首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously reported that the over-expression of KDX1 up-regulates RCK1 gene expression. To further understand the function of Rck1, microarray analysis was performed using a RCK1 over-expressing strain. Based on microarray and Northern blot analyses, we determined that the expression of KDX1 was down-regulated when RCK1 was over-expressed. Furthermore, we determined that phosphorylated forms of Slt2 and Mkk2 were down-regulated by the over-expression of RCK1. Ptp2, a phosphatase that is regulated by the Slt2 MAP kinase pathway, was down-regulated by the over-expression of RCK1. Ptp2 is a negative regulator of Hog1; thus, the phosphorylated form of Hog1 was up-regulated by RCK1 over-expression. A point mutation of lysine 152 to arginine resulted in a failure to up-regulate Hog1 and the subsequent down-regulation of CTT1, which is a Hog1 pathway target gene. Furthermore, using microarray and Northern blot analyses, we determined that genes that are regulated by Msn2/Msn4 were up-regulated by Rck1 and that this was the result of Hog1 activation by RCK1 over-expression. Together, our results suggest that Rck1 inhibits Slt2 MAP kinase pathway activity and then Ptp2, which subsequently activates Hog1.  相似文献   

2.
Monoterpene geraniol, a compound obtained from aromatic plants, has wide applications. In this study, geraniol was synthesized in Saccharomyces cerevisiae through the introduction of geraniol synthase. To increase geraniol production, the mevalonate pathway in S. cerevisiae was genetically manipulated to enhance the supply of geranyl diphosphate, a substrate used for the biosynthesis of geraniol. Identification and optimization of the key regulatory points in the mevalonate pathway in S. cerevisiae increased geraniol production to 36.04 mg L−1. The results obtained revealed that the IDI1-encoded isopentenyl diphosphate isomerase is a rate-limiting enzyme in the biosynthesis of geraniol in S. cerevisiae, and overexpression of MAF1, a negative regulator in tRNA biosynthesis, is another effective method to increase geraniol production in S. cerevisiae.  相似文献   

3.
We have previously identified Ser201 of Sic1, a yeast cyclin-dependent kinase inhibitor, as an in vitro target of protein kinase CK2. Here we present new evidence, by using specific anti-P-Ser201 antibodies and 2-D gel electrophoresis coupled to MALDI mass spectrometry analysis, that Sic1 is phosphorylated in vivo on Ser201 shortly after its de novo synthesis, during late anaphase in glucose-grown cells. This phosphorylation is also detected in Sic1 immunopurified from G1 cells. In agreement with these data we also show that the catalytic alpha' subunit of CK2, whose function is required for cell cycle progression, is detected in Sic1 immunopurified complexes, and that phosphorylation on Ser201 is reduced after CK2 inactivation at the non-permissive temperature in a cka1delta cka2(ts) yeast strain. These data strongly support the notion that CK2 phosphorylates Sic1 in vivo.  相似文献   

4.
A microplate screening method was used to assess anaerobic growth of 12 Saccharomyces cerevisiae strains in barley straw, spruce and wheat straw hydrolysate. The assay demonstrated significant differences in inhibitor tolerance among the strains. In addition, growth inhibition by the three hydrolysates differed so that wheat hydrolysate supported growth up to 70%, while barley hydrolysate only supported growth up to 50%, with dilute-acid spruce hydrolysate taking an intermediate position.  相似文献   

5.
6.
Efficient and rapid fermentation of all sugars present in cellulosic hydrolysates is essential for economic conversion of renewable biomass into fuels and chemicals. Xylose is one of the most abundant sugars in cellulosic biomass but it cannot be utilized by wild type Saccharomyces cerevisiae, which has been used for industrial ethanol production. Therefore, numerous technologies for strain development have been employed to engineer S. cerevisiae capable of fermenting xylose rapidly and efficiently. These include i) optimization of xylose-assimilating pathways, ii) perturbation of gene targets for reconfiguring yeast metabolism, and iii) simultaneous co-fermentation of xylose and cellobiose. In addition, the genetic and physiological background of host strains is an important determinant to construct efficient and rapid xylose-fermenting S. cerevisiae. Vibrant and persistent researches in this field for the last two decades not only led to the development of engineered S. cerevisiae strains ready for industrial fermentation of cellulosic hydrolysates, but also deepened our understanding of operational principles underlying yeast metabolism.  相似文献   

7.
Protein kinase CK2 is a heterotetramer composed of two catalytic and two regulatory subunits. In Saccharomyces cerevisiae the catalytic subunits (alpha and alpha') are encoded by the CKA1, CKA2 genes. cka1Deltacka2(ts) mutants arrest cell cycle in both G1 and G2/M at 37 degrees C. Hence, it has been proposed that CK2 plays an important role in cell-cycle progression and several cell-cycle proteins have been reported to be CK2 substrates. We have previously shown that Sic1, the inhibitor of Clb5-Cdc28 complexes required for the G1/S transition, is a physiologically relevant CK2 substrate. Here we show that CK2 inactivation up-regulates Sic1 level resulting in severe down-regulation of Clb5-Cdc28 kinase activity. Concurrent inactivation of Sic1 and CK2 leads to accumulation of cells with a post-synthetic DNA content and short/elongated spindles, typical of cells arrested in mitosis. These findings indicate that Sic1 plays a major role during G1 arrest of CK2-inactivated cells.  相似文献   

8.
Rhodnius prolixus is a blood-sucking bug whose saliva contains a family of nitric oxide-carrying proteins named nitrophorins (NPs). Saliva is injected into the host bloodstream during insect feeding. Nitric oxide is then released from NPs and will act on vascular smooth muscle, promoting vasodilation. Epithelial cells of salivary glands then undergo a massive synthesis of antihemostatics including NPs which produces saliva for the next blood meal. Here, we demonstrate the transient activation of a protein kinase in the salivary glands of R. prolixus after a blood meal. Biochemical, immunological, and pharmacological assays were used to identify this enzyme as protein kinase CK2. CK2 is activated after a blood meal and decreases to basal levels when salivary gland refilling is resumed. Inhibition of CK2 blocked [(35)S]methionine incorporation into newly synthesized salivary gland proteins in cultured tissue. Dissected salivary glands were then incubated with the heme fluorescent analog palladium (II) mesoporphyrin IX (Pd-MP) in the presence of a selective cell-permeable CK2 inhibitor, TBB (4,5,6,7-tetrabromobenzotriazole). NP synthesis was quantified based on fluorescence of the Pd-MP group bound to the NP heme pocket. TBB dramatically blocked NP synthesis. Altogether, these data are the first demonstration to show that antihemostatic synthesis in a blood-sucking arthropods is under protein phosphorylation control.  相似文献   

9.
Phosphoenolpyruvate (PEP) carboxykinases catalyse the reversible formation of oxaloacetate (OAA) and ATP (or GTP) from PEP, ADP (or GDP) and CO2. They are activated by Mn2+, a metal ion that coordinates to the protein through the ?-amino group of a lysine residue, the N?-2-imidazole of a histidine residue, and the carboxylate from an aspartic acid residue. Neutrality in the ?-amino group of Lys213 of Saccharomyces cerevisiae PEP carboxykinase is expected to be favoured by the vicinity of ionised Lys212. Glu272 and Glu284, located close to Lys212, should, in turn, electrostatically stabilise its positive charge and hence assist in keeping the ?-amino group of Lys213 in a neutral state. The mutations Glu272Gln, Glu284Gln, and Lys212Met increased the activation constant for Mn2+ in the main reaction of the enzyme up to seven-fold. The control mutation Lys213Gln increased this constant by ten-fold, as opposed to control mutation Lys212Arg, which did not affect the Mn2+ affinity of the enzyme. These observations indicate a role for Glu272, Glu284, and Lys212 in assisting Lys213 to properly bind Mn2+. In an unexpected result, the mutations Glu284Gln, Lys212Met and Lys213Gln changed the nucleotide-independent OAA decarboxylase activity of S. cerevisiae PEP carboxykinase into an ADP-requiring activity, implying an effect on the OAA binding characteristics of PEP carboxykinase.  相似文献   

10.
The aim of this study was to investigate the effects of an overactivation of the cAMP/protein kinase A signaling pathway on the energetic metabolism of growing yeast. By using a cAMP-permeant mutant strain, we show that the rise in intracellular cAMP activates both anabolic and catabolic pathways. Indeed, different physiological patterns were observed with respect to the growth condition: (i) When cells were grown with a limiting amount of lactate, cAMP addition markedly increased the growth rate, whereas it only slightly increased the mitochondrial and cellular protein content. In parallel, the respiratory rate increased and the growth yield, as assessed by direct microcalorimetry, was not significantly modified by cAMP. (ii) Under conditions where the growth rate was already optimal (high lactate concentration), exogenous cAMP led to a proliferation of well-coupled mitochondria within cells and to an accumulation of cellular and mitochondrial proteins. This phenomenon was associated with a rise in the respiratory activity, thus leading to a drop in the growth yield. (iii) Under conditions of catabolic repression (high glucose concentration), cAMP addition markedly increased the fermentation rate and decreased the growth yield. It is concluded that overactivation of the cAMP/PKA pathway leads to uncoupling between biomass synthesis and catabolism, under conditions where an optimal growth rate is sustained by either a fermentative or a respiratory metabolism.  相似文献   

11.
Na+/H+ antiporters, integral membrane proteins that exchange protons for alkali metal cations, play multiple roles in probably all living organisms (preventing cells from excessive amounts of alkali metal cations, regulating intracellular pH and cell volume). In this work, we studied the functionality of rat plasma membrane NHE1–3 exchangers upon their heterologous expression in alkali-metal-cation sensitive Saccharomyces cerevisiae, and searched for conditions that would increase their level in the plasma membrane and improve their functionality. Though three tested exchangers were partially localized to the plasma membrane (and two of them (NHE2 and NHE3) in an active form), the bulk of the synthesized proteins were arrested along the secretory pathway, mainly in the ER. To increase the level of exchangers in the yeast plasma membrane several approaches (truncation of C-terminal regulatory sequences, expression in mutant yeast strains, construction of rat/yeast protein chimeras, various growth conditions and chemical chaperones) were tested. The only increase in the amount of NHE exchangers in the plasma membrane was obtained upon expression in a strain with the npi1 mutation, which significantly lowers the level of Rsp5 ubiquitin ligase in cells. This mutation helped to stabilize proteins in the plasma membrane.  相似文献   

12.
The effect of aqueous extract from R. rosea root on lifespan and the activity of antioxidant enzymes in budding yeast Saccharomyces cerevisiae have been studied. The supplementation of the growth medium with R. rosea extract decreased survival of exponentially growing S. cerevisiae cells under H2O2-induced oxidative stress, but increased viability and reproduction success of yeast cells in stationary phase. The extract did not significantly affect catalase activity and decreased SOD activity in chronologically aged yeast population. These results suggest that R. rosea acts as a stressor for S. cerevisiae cells, what sensitizes yeast cells to oxidative stress at exponential phase, but induces adaptation in stationary phase cells demonstrating the positive effect on yeast survival without activation of major antioxidant enzymes.  相似文献   

13.
Trehalose and glycerol have been implicated as potential stress protectants that accumulate in yeasts during various stress conditions. We investigated the levels of glycerol and trehalose and the expression profiles of genes involved in their metabolism to determine their involvement in the response of Saccharomyces cerevisiae XQ1 to thermal, sorbitol and ethanol stresses. The results showed that the genes involved in the synthesis and degradation of trehalose and glycerol were stress induced, and that trehalose and glycerol were synthesized simultaneously during the initial stages (a sensitive response period) of diverse stress treatments. Trehalose accumulated markedly under heat treatment, but not under sorbitol or ethanol stress, whereas glycerol accumulated strikingly under sorbitol stress conditions. Interestingly, extracellular trehalose seemed to be involved in protecting cells from damage under unfavorable conditions. Moreover, our results suggest that the stress-activated futile ATP cycles of trehalose and glycerol turnover are of general importance during cellular stress adaptation.  相似文献   

14.
15.
Using S. cerevisiae as a eukaryotic cell model we have analyzed the involvement of both glutathione transferase isoforms, Gtt1 and Gtt2, in constitutive resistance and adaptive response to menadione, a quinone which can exert its toxicity as redox cycling and/or electrophiles. The detoxification properties, of these enzymes, have also been analyzed by the appearance of S-conjugates in the media. Direct exposure to menadione (20 mM/60 min) showed to be lethal for cells deficient on both Gtt1 and Gtt2 isoforms. However, after pre-treatment with a low menadione concentration, cells deficient in Gtt2 displayed reduced ability to acquire tolerance when compared with the control and the Gtt1 deficient strains. Analyzing the toxic effects of menadione we observed that the gtt2 mutant showed no reduction in lipid peroxidation levels. Moreover, measuring the levels of intracellular oxidation during menadione stress we have shown that the increase of this oxidative stress parameter was due to the capacity menadione possesses in generating reactive oxygen species (ROS) and that both GSH and Gtt2 isoform were required to enhance ROS production. Furthermore, the efflux of the menadione–GSH conjugate, which is related with detoxification of xenobiotic pathways, was not detected in the gtt2 mutant. Taken together, these results suggest that acquisition of tolerance against stress generated by menadione and the process of detoxification through S-conjugates are dependent upon Gtt2 activity. This assessment was corroborated by the increase of GTT2 expression, and not of GTT1, after menadione treatment.  相似文献   

16.
Nitrosative stress has various pathophysiological implications. We here present a detailed characterization on the effect of nitrosative stress in Saccharomyces cerevisiae wild-type (Y190) and its isogenic flavohemoglobin mutant (Δyhb1) strain grown in presence of non fermentable carbon source. On addition of sub-toxic dose of nitrosating agent both the strains showed microbiostatic effect. Cellular respiration was found to be significantly affected in both the strains in presence sodium nitroprusside. Although there was no alteration in mitochondrial permeability potential changes and reactive oxygen species production in both the strains but the cellular redox status is differentially regulated in Δyhb1 strain both in cytosol and in mitochondria indicating cellular glutathione is the major player in absence of flavohemoglobin. We also found important role(s) of various redox active enzymes like glutathione reductase and catalase in protection against nitrosative stress. This is the first report of its kind where the effect of nitrosative stress has been evaluated in S. cerevisiae cytosol as well as in mitochondria under respiratory proficient conditions.  相似文献   

17.
Trehalose-6-phosphate synthase (TPS) is one of the key subunits of the trehalose synthase complex, responsible for synthesis of trehalose in Saccharomyces cerevisiae. Different laboratories have tried to purify TPS, but have been unable to separate it from the complex. During the present study, active TPS has been isolated from the trehalose synthase complex as a free 59kDa protein. A 158 fold purification was achieved with over 84% recovery of active TPS. N-terminal sequence confirmed the 59kDa protein to be TPS. It was revealed to be a highly hydrophobic protein by amino acid analysis data. Activity of TPS was identified to be governed by association–dissociation of protein components. TPS activity of the isolated enzyme was highly unstable due to dissociation of the protein from the complex. Aggregation of active molecules was also seen to enhance as well as stabilize enzyme activity. This aggregation was concentration dependent and activity was seen to be enhanced by increasing the number of active molecules and fell with dilution. The association of the active complex was also found to be governed by ionic interactions.  相似文献   

18.
Aiming to focus the protective role of the sugar trehalose under oxidative conditions, two sets of Saccharomyces cerevisiae strains, having different profiles of trehalose synthesis, were used. Cells were treated either with a 10% trehalose solution or with a heat treatment (which leads to trehalose accumulation) and then exposed either to menadione (a source of superoxide) or to tert-butylhydroperoxide (TBOOH). According to our results, trehalose markedly increased viability upon exposure to menadione stress, which seems to be correlated with decrease in lipid peroxidation levels. The protective effect of trehalose against oxidative damage produced by menadione was especially efficient under SOD1 deficiency. On the other hand, this sugar does not seem to participate of the mechanism of acquisition of tolerance against TBOOH, since trehalose pretreatment (addition of external trehalose) was not capable of increase cell survival. Therefore, trehalose plays a role in protecting cells, especially membranes, from oxidative injuries. However, this mechanism of defense is dependent on the type of oxidative stress to which cells are submitted.  相似文献   

19.
Human TAS2 receptors (hTAS2Rs) perceive bitter tastants, but few studies have explored the structure-function relationships of these receptors. In this paper, we report our trials on the large-scale preparations of hTAS2Rs for structural analysis. Twenty-five hTAS2Rs were expressed using a GFP-fusion yeast system in which the constructs and the culture conditions (e.g., the signal sequence, incubation time and temperature after induction) were optimized by measuring GFP fluorescence. After optimization, five hTAS2Rs (hTAS2R7, hTAS2R8, hTAS2R16, hTAS2R41, and hTAS2R48) were expressed at levels greater than 1 mg protein/L of culture, which is a preferable level for purification and crystallization. Among these five bitter taste receptors, hTAS2R41 exhibited the highest detergent solubilization efficiency of 87.1% in n-dodecyl-β-d-maltopyranoside (DDM)/cholesteryl hemisuccinate (CHS). Fluorescence size-exclusion chromatography showed that hTAS2R41 exhibited monodispersity in DDM/CHS without aggregates, suggesting that hTAS2R41 is a good target for future crystallization trials.  相似文献   

20.
Giant protoplasts of Saccharomyces cerevisiae of 10-35 µm in diameter were generated by multi-cell electrofusion. Thereby two different preparation strategies were evaluated with a focus on size distribution and “patchability” of electrofused protoplasts. In general, parental protoplasts were suitable for electrofusion 1-12 h after isolation. The electrophysiological properties of electrofused giant protoplasts could be analyzed by the whole-cell patch clamp technique. The area-specific membrane capacitance (0.66 ± 0.07 µF/cm2) and conductance (23-44 µS/cm2) of giant protoplasts were consistent with the corresponding data for parental protoplasts. Measurements with fluorescein-filled patch pipettes allowed to exclude any internal compartmentalisation of giant protoplasts by plasma membranes, since uniform (diffusion-controlled) dye uptake was only observed in the whole-cell configuration, but not in the cell-attached formation. The homogeneous structure of giant protoplasts was further confirmed by the observation that no plasma membrane associated fluorescence was seen in the interior of giant cells after electrofusion of protoplasts expressing the light-activated cation channel Channelrhodopsin-2 (ChR2) linked to yellow fluorescent protein (YFP). Patch clamp analysis of the heterologously expressed ChR2-YFP showed typical blue light dependent, inwardly-directed currents for both electrofused giant and parental protoplasts. Most importantly, neither channel characteristics nor channel expression density was altered by electric field treatment. Summarising, multi-cell electrofusion increases considerably the absolute number of membrane proteins accessible in patch clamp experiments, thus presumably providing a convenient tool for the biophysical investigation of low-signal transporters and channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号