial cerebral spinal fluid elevates the responses of pyramidal neurons to excitatory synaptic inputs and their ability of encoding digital spikes, as well as reduces the signal transmission at GABAergic synapses. The elevated ability of neuronal spiking is associated with the decreases of refractory periods and threshold potentials. Therefore, acidosis deteriorates brain functions through making the activities between cortical pyramidal neurons and GABAergic neurons imbalanced toward the overexcitation of neural networks, a process similar to neural excitotoxicity. 相似文献
8.
Makinae K Kobayashi T Kobayashi T Shinkawa H Sakagami H Kondo H Tashiro F Miyazaki J Obata K Tamura S Yanagawa Y 《Journal of neurochemistry》2000,75(4):1429-1437
GABA is synthesized by glutamate decarboxylase (GAD), which has two forms, GAD65 and GAD67. To elucidate the molecular mechanisms of mouse GAD65 (mGAD65) gene expression, we isolated and characterized the mGAD65 gene. The mGAD65 gene was found to be divided into 16 exons and spread over 75 kb. The sequence of the first exon and the 5'-flanking region indicated the presence of potential neuron-specific cis-regulatory elements. We used transgenic mice to examine the expression pattern conferred by a 9.2-kb promoter-proximal DNA fragment of the mGAD65 gene fused to the bacterial lacZ reporter gene. Transgenic mice showed high beta-galactosidase activity specifically in brain and testis. They also showed characteristic patterns of transgene expression in olfactory bulb, cerebellar cortex, and spinal cord, a similar expression pattern to that of endogenous mGAD65. However, no transgene expression was observed in the ventral thalamus or hypothalamus, in which high mGAD65 gene expression levels have been observed. These results suggest that the 9.2-kb DNA fragment of the mGAD65 gene is associated with its tissue-specific expression and its targeted expression in GABAergic neurons of specific brain regions but that additional regulatory elements are necessary to obtain fully correct expression. 相似文献
9.
Chen N Zhu Y Gao X Guan S Wang JH 《Biochemical and biophysical research communications》2006,346(1):281-287
Neural codes to guide well-organized behavior are thought to be the programmed patterns of sequential spikes at central neurons, in which the coordinative activities of voltage-gated ion channels are involved. The attention has been paid to study the role of potassium channels in spike pattern; but it is not clear how the intrinsic mechanism mediated by voltage-gated sodium channels (VGSC) influences the programming of sequential spikes, which we investigated at GABAergic cerebellar Purkinje cells and hippocampal interneurons by patch-clamp recording in brain slices. Spike capacity is higher at Purkinje cells than interneurons in response to the given intensities of inputs, and is dependent on input intensity. Compared to interneurons, Purkinje cells express the lower threshold potentials and the shorter refractory periods of sequential spikes. The increases of input intensities shorten spike refractory periods significantly. The threshold potentials for VGSC activation and the refractory periods for its reactivation are lower at Purkinje cells, and are reduced by the strong depolarization. We suggest that the VGSC-mediated threshold potentials and refractory periods are regulated by synaptic inputs, and navigate the programming of sequential spikes at the neurons. 相似文献
10.
Kim CS Davidoff AJ Maki TM Doye AA Gwathmey JK 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》2000,170(4):295-306
Global contractile heart failure was induced in turkey poults by furazolidone feeding (700 ppm). Abnormal calcium regulation
appears to be a key factor in the pathophysiology of heart failure, but the cellular mechanisms contributing to changes in
calcium fluxes have not been clearly defined. Isolated ventricular myocytes from non-failing and failing hearts were therefore
used to determine whether the whole heart and ventricular muscle contractile dysfunctions were realized at the single cell
level. Whole cell current- and voltage-clamp techniques were used to evaluate action potential configurations and L-type calcium
currents, respectively. Intracellular calcium transients were evaluated in isolated myocytes with fura-2 and in isolated left
ventricular muscles using aequorin. Action potential durations were prolonged in failing myocytes, which correspond to slowed
cytosolic calcium clearing. Calcium current-voltage relationships were normal in failing myocytes; preliminary evidence suggests
that depressed transient outward potassium currents contribute to prolonged action potential durations. The number of calcium
channels (as measured by radioligand binding) were also similar in non-failing and failing hearts. Isolated ventricular muscles
from failing hearts had enhanced inotropic responses, in a dose-dependent fashion, to a calcium channel agonist (Bay K 8644).
These data suggest that changes in intracellular calcium mobilization kinetics and longer calcium-myofilament interaction
may be able to compensate for contractile failure. We conclude that the relationship between calcium current density and sarcoplasmic
reticulum calcium release is a dynamic process that may be altered in the setting of heart failure at higher contraction rates.
Accepted: 1 March 2000 相似文献
11.
Nucleus raphe magnus (NRM) sends the projection to spinal dorsal horn and inhibits nociceptive transmission. Analgesic effect produced by mu-opioid receptor agonists including morphine partially results from activating the NRM-spinal cord pathway. It is generally believed that mu-opioid receptor agonists disinhibit spinally projecting neurons of the NRM and produce analgesia by hyperpolarizing GABAergic interneurons. In the present study, whole-cell patch-clamp recordings combined with single-cell RT-PCR analysis were used to test the hypothesis that DAMGO ([D-Ala(2),N-methyl-Phe(4),Gly-ol(5)]enkephalin), a specific mu-opioid receptor agonist, selectively hyperpolarizes NRM neurons expressing mRNA of glutamate decarboxylase (GAD(67)). Homologous desensitization of mu-opioid receptors in NRM neurons could result in the development of morphine-induced tolerance. G protein-coupled receptor kinase (GRK) is believed to mediate mu-opioid receptor desensitization in vivo. Therefore, we also investigated the involvement of GRK in mediating homologous desensitization of DAMAMGO-induced electrophysiological effects on NRM neurons by using two experimental strategies. First, single-cell RT-PCR assay was used to study the expression of GRK2 and GRK3 mRNAs in individual DAMGO-responsive NRM neurons. Whole-cell recording was also performed with an internal solution containing the synthetic peptide, which corresponds to G(betagamma)-binding domain of GRK and inhibits G(betagamma) activation of GRK. Our results suggest that DAMGO selectively hyperpolarizes NRM GABAergic neurons by opening inwardly rectifying K(+) channels and that GRK2 mediates short-term homologous desensitization of mu-opioid receptors in NRM GABAergic neurons. 相似文献
12.
目的:研究碱中毒对小鼠皮质GABA能神经元内在特性和编码能力的影响,探讨碱中毒引起大脑功能障碍的机制。方法:选择17-22天FVB-Tg小鼠行脑片体外培养,实验对象分为碱中毒组和对照组。DIC光学显微镜下选择皮层II-III层GABA神经元,运用Axo Patch 200 B放大器全细胞模式,记录并分析神经元内在特性(包括阈电位、绝对不应期)的改变;记录与去极化脉冲相对应的峰值,分析GABA能神经元的编码能力。结果:1.阈电位峰值在对照组分别是24.58±0.68,25.44±0.82,27.02±0.78,27.55±0.74和28.66±0.79毫伏,碱中毒组分别是28.32±0.78,30.10±0.91,32.22±0.80,32.88±0.76和33.54±0.74毫伏,碱中毒组阈电位升高;绝对不应期在对照组和碱中毒组分别是4.15±0.06和5.09±0.08毫秒,碱中毒绝对不应期延长。2.两组在相同去极化刺激下诱发的连续峰值波形发生明显改变,碱中毒组产生峰值的能力下降。结论:1、碱中毒使皮质GABA能神经元动阈电位升高和绝对不应期延长;2、碱中毒降低皮质GABA能神经元编码峰值能力。 相似文献
13.
Summary Taking advantage of prolonged action potential under low temperature, we studied temporal relationship among the action potential, increase of cytoplasmic Ca2+ concentration and cessation of cytoplasmic streaming inNitella. The Ca2+ concentration began to increase at a very early stage of the action potential and the cessation of streaming followed that increase.Abbreviations APW
artificial pond water 相似文献
14.
GABAergic disinhibition changes the recovery cycle of bat inferior collicular neurons 总被引:2,自引:0,他引:2
Y. Lu P. H.-S. Jen Q.-Y. Zheng 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1997,181(4):331-341
This study examines the contribution of GABAergic inhibition to the discharge pattern and recovery properties of 110 bat
inferior collicular neurons by means of bicuculline application to their recording sites. When stimulated with single pulses,
74 (67%) neurons discharged one or two impulses (phasic responders), 19 (17%) discharged three to ten impulses (phasic bursters)
and 17 (16%) discharged impulses throughout the entire stimulus duration (tonic responders). Bicuculline application changed
phasic responders into phasic bursters or tonic responders, increased the number of impulses by 10–2000% and shortened the
response latency of most neurons. When stimulated with pairs of sound pulses, the recovery cycles of these neurons can be
described as: (1) long inhibition (n = 49, 45%); (2) short inhibition (n = 41, 37%); and (3) fast recovery (n = 20, 18%) based upon the 50% recovery time that was either longer than 20 ms, between 10 and 20 ms or shorter than 10 ms.
Bicuculline application shortened the 50% recovery time of most neurons by 11–2350% allowing them to respond to pairs of sound
pulses at very short interpulse intervals. These data demonstrate that GABAergic inhibition contributes significantly to auditory
temporal processing.
Accepted: 18 April 1997 相似文献
15.
《Cell calcium》2019
AimsThe effects of acute (100 s) hypoxia and/or acidosis on Ca2+ signaling parameters of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are explored here for the first time.Methods and results1) hiPSC-CMs express two cell populations: rapidly-inactivating ICa myocytes (τi<40 ms, in 4–5 day cultures) and slowly-inactivating ICa (τi ≥ 40 ms, in 6–8 day cultures). 2) Hypoxia suppressed ICa by 10–20% in rapidly- and 40–55% in slowly-inactivating ICa cells. 3) Isoproterenol enhanced ICa in hiPSC-CMs, but either enhanced or did not alter the hypoxic suppression. 4) Hypoxia had no differential suppressive effects in the two cell-types when Ba2+ was the charge carrier through the calcium channels, implicating Ca2+-dependent inactivation in O2 sensing. 5) Acidosis suppressed ICa by ∼35% and ∼25% in rapidly and slowly inactivating ICa cells, respectively. 6) Hypoxia and acidosis suppressive effects on Ca-transients depended on whether global or RyR2-microdomain were measured: with acidosis suppression was ∼25% in global and ∼37% in RyR2 Ca2+-microdomains in either cell type, whereas with hypoxia suppression was ∼20% and ∼25% respectively in global and RyR2-microdomaine in rapidly and ∼35% and ∼45% respectively in global and RyR2-microdomaine in slowly-inactivating cells.ConclusionsVariability in ICa inactivation kinetics rather than cellular ancestry seems to underlie the action potential morphology differences generally attributed to mixed atrial and ventricular cell populations in hiPSC-CMs cultures. The differential hypoxic regulation of Ca2+-signaling in the two-cell types arises from differential Ca2+-dependent inactivation of the Ca2+-channel caused by proximity of Ca2+-release stores to the Ca2+ channels. 相似文献
16.
Xie GH Rah SY Yi KS Han MK Chae SW Im MJ Kim UH 《Biochemical and biophysical research communications》2003,307(3):713-718
While the molecular mechanisms by which oxidants cause cytotoxicity are still poorly understood, disruption of Ca(2+) homeostasis appears to be one of the critical alterations during the oxidant-induced cytotoxic process. Here, we examined the possibility that oxidative stress may alter the metabolism of cyclic ADP-ribose (cADPR), a potent Ca(2+)-mobilizing second messenger in the heart. Isolated heart perfused by Langendorff technique was subjected to ischemia/reperfusion injury and endogenous cADPR level was determined using a specific radioimmunoassay. Following ischemia/reperfusion injury, a significant increase in intracellular cADPR level was observed. The elevation of cADPR content was closely correlated with the increase in ADP-ribosyl cyclase activity. Inclusion of oxygen free radical scavengers, 2,2,6,6-tetramethyl-1-piperidinyloxy and mannitol, in the reperfusate prevented the ischemia/reperfusion-induced increases in cADPR level and the ADP-ribosyl cyclase activity. Exposure of isolated cardiomyocytes to t-butyl hydroperoxide increased the ADP-ribosyl cyclase activity, cADPR level, and intracellular Ca(2+) concentration ([Ca(2+)](i)) and consequently resulting in cell lethal damage. The oxidant-induced elevation of [Ca(2+)](i) as well as cell lethal damage was blocked by a cADPR antagonist, 8-bromo-cADPR. These results provide evidence for involvement of cADPR and its producing enzyme in alteration of Ca(2+) homeostasis during the ischemia/reperfusion injury of the heart. 相似文献
17.
皮层神经元动作电位不应期和阈电位与神经元动作电位编码的关系 总被引:1,自引:0,他引:1
目的:测量和比较感觉运动皮层Ⅱ/Ⅲ层锥体神经元和中间神经元的内在特性并研究其与动作电位编码频率和精确性的关系。方法:采用全细胞电流钳记录模式,获得的数据输入pClamp和Origin进行处理分析。结果:与锥体神经元相比,中间神经元群集动作电位具有较低的阈电位水平和较短的不应期,从而中间神经元具有较高的动作电位编码频率和精确性。结论:皮层神经元动作电位的阈电位水平和不应期调控动作电位的编码频率和精确性。 相似文献
18.
Transient cerebral ischemia, which is accompanied by a sustained release of glutamate and zinc, as well as H(2)O(2) formation during the reperfusion period, strongly depresses protein synthesis. We have previously demonstrated that the glutamate-induced increase in cytosolic Ca(2+) is likely responsible for blockade of the elongation step of protein synthesis, whereas Zn(2+) preferentially inhibits the initiation step. In this study, we provide evidence indicating that H(2)O(2) and thapsigargin mobilized a common intracellular Ca(2+) pool. H(2)O(2) treatment stimulated a slow increase in intracellular Ca(2+), and precluded the effect of thapsigargin on Ca(2+) mobilization. H(2)O(2) stimulated the phosphorylation of both eIF-2alpha and eEF-2, in a time- and dose-dependent manner, suggesting that both the blockade of the elongation and of the initiation step are responsible for the H(2)O(2)-induced inhibition of protein synthesis. However, kinetic data indicated that, at least during the first 15 min of H(2)O(2) treatment, the inhibition of protein synthesis resulted mainly from the phosphorylation of eEF-2. In conclusion, H(2)O(2) inhibits protein translation in cortical neurons by a process that involves the phosphorylation of both eIF-2alpha and eEF-2 and the relative contribution of these two events depends on the duration of H(2)O(2) treatment. 相似文献
19.