首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Cycloastragenol (CAG), a bioactive triterpenoid sapogenin isolated from the Chinese herbal medicine Radix astragali, was reported to promote the phosphorylation of extracellular signal-regulated protein kinase (ERK). Here we investigated the effect of CAG on adipogenesis. The image-based Nile red staining analyses revealed that CAG dose dependently reduced cytoplasmic lipid droplet in 3T3-L1 adipocytes with the IC50 value of 13.0 μM. Meanwhile, cytotoxicity assay provided evidence that CAG was free of injury on HepG2 cells up to 60 μM. In addition, using calcium mobilization assay, we observed that CAG stimulated calcium influx in 3T3-L1 preadipocytes with a dose dependent trend, the EC50 value was determined as 21.9 μM. There were proofs that elevated intracellular calcium played a vital role in suppressing adipocyte differentiation. The current findings demonstrated that CAG was a potential therapeutic candidate for alleviating obesity and hyperlipidemia.  相似文献   

2.
This study examines the mechanisms underlying the anti-adipogenic effect of macrophage-secreted products. 3T3-L1 preadipocytes were induced to differentiate over 8 days in medium conditioned by murine J774 macrophages (MacCM). The inhibitory effect on lipid accumulation and expression of adipogenic markers was diminished when addition of MacCM was delayed to day 2 of differentiation. Clonal expansion, an early event required for 3T3-L1 adipogenesis, was reduced in the presence of MacCM (89%; n = 3; p < 0.001), and BrdU incorporation was impaired by 55% (n = 3; p < 0.01). Activation of ERK1/2 was not affected by MacCM, and neither was the expression of p27kip1, a cyclin-dependent kinase inhibitor. However, phosphorylation of the retinoblastoma protein (Rb), required for cell cycle progression, was impaired by MacCM (94% inhibition; n = 3; p < 0.01). Differentiation-dependent expression, nuclear localization, and DNA binding ability of C/EBPβ were not inhibited by MacCM. Alterations in cell cycle-associated proteins may be important with respect to the anti-adipogenic action of MacCM.  相似文献   

3.
4.
Progression of 3T3-L1 preadipocyte differentiation is divided into early (days 0–2, D0–D2), intermediate (days 2–4, D2–D4), and late stages (day 4 onwards, D4-). In this study, we investigated the effects of fucoxanthin, isolated from the edible brown seaweed Petalonia binghamiae, on adipogenesis during the three differentiation stages of 3T3-L1 preadipocytes. When fucoxanthin was applied during the early stage of differentiation (D0–D2), it promoted 3T3-L1 adipocyte differentiation, as evidenced by increased triglyceride accumulation. At the molecular level, fucoxanthin increased protein expression of peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), sterol regulatory element-binding protein 1c (SREBP1c), and aP2, and adiponectin mRNA expression, in a dose-dependent manner. However, it reduced the expression of PPARγ, C/EBPα, and SREBP1c during the intermediate (D2–D4) and late stages (D4–D7) of differentiation. It also inhibited the uptake of glucose in mature 3T3-L1 adipocytes by reducing the phosphorylation of insulin receptor substrate 1 (IRS-1). These results suggest that fucoxanthin exerts differing effects on 3T3-L1 cells of different differentiation stages and inhibits glucose uptake in mature adipocytes.  相似文献   

5.
This study examined the anti-obesity effect and mechanism of action of blueberry peel extracts (BPE) in 3T3-L1 cells and high-fat diet (HFD)-induced obese rats. The levels of lipid accumulation were measured, along with the changes in the expression of genes and proteins associated with adipocyte differentiation in 3T3-L1 cells. Evidenced by Oil-red O staining and triglyceride assay, BPE dose-dependently inhibited lipid accumulation at concentrations of 0, 50, and 200 µg/ml. BPE decreased the expression of the key adipocyte differentiation regulator C/EBPβ, as well as the C/EBPα and PPARγ genes, during the differentiation of preadipocytes into adipocytes. Moreover, BPE down-regulated adipocyte-specific genes such as aP2 and FAS compared with control adipocytes. The specific mechanism mediating the effects of BP revealed that insulin-stimulated phosphorylation of Akt was strongly decreased, and its downstream substrate, phospho-GSK3β, was downregulated by BPE treatment in 3T3-L1 cells. Together, these data indicated that BP exerted anti-adipogenic activity by inhibiting the expression of PPARγ and C/EBPβ and the Akt signaling pathway in 3T3-L1 adipocytes. Next, we investigated whether BP extracts attenuated HFD-induced obesity in rats. Oral administration of BPE reduced HFD-induced body weight gain significantly without affecting food intake. The epididymal or perirenal adipose tissue weights were lower in rats on an HFD plus BPE compared with the tissue weights of HFD-induced obese rats. Total cholesterol and triglyceride levels in the rats fed BPE were modestly reduced, and the HDL-cholesterol level was significantly increased in HFD plus BP-fed rats compared with those of HFD-fed rats. Taken together, these results demonstrated an inhibitory effect of BP on adipogenesis through the down-regulation of C/EBPβ, C/EBPα, and PPARγ and the reduction of the phospho-Akt adipogenic factor in 3T3-L1 cells. Moreover, BPE reduced body weight gain and inhibited fat accumulation in an HFD-induced animal model of obesity.  相似文献   

6.
AimsTo investigate the effect of vanillin, a dietary component, on adipocyte differentiation and the mechanism involved in the process using 3T3-L1 murine preadipocytes.Main methodsThe effect of vanillin on adipocyte differentiation was detected by Oil Red O analysis. The activation of extracellular signal regulated kinase 42/44 (ERK 42/44), Akt, expression of the key regulator of adipocyte differentiation peroxisome proliferators-activated receptor (PPARγ) and its target gene glucose transporter 4 (GLUT4) were detected by western blotting. Glucose uptake assay was used to determine the insulin sensitivity of adipocytes differentiated by vanillin treatment. To confirm the role of ERK 42/44 and Akt, Oil Red O analysis was performed with cells differentiated in the presence or absence of ERK inhibitor U0126 or Akt kinase 1/2 inhibitor.Key findingsVanillin induced adipocyte differentiation in 3T3-L1 cells in a dose dependent manner and also increased the expression levels of PPARγ and its target gene GLUT4. The adipocytes differentiated by vanillin exhibited insulin sensitivity as demonstrated by a significant increase in glucose uptake. Vanillin treatment activated the phosphorylation of ERK 42/44 during the initial phase of adipocyte differentiation but there was no significant change in the Akt phosphorylation status.SignificanceThe data show that vanillin induces adipocyte differentiation in 3T3-L1 cells by activating ERK42/44 and these adipocytes are insulin sensitive in nature.  相似文献   

7.
To explore mechanisms of diabetes-associated vascular endothelial cells (ECs) injury, human umbilical vein ECs were treated for 24 h with high glucose (HG; 26 mM), advanced glycation end-products (AGEs; 100 μg/ml) or their intermediate, glyoxal (GO: 50-5000 μM). HG and AGEs had no effects on ECs morphology and inflammatory states as measured by vascular cell adhesion molecule (VCAM)-1 and cyclooxygenase (COX)-2 expressions. GO (500 μM, 24 h) induced cytotoxic morphological changes and protein expression of COX-2 but not VCAM-1. GO (500 μM, 24 h) activated ERK but not JNK, p38 or NF-κB. However, ERK inhibitor PD98059 was ineffective to GO-induced COX-2. While EUK134, synthetic combined superoxide dismutase/catalase mimetic, had no effect on GO-mediated inflammation, sodium nitroprusside inhibited it. The present results indicate that glyoxal, a metabolite of glucose might be a more powerful inducer for vascular ECs inflammatory injury. Nitric oxide but not anti-oxidant is preventive against GO-mediated inflammatory injury.  相似文献   

8.
Li F  Yang H  Duan Y  Yin Y 《Cell biology international》2011,35(11):1141-1146
Myostatin is known as an inhibitor of muscle development, but its role in adipogenesis and lipid metabolism is still unclear, especially the underlying mechanisms. Here, we demonstrated that myostatin inhibited 3T3-L1 preadipocyte differentiation into adipocyte by suppressing C/EBPα (CCAAT/enhancer-binding protein α) and PPARγ (peroxisome-proliferator-activated receptor γ), also activated ERK1/2 (extracellular-signal-regulated kinase 1/2). Furthermore, myostatin enhanced the phosphorylation of HSL (hormone-sensitive lipase) and ACC (acetyl-CoA carboxylase) in fully differentiated adipocytes, as well as ERK1/2. Besides, we noted that myostatin markedly raised the levels of leptin and adiponectin release and mRNA expression during preadipocyte differentiation, but the levels were inhibited by myostatin treatments in fully differentiated adipocytes. These results suggested that myostatin suppressed 3T3-L1 preadipocyte differentiation and regulated lipid metabolism of mature adipocyte, in part, via activation of ERK1/2 signalling pathway.  相似文献   

9.
Stress hormone is known to play a vital role in lipolysis and adipogenesis in fat cells. The present study was carried out to evaluate the effect of epinephrine on adipogenesis in the 3T3-L1 cells. The investigation on adipogenesis was done in both mono and co-cultured 3T3-L1 cells. 3T3-L1 preadipocytes and C2C12 cells were grown independently on transwell plates and transferred to differentiation medium. Following differentiation, C2C12 cells transferred to 3T3-L1 plate and treated with medium containing 10 μg/ml of epinephrine. Adipogenic markers such as fatty acid binding protein 4, peroxisome proliferator activating receptor, CCAAT/enhancer-binding protein, adiponectin, lipoprotein lipase and fatty acid synthase mRNA expressions were evaluated in the 3T3-L1 cells. Epinephrine treatment reduced adipogenesis, evidenced by reducing adipogenic marker mRNA expression in the 3T3-L1 cells. In addition, glycerol accumulation and oil red-O staining supported the reduced rate of adipogenesis. Taking all together, it is concluded that the stress hormone, epinephrine reduces the rate of adipogenesis in the mono and co-cultured 3T3-L1 cells. In addition, the rate of adipogenesis is much reduced in the co-cultured 3T3-L1 cells compared monocultured 3T3-L1 cells.  相似文献   

10.
Fucoidan is a group of sulfated fucose-containing polysaccharides that derived from non-mammalian origin such as marine brown algae, the jelly coat from sea urchin eggs, and the sea cucumber body wall. However, potential biological activities against obesity from fucoidan were not reported in the literature. The objective of this study was to evaluate protective effect of fucoidan in 3T3-L1 adipocyte differentiation. Preadipocyte 3T3-L1 was treated with 100 and 200 μg/ml fucoidan during adipogenesis. Adipogenesis was determined through Oil Red O staining method and the expression of adipogenic genes aP2, ACC, and PPARγ. Adipogenesis of 3T3-L1 treated with 100 and 200 μg/ml fucoidan were significantly inhibited at 32.8% and 39.7% using Oil Red O staining method, respectively (P < 0.05). Treating the 3T3-L1 cells with 100 and 200 μg/ml fucoidan significantly decreased the expression of aP2 gene by 6.2% and 27.2%, respectively, of ACC gene by 22.2% and 38.2%, respectively, and of PPARγ gene by 44.2% and 69.4%, respectively, compared to adipocyte controls (P < 0.05). The results suggest that fucoidan could be used for inhibiting fat accumulation, which is mediated by decreasing aP2, ACC, and PPARγ gene expression.  相似文献   

11.
Kato Y  Ozaki N  Yamada T  Miura Y  Oiso Y 《Life sciences》2007,80(5):476-483
Among four kinds of protein kinase A (PKA) inhibitors tested, H-89 exhibited a unique action to remarkably enhance adipocyte differentiation of 3T3-L1 cells, whereas the other three PKA inhibitors, PKA inhibitor Fragment 14-22 (PKI), Rp-cAMP, and KT 5720, did not enhance adipocyte differentiation. H-85, which is an inactive form of H-89, exhibited a similar enhancing effect on adipocyte differentiation. H-89 also potentiated the phosphorylation of Akt and extracellular signal-regulated kinase (ERK) 1/2 in 3T3-L1 cells, which function as downstream signaling of insulin. Phosphoinositide 3-kinase (PI3K) inhibitor wortmannin and mitogen-activated protein kinase kinase (MEK) inhibitor PD 98059 suppressed both the H-89-induced promotion of adipocyte differentiation and the H-89-induced potentiation of phosphorylation of Akt and ERK1/2. Rho kinase inhibitor Y-27632 also promoted the phosphorylation of both Akt and ERK1/2 and enhanced adipocyte differentiation, although its effect was somewhat less than that of H-89. Even when cells were treated with a mixture of Y-27632 and H-89, the additive enhancing effects on both the insulin signaling and adipocyte differentiation were not detected. Therefore, it is suggested that the major possible mechanism whereby H-89 potentiates adipocyte differentiation of 3T3-L1 cells is activation of insulin signaling that is elicited mostly by inhibiting Rho/Rho kinase pathway.  相似文献   

12.
13.

Background

Turnover of mRNA is a critical step in the regulation of gene expression, and an important step in mRNA decay is removal of the 5′ cap. We previously demonstrated that the expression of some immediate early gene mRNAs is controlled by RNA stability during early differentiation of 3T3-L1 preadipocytes.

Methodology/Principal Findings

Here we show that the mouse decapping protein Dcp1a is phosphorylated via the ERK signaling pathway during early differentiation of preadipocytes. Mass spectrometry analysis and site-directed mutagenesis combined with a kinase assay identified ERK pathway–mediated dual phosphorylation at Ser 315 and Ser 319 of Dcp1a. To understand the functional effects of Dcp1a phosphorylation, we examined protein-protein interactions between Dcp1a and other decapping components with co-immunoprecipitation. Dcp1a interacted with Ddx6 and Edc3 through its proline-rich C-terminal extension, whereas the conserved EVH1 (enabled vasodilator-stimulated protein homology 1) domain in the N terminus of Dcp1a showed a stronger interaction with Dcp2. Once ERK signaling was activated, the interaction between Dcp1a and Ddx6, Edc3, or Edc4 was not affected by Dcp1a phosphorylation. Phosphorylated Dcp1a did, however, enhanced interaction with Dcp2. Protein complexes immunoprecipitated with the recombinant phosphomimetic Dcp1a(S315D/S319D) mutant contained more Dcp2 than did those immunoprecipitated with the nonphosphorylated Dcp1a(S315A/S319A) mutant. In addition, Dcp1a associated with AU-rich element (ARE)-containing mRNAs such as MAPK phosphatase-1 (MKP-1), whose mRNA stability was analyzed under the overexpression of Dcp1a constructs in the Dcp1a knockdown 3T3-L1 cells.

Conclusions/Significance

Our findings suggest that ERK-phosphorylated Dcp1a enhances its interaction with the decapping enzyme Dcp2 during early differentiation of 3T3-L1 cells.  相似文献   

14.
Glycogen synthase kinase 3β (GSK3β) is increased by high glucose in mesangial cells. Thus, we studied the role of GSK3β in advanced glycation end-product (AGE)-induced effects in the proximal tubule-like LLC-PK1 cells. We found that AGE (100 μg/ml) time-dependently (8-48 h) increased phospho-GSK3β-Tyr216 (active GSK3β) and time-dependently (4-24 h) decreased phospho-GSK3β-Ser21/9 (inactive GSK3β) protein expression. Meanwhile, AGE (100 μg/ml) activated GSK3β kinase at 8-48 h. AGE (100 μg/ml) dose-dependently (75-100 μg/ml) decreased β-catenin protein expression but AGE did not decrease β-catenin protein expression until 48 h. SB216763 (a GSK3β inhibitor) and GSK3β shRNA attenuated AGE (100 μg/ml)-inhibited cell proliferation and protein expression of β-catenin and cyclin D1 at 48 h. SB216763 also attenuated AGE-induced type IV collagen. We conclude that AGE activates GSK3β in LLC-PK1 cells. AGE-inhibited β-catenin and cyclin D1 protein expression are dependent on GSK3β. Moreover, AGE-inhibited cell proliferation and AGE-induced type IV collagen protein expression are dependent on GSK3β.  相似文献   

15.
Endothelin-1 (ET-1) is a potent vasoconstrictive peptide produced and secreted mainly by endothelial cells. Recent studies indicate that ET-1 can regulate lipid metabolism, which may increase the risk of insulin resistance. Our previous studies revealed that ET-1 induced lipolysis in adipocytes, but the underlying mechanisms were unclear. 3T3-L1 adipocytes were used to investigate the effect of ET-1 on lipolysis and the underlying mechanisms. Glycerol levels in the incubation medium and hormone-sensitive lipase (HSL) phosphorylation were used as indices for lipolysis. ET-1 significantly increased HSL phosphorylation and lipolysis, which were completely inhibited by ERK inhibitor (PD98059) and guanylyl cyclase (GC) inhibitor (LY83583). LY83583 reduced ET-1-induced ERK phosphorylation. A Ca2+-free medium and PLC inhibitor caused significant decreases in ET-1-induced lipolysis as well as ERK and HSL phosphorylation, and IP3 receptor activator (D-IP3) increased lipolysis. ET-1 increased cGMP production, which was not affected by depletion of extracellular Ca2+. On the other hand, LY83583 diminished the ET-1-induced Ca2+ influx. Transient receptor potential vanilloid-1 (TRPV-1) antagonist and shRNA partially inhibited ET-1-induced lipolysis. ET-1-induced lipolysis was completely suppressed by CaMKIII inhibitor (NH-125). These results indicate that ET-1 stimulates extracellular Ca2+ entry and activates the intracellular PLC/IP3/Ca2+ pathway through a cGMP-dependent pathway. The increased cytosolic Ca2+ that results from ET-1 treatment stimulates ERK and HSL phosphorylation, which subsequently induces lipolysis. ET-1 induces HSL phosphorylation and lipolysis via the GC/cGMP/Ca2+/ERK/CaMKIII signaling pathway in 3T3-L1 adipocytes.  相似文献   

16.
Alteration in dopamine neurotransmission has been reported to be involved in the mania of bipolar disorder. Tyrosine hydroxylase (TH) is the rate-limiting enzyme that is crucial for dopamine biosynthesis, and its activity is tightly regulated by phosphorylation at multiple N-terminal serine residues. Previously, we have reported that intracerebroventricular (ICV) injection of ouabain, a selective Na/K-ATPase inhibitor, induces hyperactivity in rats that mimics manic symptoms related to the activation of extracellular signal-regulated protein kinase1/2 (ERK1/2), which plays crucial roles in the modulation of TH phosphorylation. In this study, we investigated the effects of ICV injection of ouabain on TH phosphorylation in rat striatum and the involvement of ERK1/2 in ouabain-induced TH activation. ICV ouabain induced an acute dose-dependent increase in locomotor activity and in TH phosphorylation in rat striatum. TH phosphorylation at Ser19 was significantly increased with 100, 500, and 1000 μM ouabain, and phosphorylation at Ser31 and Ser40 was significantly increased with 500 and 1000 μM. We also found that ICV pretreatment with U0126, a specific MEK1/2 inhibitor, attenuated the 1000 μM ouabain-induced increase in TH phosphorylation at Ser19, Ser31, and Ser40, as well as the hyperactivity of rats. Moreover, the increased phosphorylation of TH (Ser19, Ser31, and Ser40) was maintained until 8 h after single administration ouabain was accompanied by increased phosphorylation of ERK1/2 (Thr202/Tyr204) and p90RSK (Thr359/Ser363). These findings imply that TH activation of the ERK1/2 signal pathway could play an important role in ouabain-induced hyperactivity of rats, a mania model.  相似文献   

17.
Guggulsterone (GS) and 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] have been shown to influence adipogenesis in 3T3-L1 cells. We investigated the ability of GS and 1,25(OH)2D3, alone and in combination to inhibit adipogenesis and induce apoptosis in 3T3-L1 adipocytes. Maturing preadipocytes were treated with 1,25(OH)2D3 in combination with GS for 6 days during differentiation. GS and 1,25(OH)2D3 each inhibited lipid accumulation, but the combination potentiated the inhibition of lipid accumulation. Apoptosis was increased by 1,25(OH)2D3 while GS had no effect, but GS + 1,25(OH)2D3 increased apoptosis more than either compound alone. Furthermore, GS + 1,25(OH)2D3 caused a potentiated decrease in the expression of aP2 and farnesoid X receptor expression more than either compound alone. In addition, 1,25(OH)2D3 increased vitamin D receptor expression after 6 days, while GS had no effect. GS + 1,25(OH)2D3, however, caused a potentiated increase in the expression of VDR. These findings show that GS potentiates 1,25(OH)2D3’s anti-adipogenic and pro-apoptotic effects in maturing 3T3-L1 preadipocytes.  相似文献   

18.
Caveolae have been implicated in sensing of cell volume perturbations, yet evidence is still limited and findings contradictory. Here, we investigated the possible role of caveolae in cell volume regulation and volume sensitive signaling in an adipocyte system with high (3T3-L1 adipocytes); intermediate (3T3-L1 pre-adipocytes); and low (cholesterol-depleted 3T3-L1 pre-adipocytes) caveolae levels. Using large-angle light scattering, we show that compared to pre-adipocytes, differentiated adipocytes exhibit several-fold increased rates of volume restoration following osmotic cell swelling (RVD) and osmotic cell shrinkage (RVI), accompanied by increased swelling-activated taurine efflux. However, caveolin-1 distribution was not detectably altered after osmotic swelling or shrinkage, and caveolae integrity, as studied by cholesterol depletion or expression of dominant negative Cav-1, was not required for either RVD or RVI in pre-adipocytes. The insulin receptor (InsR) localizes to caveolae and its expression dramatically increases upon adipocyte differentiation. In pre-adipocytes, InsR and its effectors focal adhesion kinase (FAK) and extracellular signal regulated kinase (ERK1/2) localized to focal adhesions and were activated by a 5 min exposure to insulin (100 nM). Osmotic shrinkage transiently inhibited InsR Y(146)-phosphorylation, followed by an increase at t=15 min; a similar pattern was seen for ERK1/2 and FAK, in a manner unaffected by cholesterol depletion. In contrast, cell swelling had no detectable effect on InsR, yet increased ERK1/2 phosphorylation. In conclusion, differentiated 3T3-L1 adipocytes exhibit greatly accelerated RVD and RVI responses and increased swelling-activated taurine efflux compared to pre-adipocytes. Furthermore, in pre-adipocytes, Cav-1/caveolae integrity is not required for volume regulation. Given the relationship between hyperosmotic stress and insulin signaling, the finding that cell volume regulation is dramatically altered upon adipocyte differentiation may be relevant for the understanding of insulin resistance and metabolic syndrome.  相似文献   

19.
Apamin is an integral part of bee venom, as a peptide component. It has long been known as a highly selective block Ca2+-activated K+ (SK) channels. However, the cellular mechanism and anti-fibrotic effect of apamin in TGF-β1-induced hepatocytes have not been explored. In the present study, we investigated the anti-fibrosis or anti-EMT mechanism by examining the effect of apamin on TGF-β1-induced hepatocytes. AML12 cells were seeded at ∼60% confluence in complete growth medium. Twenty-four hours later, the cells were changed to serum free medium containing the indicated concentrations of apamin. After 30 min, the cells were treated with 2 ng/ml of TGF-β1 and co-cultured for 48 h. Also, we investigated the effects of apamin on the CCl4-induced liver fibrosis animal model. Treatment of AML12 cells with 2 ng/ml of TGF-β1 resulted in loss of E-cadherin protein at the cell–cell junctions and concomitant increased expression of vimentin. In addition, phosphorylation levels of ERK1/2, Akt, Smad2/3 and Smad4 were increased by TGF-β1 stimulation. However, cells treated concurrently with TGF-β1 and apamin retained high levels of localized expression of E-cadherin and showed no increase in vimentin. Specifically, treatment with 2 μg/ml of apamin almost completely blocked the phosphorylation of ERK1/2, Akt, Smad2/3 and Smad4 in AML12 cells. In addition, apamin exhibited prevention of pathological changes in the CCl4-injected animal models. These results demonstrate the potential of apamin for the prevention of EMT progression induced by TGF-β1 in vitro and CCl4-injected in vivo.  相似文献   

20.
Mouse interferons beta (IFN-beta) and gamma (IFN-gamma) inhibit the differentiation of 3T3-L1 fibroblasts into adipocytes when added to cultures at the time of induction of differentiation. Differentiation, as measured by incorporation of radiolabeled leucine into lipids, was inhibited 50% by approximately 1-3 units/ml of either IFN-beta or IFN-gamma, with maximum inhibition of differentiation achieved with 100 units/ml of either IFN. The magnitude of antiviral activity induced by IFN-beta and IFN-gamma was similar in differentiated and undifferentiated 3T3-L1 cells, although the slopes of the dose-response curves were different; IFN-gamma induced an antiviral state with greater efficiency than IFN-beta in differentiated and undifferentiated 3T3-L1 cells. By contrast, IFN-beta induced the double-stranded RNA-dependent P1 protein kinase more efficiently than did IFN-gamma in both differentiated and undifferentiated cells. However, IFN-beta and IFN-gamma both induced greater phosphorylation of protein P1 in cell-free extracts prepared from differentiated adipocytes than in extracts from undifferentiated fibroblasts. Cultures treated with either beta or gamma IFN throughout 8 days of differentiation continued to produce double-stranded RNA-dependent protein kinase in a manner dependent on IFN dose. These results suggest that the antiviral and antidifferentiative activities of IFN-beta and IFN-gamma in 3T3-L1 cells involve different molecular mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号