首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
We recently identified and characterized a novel murine gene,ENC-1,that is expressed primarily in the nervous system and encodes an actin-binding protein. To gain insight into a potential role forENC-1gene in the processes of cell differentiation and malignant transformation in the human nervous system, we first cloned and characterized the human homologue ofENC-1.The humanENC-1gene appeared to be highly expressed in adult brain and spinal cord, and in a number of cell lines derived from nervous system tumors we detected low steady-state levels ofENC-1mRNA. We used a neuroblastoma differentiation model, the retinoic acid-induced neuronal differentiation of SMS-KCNR cells, to study the regulation of theENC-1gene during neural crest cell differentiation. We found that the expression ofENC-1increased dramatically in the differentiated SMS-KCNR cells as compared to control undifferentiated cells. These results suggest thatENC-1expression plays a role during differentiation of neural crest cells and may be down regulated in neuroblastoma tumors.  相似文献   

2.
Afadin is an actin filament-binding protein that binds to nectin, an immunoglobulin-like cell adhesion molecule, and is colocalized with nectin at cadherin-based cell-cell adherens junctions (AJs). To explore the function of afadin in cell-cell adhesion during embryogenesis, we generated afadin(-/-) mice and embryonic stem cells. In wild-type mice at embryonic days 6.5-8.5, afadin was highly expressed in the embryonic ectoderm and the mesoderm, but hardly detected in the extraembryonic regions such as the visceral endoderm. Afadin(-/-) mice showed developmental defects at stages during and after gastrulation, including disorganization of the ectoderm, impaired migration of the mesoderm, and loss of somites and other structures derived from both the ectoderm and the mesoderm. Cystic embryoid bodies derived from afadin(-/-) embryonic stem cells showed normal organization of the endoderm but disorganization of the ectoderm. Cell-cell AJs and tight junctions were improperly organized in the ectoderm of afadin(-/-) mice and embryoid bodies. These results indicate that afadin is highly expressed in the ectoderm- derived cells during embryogenesis and plays a key role in proper organization of AJs and tight junctions of the highly expressing cells, which is essential for proper tissue morphogenesis.  相似文献   

3.
The mammalian achaete-scute homologue, MASH-1, is crucial for early development of the sympathetic nervous system and is transiently expressed in sympathetic neuroblasts during embryogenesis. Here we report that the human homologue (HASH-1) was expressed in all analyzed cell lines (6/6) derived from the sympathetic nervous system tumor neuroblastoma. The majority of small-cell lung carcinoma (4/5) cell lines tested expressed HASH-1, while other nonneuronal/non-neuroendocrine cell lines were negative. Induced differentiation of neuroblastoma cells resulted in HASH-1 downregulation. This occurred concomitant with induction of neurite outgrowth and expression of the neuronal marker genes GAP-43 and neuropeptide Y. Constitutive expression of exogenous HASH-1 did not alter the capacity of the neuroblastoma cells to differentiate in response to differentiation-inducing agents. It is concluded that moderate HASH-1 expression does not compromise the capacity of these cells to differentiate.  相似文献   

4.
5.
In eukaryotes, membrane trafficking is regulated by the small monomeric GTPases of Rab protein family. Rab11, an evolutionary conserved, ubiquitously expressed subfamily of the Rab GTPases, has been implicated in the regulation of vesicular trafficking through the recycling of endosomes. To dissect out the role of this protein during embryonic nervous system development, we have studied the expression pattern of Rab11 in the ventral nerve cord during neuronal differentiation in the Drosophila embryo. When the dominant-negative or constitutively-active mutant DRab11 proteins are expressed in neurons, or when homozygous mutant Rab11 embryos are analyzed, defects are found in the developing central nervous system, along with disorganization and misrouting of embryonic axons. Our results provide the first in vivo evidence that Rab11 is involved in the development of the nervous system during Drosophila embryogenesis. This work was supported by the DST (to J.K.R.) and SRF from ICMR, New Delhi (to T.B.).  相似文献   

6.
Solid tumors are frequently necrotic and hypoxic due to poor vascularization. Tumor cells adapt to hypoxia by modulating their phenotype. Key players in this process are the hypoxia-inducible factors (HIF-1alpha to 3alpha). HIFs are also expressed during normal development; for example, HIF-2alpha is specifically expressed and appears to be involved in the development of the murine sympathetic nervous system (SNS). Here, we demonstrate that HIF-2alpha protein is selectively present in human fetal week 8.5 SNS paraganglia. Neuroblastoma is derived from SNS precursors. In a subset of neuroblastomas, a spontaneous neuronal to neuroendocrine differentiation occurs in areas adjacent to necrotic zones. As HIF-2alpha activity has been associated not only with hypoxic but also with hypoglycemic conditions, we have investigated putative effects of hypoxia, glucose depletion, and HIF-2alpha on the neuroblastoma phenotype. HIF-2alpha was detected in hypoxic and in well-oxygenized neuroblastoma cells and tissue, presumably reflecting their embryonic features. With regard to differentiation, hypoxic cells lost their neuronal/neuroendocrine features and gained marker gene expression associated with an immature, neural crest-like phenotype. Low glucose potentiated the effect of hypoxia. These findings suggest that poorly vascularized neuroblastomas become immature and maintain a more aggressive phenotype, which possibly could involve a sustained stabilization and activation of HIF-2alpha.  相似文献   

7.
The enteric nervous system (ENS) is critically important for many intestinal functions such as peristalsis and secretion. Defects in the embryonic formation of the ENS cause Hirschsprung disease (HSCR) or megacolon, a severe birth defect that affects approximately 1 in 5,000 newborns. One of the least understood aspects of ENS development are the cellular and molecular mechanisms that control chain migration of the ENS cells during their migration into and along the embryonic gut. We recently reported a mouse model of HSCR in which mutant embryos carrying a hypomorphic allele of the Phactr4 gene show an embryonic gastrointestinal defect due to loss of enteric neurons in the colon. We found that Phactr4 modulates integrin signaling and cofilin activity to coordinate the forces that drive enteric neural crest cell (ENCC) migration in the mammalian embryo. In this extra view, we briefly summarize the current knowledge on integrin signaling in ENCC migration and introduce the Phactr protein family. Employing the ENS as a model, we shed some light on the mechanisms by which Phactr4 regulates integrin signaling and controls the cell polarity required for directional ENCC migration in the mouse developing gut.  相似文献   

8.
Neuroblastoma is an embryonic tumour of the sympathetic nervous system and is one of the most common cancers in childhood. A high differentiation stage has been associated with a favourable outcome; however, the mechanisms governing neuroblastoma cell differentiation are not completely understood. The MYCN gene is considered the hallmark of neuroblastoma. Even though it has been reported that MYCN has a role during embryonic development, it is needed its decrease so that differentiation can be completed. We aimed to better define the role of MYCN in the differentiation processes, particularly during the early stages. Considering the ability of MYCN to regulate non-coding RNAs, our hypothesis was that N-Myc protein might be necessary to activate differentiation (mimicking embryonic development events) by regulating miRNAs critical for this process. We show that MYCN expression increased in embryonic cortical neural precursor cells at an early stage after differentiation induction. To investigate our hypothesis, we used human neuroblastoma cell lines. In LAN-5 neuroblastoma cells, MYCN was upregulated after 2 days of differentiation induction before its expected downregulation. Positive modulation of various differentiation markers was associated with the increased MYCN expression. Similarly, MYCN silencing inhibited such differentiation, leading to negative modulation of various differentiation markers. Furthermore, MYCN gene overexpression in the poorly differentiating neuroblastoma cell line SK-N-AS restored the ability of such cells to differentiate. We identified three key miRNAs, which could regulate the onset of differentiation programme in the neuroblastoma cells in which we modulated MYCN. Interestingly, these effects were accompanied by changes in the apoptotic compartment evaluated both as expression of apoptosis-related genes and as fraction of apoptotic cells. Therefore, our idea is that MYCN is necessary during the activation of neuroblastoma differentiation to induce apoptosis in cells that are not committed to differentiate.  相似文献   

9.
10.
11.
Zfhep/deltaEF1 is essential for embryonic development. We have investigated the expression pattern of Zfhep protein during mouse embryogenesis. We show expression of Zfhep in the mesenchyme of the palatal shelves, establishing concordance of expression with the reported cleft palate of the deltaEF1-null mice. Zfhep protein is strongly expressed in proliferating progenitors of the nervous system. In most regions of the brain, post-mitotic cells stop expressing Zfhep when they migrate out of the ventricular zone (VZ) and differentiate. However, in the hindbrain, Zfhep protein is also highly expressed in post-mitotic migratory neuronal cells of the precerebellar extramural stream that arise from the neuroepithelium adjacent to the lower rhombic lip. Also, Zfhep is expressed as cells migrate from a narrow region of the pons VZ towards the trigeminal nucleus. Co-expression with Islet1 shows that Zfhep is expressed in motor neurons of the trigeminal nucleus of the pons, but not in the inferior olive motor neurons at E12.5. Therefore, Zfhep is strongly expressed in a tightly regulated pattern in proliferating neural stem cells and a subset of neurons. Zfhep protein is also strongly expressed in trigeminal ganglia, and is moderately expressed in other cranial ganglia. In vitro studies have implicated Zfhep as a repressor of myogenesis, however, we find that Zfhep protein expression increases during muscle differentiation.  相似文献   

12.
The amyloid-β precursor protein (AβPP) is a ubiquitously expressed adhesion and neuritogenic protein whose processing has previously been shown to be regulated by reproductive hormones including the gonadotropin luteinizing hormone (LH) in human neuroblastoma cells. We report for the first time the expression of AβPP in human embryonic stem (hES) cells at the mRNA and protein levels. Using N- and C-terminal antibodies against AβPP, we detected both the mature and immature forms of AβPP as well as truncated variants (∼53 kDa, 47 kDa, and 29 kDa) by immunoblot analyses. Expression of AβPP is regulated by both the stemness of the cells and pregnancy-associated hormones. Addition of human chorionic gonadotropin, the fetal equivalent of LH that is dramatically elevated during pregnancy, markedly increased the expression of all AβPP forms. These results indicate a critical molecular signaling link between the hormonal environment of pregnancy and the expression of AβPP in hES cells that is suggestive of an important function for this protein during early human embryogenesis prior to the formation of neural precursor cells.  相似文献   

13.
14.
15.
ABCG1 and ABCG4 are highly homologous members of the ATP binding cassette (ABC) transporter family that regulate cellular cholesterol homeostasis. In adult mice, ABCG1 is known to be expressed in numerous cell types and tissues, whereas ABCG4 expression is limited to the central nervous system (CNS). Here, we show significant differences in expression of these two transporters during development. Examination of β-galactosidase-stained tissue sections from Abcg1−/−LacZ and Abcg4−/−LacZ knockin mice shows that ABCG4 is highly but transiently expressed both in hematopoietic cells and in enterocytes during development. In contrast, ABCG1 is expressed in macrophages and in endothelial cells of both embryonic and adult liver. We also show that ABCG1 and ABCG4 are both expressed as early as E12.5 in the embryonic eye and developing CNS. Loss of both ABCG1 and ABCG4 results in accumulation in the retina and/or brain of oxysterols, in altered expression of liver X receptor and sterol-regulatory element binding protein-2 target genes, and in a stress response gene. Finally, behavioral tests show that Abcg4−/− mice have a general deficit in associative fear memory. Together, these data indicate that loss of ABCG1 and/or ABCG4 from the CNS results in changes in metabolic pathways and in behavior.  相似文献   

16.
S Ubol  D E Griffin 《Journal of virology》1991,65(12):6913-6921
Alphaviruses replicate in a wide variety of cells in vitro. The prototype alphavirus, Sindbis virus, causes an age-dependent encephalitis in mice and serves as an important model system for the study of alphavirus neurovirulence. To begin to understand the role of cellular virus receptors in the pathogenesis of Sindbis virus infection, we developed an anti-idiotypic antibody made in rabbits against a neutralizing monoclonal antibody specific for the E2 surface glycoprotein. The anti-idiotypic antibody (anti-Id 209) bound to N18 mouse neuroblastoma cells and inhibited adsorption of 35S-labeled virus by 50%. Binding of anti-Id 209 was inhibited by pretreatment of N18 cells with various proteases but not with neuraminidase or phospholipase, while virus binding was inhibited by pretreatment with phospholipase as well as protease. Anti-Id 209 precipitated proteins of 110 and 74 kDa from N18 cells intrinsically labeled with [35S]methionine. N18 cells grow with two phenotypes in culture, and immunoprecipitation of 125I-surface-labeled cells showed that the 74-kDa protein was present on loosely adherent cells growing in aggregates, while the 110-kDa protein was present in smaller amounts on firmly adherent cells growing as a monolayer. Analysis of brain cells from newborn mice by flow cytometry showed that all cells expressed the receptor protein at birth, but by 4 days after birth half of the cells had ceased receptor expression. A survey of other cell lines showed the protein to be present on murine fibroblastic and other rodent neuroblastoma cell lines but rarely on human neural or nonneural cell lines. These studies suggest that one of the receptors for Sindbis virus on mouse neural cells is a protein that is regulated during development of the nervous system. Developmental down-regulation of receptor protein expression may contribute to the age-dependent nature of susceptibility of mice to fatal alphavirus encephalitis.  相似文献   

17.
18.
Embryonic expression of nm23 during mouse organogenesis.   总被引:8,自引:0,他引:8  
  相似文献   

19.
Hulea L  Nepveu A 《Gene》2012,493(1):18-26
Oxidored nitro domain containing protein 1 (NOR1) is usually restrictively expressed in the brain and testis. Detection of altered NOR1 expression could help us to identify its functions in cell growth, differentiation, metabolism, or even carcinogenesis. In this study, NOR1 homologues were identified in multiple species through GenBank search. NOR1 is a novel protein conserved in multiple species. Mouse NOR1 shared high homology with human NOR1. Furthermore, NOR1 expression was analyzed in mouse tissues by using RT-PCR, Western blot, and immunohistochemistry. The data showed that NOR1 is broadly expressed in neurons of mouse brain and the expression profile changes during postnatal development of the mouse brain. Moreover, in non-nervous tissues, strong immunostaining for NOR1 protein was observed in the testis, epididymis and trachea. In addition, expression of human NOR1 protein in different normal and cancerous human tissues was analyzed via search of the human RNA and protein databases; the data showed that although most malignant cells weakly stained or were negative for NOR1 expression, the liver cancer cells displayed moderate to strong expression of NOR1. These data suggested that NOR1 might serve as a cancer/testis/brain antigen in cells, and that altered NOR1 expression in liver cancer may help us to elucidate the functions of NOR1 protein in liver carcinogenesis.  相似文献   

20.
Plasma glutathione peroxidase (pGPx) is an extracellular antioxidative selenoenzyme which has been detected in various adult tissues, but little is known about the expression and distribution of pGPx during embryogenesis. To investigate the expression patterns of pGPx during embryogenesis, we performed quantitative real-time PCR, in situ hybridization, Western blot, and immunohistochemistry analyses in whole embryos or each developing organ of mice on embryonic days (E)7.5–18.5. In whole embryos of E7.5–8.5, pGPx mRNA was more typically expressed in extra-embryonic tissues including ectoplacental cone, trophectoderm, and decidual cells than in embryos. However, after E9.5, pGPx mRNA and protein levels were increased in the embryos with differentiation and growth, but trended to gradually decrease in the extra-embryonic tissues until E18.5. In sectioned embryonic tissues on E13.5–18.5, pGPx mRNA and protein were mainly expressed in the developing nervous tissues, the sensory organs, and the epithelia of lung, skin, and intestine, the heart and artery, and the kidney. In particular, pGPx immunoreactivity was very strong in the developing liver. These results indicate that pGPx is spatio-temporally expressed in various embryonic organs as well as extra-embryonic tissues, suggesting that pGPx may function to protect the embryos against endogenous and exogenous reactive oxygen species during organogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号