首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The 26S proteasome is a large multi-subunit protein complex that exerts specific degradation of proteins in the cell. The 26S proteasome consists of the 20S proteolytic particle and the 19S regulator. In order to be targeted for proteasomal degradation most of the proteins must undergo the post-translational modification of poly-ubiquitination. However, a number of proteins can also be degraded by the proteasome via a ubiquitin-independent pathway. Such degradation is exercised largely through the binding of substrate proteins to the PSMA3 (alpha 7) subunit of the 20S complex. However, a systematic analysis of proteins interacting with PSMA3 has not yet been carried out. In this report, we describe the identification of proteins associated with PSMA3 both in the cytoplasm and nucleus. A combination of two-dimensional gel electrophoresis (2D-GE) and tandem mass-spectrometry revealed a large number of PSMA3-bound proteins that are involved in various aspects of mRNA metabolism, including splicing. In vitro biochemical studies confirmed the interactions between PSMA3 and splicing factors. Moreover, we show that 20S proteasome is involved in the regulation of splicing in vitro of SMN2 (survival motor neuron 2) gene, whose product controls apoptosis of neurons.  相似文献   

2.
Trees dominate the structural and functional dynamics of many temperate and tropical forest ecosystems and are of considerable scientific and social interest. The effective ecological restoration of abandoned agricultural fields, especially of highly degraded ecosystems, remains a challenge. Germination is imperative to restore natural ecosystems and to save the environment. Low germination rate is key player to disturb the ecosystem. Cyclobalnopsis gilva is an economically important woody plant, however its germination rate is less than 50% in its natural habitats compared to that of other plants. A comparative proteomics approach was carried out to investigate this feature on germinated and non-germinated seeds of C. gilva. Proteins from seeds of C. gilva were extracted using phenol extraction, separated by two-dimensional electrophoresis, and identified through matrix-assisted laser desorption ionization-time of flight/time of flight mass spectrometry. In addition, the results of proteome were verified through the RT-qPCR determination. More than 700 proteins were reproducibly detected. Among 26 proteins with 2-fold changes in abundance, the 24 differential proteins were identified successfully. Many differential proteins were involved in starch metabolism. β-amylase abundance and mRNA level were both up-regulated in germinated seeds of C. gilva. An important point to provides new insights into the understandings of C. gilva seed germination problems are found through 2-DE and RT-qPCR analyses to save the forest ecology and solve the problem of woody plants with low germination rate all over the world.  相似文献   

3.
Absence seizure has been of interest because the symptom is related to sensory processing. However, the mechanism that causes the disease is not understood yet. To better understand the molecular mechanism related to the disease progress at protein level, we performed proteomic studies using the thalamus of mice for which absence seizure was induced by gamma-butyrolactone (GBL). Differential proteome expression between GBL-treated mice and control mice was examined by fluorescence 2D difference gel electrophoresis (DIGE) at three different time points (5, 10, and 30 min) after GBL-administration. We identified 16 proteins differentially expressed by >1.4-fold at any of the three time points. All proteins besides the serine protease inhibitor EIA were down-regulated in absence seizure-induced mice. The down-regulated proteins can be classified into five groups by their biological functions: cytoskeleton rearrangement, neuroprotection, neurotransmitter secretion, calcium binding, and metabolism. The maximum level of change was reached by 10 min after GBL-treatment, with the expression level returning back to the original at 30 min when mice were awakened from absence seizure thereby demonstrating the proteomic response is reversible. Our results suggest that absence seizures are associated with restricted functional sets of proteins, whose down-regulation may interfere with general function of neuronal cells.  相似文献   

4.
5.
The p16(ink4a) tumor suppressor protein plays a critical role in cell cycle control, tumorogenesis and senescence. The best known activity for p16(ink4a) is the inhibition of the activity of CDK4 and CDK6 kinases, both playing a key role in cell cycle progression. With the aim to study new p16(ink4a) functions we used affinity chromatography and MS techniques to identify new p16(ink4a)-interacting proteins. We generated p16(ink4a) columns by coupling the protein to activated Sepharose 4B. The proteins from MOLT-4 cell line that bind to p16(ink4a) affinity columns were resolved by SDS-PAGE and identified by MS using a MALDI-TOF. Thirty-one p16(ink4a) -interacting proteins were identified and grouped in functional clusters. The identification of two of them, proliferating cell nuclear antigen (PCNA) and minichromosome maintenance protein 6 (MCM6), was confirmed by Western blotting and their in vivo interactions with p16(ink4a) were demonstrated by immunoprecipitation and immunofluorescence studies. Results also revealed that p16(ink4a) interacts directly with the DNA polymerase delta accessory protein PCNA and thereby inhibits the polymerase activity.  相似文献   

6.
7.
Rett syndrome (RTT) is a pervasive developmental disorder, primarily affecting girls with a prevalence of 1 in every 10,000 births. A clear etiological factor present in more than 90% of classical RTT cases is the mutation of the gene encoding methyl-CpG-binding protein 2 (MECP2). Recent work from our group was able to shown a systemic oxidative stress (OxS) in these patients that correlates with the gravity of the clinical features.Using freshly isolated skin fibroblasts from RTT patients and healthy subjects, we have performed a two-dimensional gel electrophoresis in order to evidence the oxidative modifications of proteins with special focus on the formation of protein adducts with 4-hydroxynonenal (4-HNE PAs)—a major secondary product of lipid peroxidation— and Nitrotyrosine, a marker derived from the biochemical interaction of nitric oxide (NO) or nitric oxide-derived secondary products with reactive oxygen species (ROS). Then, oxidatively modified spots were identified by mass spectrometry, LC-ESI-CID-MS/MS.Our results showed that 15 protein spots presented 4-HNE PAs and/or nitrotyrosine adducts in fibroblasts proteome from RTT patients compared to healthy control cells. Post-translationally modified proteins were related to several functional categories, in particular to cytoskeleton structure and protein folding. In addition, clear upregulated expression of the inducible NO synthase (iNOS) with high nitrite levels were observed in RTT fibroblasts, justifying the increased nitrotyrosine protein modifications.The present work describes not only the proteomic profile in RTT fibroblasts, but also identifies the modified proteins by 4-HNE and nitrotyrosine. Of note, for the first time, it appears that a dysregulation of NO pathway can be associated to RTT pathophysiology. In conclusion, the evidence of a wide range of proteins able to forms adducts with 4-HNE, Nitrotyrosine or with both confirms the possible alteration of several aspects of cellular functions that well correlates to the complex clinical features of RTT patients.  相似文献   

8.
Cup is an eIF4E-binding protein (4E-BP) that plays a central role in translational regulation of localized mRNAs during early Drosophila development. In particular, Cup is required for repressing translation of the maternally contributed oskar, nanos, and gurken mRNAs, all of which are essential for embryonic body axis determination. Here, we present the 2.8 Å resolution crystal structure of a minimal eIF4E–Cup assembly, consisting of the interacting regions of the two proteins. In the structure, two separate segments of Cup contact two orthogonal faces of eIF4E. The eIF4E-binding consensus motif of Cup (YXXXXLΦ) binds the convex side of eIF4E similarly to the consensus of other eIF4E-binding proteins, such as 4E-BPs and eIF4G. The second, noncanonical, eIF4E-binding site of Cup binds laterally and perpendicularly to the eIF4E β-sheet. Mutations of Cup at this binding site were shown to reduce binding to eIF4E and to promote the destabilization of the associated mRNA. Comparison with the binding mode of eIF4G to eIF4E suggests that Cup and eIF4G binding would be mutually exclusive at both binding sites. This shows how a common molecular surface of eIF4E might recognize different proteins acting at different times in the same pathway. The structure provides insight into the mechanism by which Cup disrupts eIF4E–eIF4G interaction and has broader implications for understanding the role of 4E-BPs in translational regulation.  相似文献   

9.
Mass production of glucosamine (GlcN) using microbial cells is a worthy approach to increase added values and keep safety problems in GlcN production process. Prior to set up a microbial cellular platform, this study was to assess acetate metabolism in Citrobacter sp. BL-4 (BL-4) which has produced a polyglucosamine PGB-2. The LC-MS analysis was conducted after protein separation on the 1D-PAGE to accomplish the purpose of this study. 280 proteins were totally identified and 188 proteins were separated as acetate-related proteins in BL-4. Acetate was converted to acetyl-CoA by acetyl-CoA synthetase up-regulated in the acetate medium. The glyoxylate bypass in the acetate medium was up-regulated with over-expression of isocitrate lyases and 2D-PAGE confirmed this differential expression. Using (1)H-NMR analysis, the product of isocitrate lyases, succinate, increased about 15 times in the acetate medium. During acetate metabolism proteins involved in the lipid metabolism and hexosamine biosynthesis were over-expressed in the acetate medium, while proteins involved in TCA cycle, pentose phosphate cycle and purine metabolism were down-regulated. Taken together, the results from the proteomic analysis can be applied to improve GlcN production and to develop metabolic engineering in BL-4.  相似文献   

10.
11.
12.
Components of the mRNA processing body (P-body) regulate critical steps in mRNA storage, transport, translation and degradation. At the core of the P-body is the decapping complex, which removes the 5′ cap from de-adenylated mRNAs and mediates an irreversible step in mRNA degradation. The assembly of P-bodies in Saccharomyces cerevisiae, Arabidopsis thaliana and Drosophila melanogaster has been previously described. Less is known about the assembly of mammalian P-bodies. To investigate the interactions that occur between components of mammalian P-bodies, we developed a fluorescence-based, two-hybrid assay system. The assay depends on the ability of one P-body component, fused to an exogenous nuclear localization sequence (NLS), to recruit other P-body components to the nucleus. The assay was used to investigate interactions between P-body components Ge-1, DCP2, DCP1, EDC3, RAP55, and RCK. The results of this study show that the modified two-hybrid assay can be used to identify protein interactions that occur in a macromolecular complex. The assay can also be used to efficiently detect protein interaction domains. The results provide important insights into mammalian P-body assembly and demonstrate similarities, and critical differences, between P-body assembly in mammalian cells compared with that of other species.  相似文献   

13.
Zinc is an important dietary factor that regulates intestinal amino acid and protein metabolism in animals. Recent work with the piglet, an established animal model for studying human infant nutrition, has shown that supplementing high levels of zinc oxide (ZnO) to the diet ameliorates weaning-associated intestinal injury and growth retardation. However, the underlying mechanisms are largely unknown. This study tested the hypothesis that zinc supplementation affects expression of proteins related to glutathione metabolism and oxidative stress in the gut. Using two-dimensional gel electrophoresis and mass spectrometry, we identified 22 up-regulated and 19 down-regulated protein spots in the jejunum of weanling piglets supplemented with ZnO (3,000 mg/kg Zn) compared with the control pigs (100 mg/kg Zn). These proteins are related to energy metabolism (increased level for succinyl-CoA transferase and decreased level for creatine kinase M-type); oxidative stress (decreased levels for 78 kDa glucose-regulated protein and glutathione-S-transferase-ω); and cell proliferation and apoptosis (increased levels for A-Raf-1 and calregulin). Consistent with the changes in protein expression, the ratio of reduced glutathione to oxidized glutathione was increased, whereas glutathione-S-transferase and glutathione peroxidase activities as well as the protein level of active caspase-3 were reduced in ZnO-supplemented piglets. Collectively, these results indicate that ZnO supplementation improves the redox state and prevents apoptosis in the jejunum of weaning piglets, thereby alleviating weaning-associated intestinal dysfunction and malabsorption of nutrients (including amino acids).  相似文献   

14.
The objective of this study was to identify and characterize other proteins than fimbrial proteins potentially involved in R. albus 20 adhesion to cellulose using an adhesion-related antiserum preparation (i.e. anti-Adh serum). From protein fractions of R. albus 20 grown on cellulose, the serum recognized at least 10 cellulose-binding proteins (CBPs), among which homologs of glycoside hydrolases (family 5, 9 and 48) of R. albus 8 (i.e. Cel5G, Cel9B and Cel48A) were identified by a proteomic approach. In strain 20, Cel9B and Cel48A were identified as two major CBPs and as bacterial cell-associated proteins. The anti-Adh serum was also shown to target the C-terminal family 37 carbohydrate-binding module (CBM37) of Cel9B and Cel48A, indicating that this module, unique to R. albus, may play a significant role in bacterial adhesion to cellulose as suggested previously for R. albus 8. Overall, our results support the hypothesis of an adhesion mechanism involving the CBM37 of Cel9B and Cel48A. This adhesion mechanism may not be restricted to these two enzymes but may also involve other CBM37-containing proteins such as Cel5G and the other uncharacterised proteins recognized by the anti-Adh serum. The EMBL accession numbers for the sequences reported in this paper are FM872295 for Cel9B and FM872296 for Cel48A.  相似文献   

15.
mRNA 5'-cap recognition by the eukaryotic translation initiation factor eIF4E has been exhaustively characterized with the aid of a novel fluorometric, time-synchronized titration method, and X-ray crystallography. The association constant values of recombinant eIF4E for 20 different cap analogues cover six orders of magnitude; with the highest affinity observed for m(7)GTP (approximately 1.1 x 10(8) M(-1)). The affinity of the cap analogues for eIF4E correlates with their ability to inhibit in vitro translation. The association constants yield contributions of non-covalent interactions involving single structural elements of the cap to the free energy of binding, giving a reliable starting point to rational drug design. The free energy of 7-methylguanine stacking and hydrogen bonding (-4.9 kcal/mol) is separate from the energies of phosphate chain interactions (-3.0, -1.9, -0.9 kcal/mol for alpha, beta, gamma phosphates, respectively), supporting two-step mechanism of the binding. The negatively charged phosphate groups of the cap act as a molecular anchor, enabling further formation of the intermolecular contacts within the cap-binding slot. Stabilization of the stacked Trp102/m(7)G/Trp56 configuration is a precondition to form three hydrogen bonds with Glu103 and Trp102. Electrostatically steered eIF4E-cap association is accompanied by additional hydration of the complex by approximately 65 water molecules, and by ionic equilibria shift. Temperature dependence reveals the enthalpy-driven and entropy-opposed character of the m(7)GTP-eIF4E binding, which results from dominant charge-related interactions (DeltaH degrees =-17.8 kcal/mol, DeltaS degrees= -23.6 cal/mol K). For recruitment of synthetic eIF4GI, eIF4GII, and 4E-BP1 peptides to eIF4E, all the association constants were approximately 10(7) M(-1), in decreasing order: eIF4GI>4E-BP1>eIF4GII approximately 4E-BP1(P-Ser65) approximately 4E-BP1(P-Ser65/Thr70). Phosphorylation of 4E-BP1 at Ser65 and Thr70 is insufficient to prevent binding to eIF4E. Enhancement of the eIF4E affinity for cap occurs after binding to eIF4G peptides.  相似文献   

16.
Lines of Epstein-Barr virus (EBV)-transformed lymphoblastoid B-cells (B-LCLs) differ in the expression of surface CD4 glycoproteins. The aim of the present study was to correlate the expression of CD4 molecules on B-LCL cells with the synthesis of CD4 mRNA. RT-PCR assays were performed with oligonucleotide primers designed to detect mRNA corresponding to intracellular, transmembrane, or extracellular portions of the CD4 molecule. RT-PCR assays with all sets of primers were positive in T-cell populations, but were negative in various B-cell lymphoma lines. The majority of the LCLs established by EBV transfection of non-selected B-cells yielded positive results with at least some of the primer sets used for detection of CD4 mRNA. A significant positive correlation was found between the proportion of CD4+ cells in various B-LCLs and the concentration of CD4 mRNA. LCLs established from B-cells which synthesized various antibodies did not express CD4 molecules and either failed to synthesize CD4 mRNA or produced very low concentrations. These findings indicate that the expression of CD4 on B-LCLs is directly correlated with the concentration of CD4 mRNA synthesized and with the differentiation stage in which B-cells were immortalized by EBV infection.  相似文献   

17.
Alternative mRNA splicing patterns are determined by the combinatorial control of regulator proteins and their target RNA sequences. We have recently characterized human hnRNP L as a global regulator of alternative splicing, binding to diverse C/A-rich elements. To systematically identify hnRNP L target genes on a genome-wide level, we have combined splice-sensitive microarray analysis and an RNAi-knockdown approach. As a result, we describe 11 target genes of hnRNP L that were validated by RT-PCR and that represent several new modes of hnRNP L-dependent splicing regulation, involving both activator and repressor functions: first, intron retention; second, inclusion or skipping of cassette-type exons; third, suppression of multiple exons; and fourth, alternative poly(A) site selection. In sum, this approach revealed a surprising diversity of splicing-regulatory processes as well as poly(A) site selection in which hnRNP L is involved.  相似文献   

18.
19.
《Molecular cell》2022,82(20):3856-3871.e6
  1. Download : Download high-res image (235KB)
  2. Download : Download full-size image
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号