首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mitochondrial inner membrane contains different translocator systems for the import of presequence-carrying proteins and carrier proteins. The translocator assembly and maintenance protein 41 (Tam41/mitochondrial matrix protein 37) was identified as a new member of the mitochondrial protein translocator systems by its role in maintaining the integrity and activity of the presequence translocase of the inner membrane (TIM23 complex). Here we demonstrate that the assembly of proteins imported by the carrier translocase, TIM22 complex, is even more strongly affected by the lack of Tam41. Moreover, respiratory chain supercomplexes and the inner membrane potential are impaired by lack of Tam41. The phenotype of Tam41-deficient mitochondria thus resembles that of mitochondria lacking cardiolipin. Indeed, we found that Tam41 is required for the biosynthesis of the dimeric phospholipid cardiolipin. The pleiotropic effects of the translocator maintenance protein on preprotein import and respiratory chain can be attributed to its role in biosynthesis of mitochondrial cardiolipin.  相似文献   

2.
Summary The nuclear genome encoded yeast protein CBS2 is required for translational activation of mitochondrial cytochrome b RNA. Genetic studies have shown that the target sequence of the CBS2 protein is the 5 untranslated leader sequence of cytochrome b RNA. Here we report on the intracellular localization of CBS2. CBS2 protein, expressed in Escherichia coli and prepared from inclusion bodies, was used as an antigen to raise a polyclonal rabbit antiserum. Affinity-purified CBS2 antibodies detect a 45 kDa protein in mitochondrial lysates of wild-type cells, which is absent in a strain in which the CBS2 gene has been deleted. The protein is overexpressed in mitochondrial extracts of a transformant carrying the CBS2 gene on a high copy number plasmid, but undetectable in the post-mitochondrial supernatant. Intramitochondrial localization of CBS2 was verified by in vitro import of CBS2 protein that had been synthesized in a reticulocyte lysate programmed with CBS2 mRNA transcribed in vitro. Mitochondrial import of CBS2 is not accompanied by any detectable proteolytic processing.  相似文献   

3.
Newly synthesized mitochondrial proteins are imported into mitochondria with the aid of protein translocator complexes in the outer and inner mitochondrial membranes. We report the identification of yeast Tam41, a new member of mitochondrial protein translocator systems. Tam41 is a peripheral inner mitochondrial membrane protein facing the matrix. Disruption of the TAM41 gene led to temperature-sensitive growth of yeast cells and resulted in defects in protein import via the TIM23 translocator complex at elevated temperature both in vivo and in vitro. Although Tam41 is not a constituent of the TIM23 complex, depletion of Tam41 led to a decreased molecular size of the TIM23 complex and partial aggregation of Pam18 and -16. Import of Pam16 into mitochondria without Tam41 was retarded, and the imported Pam16 formed aggregates in vitro. These results suggest that Tam41 facilitates mitochondrial protein import by maintaining the functional integrity of the TIM23 protein translocator complex from the matrix side of the inner membrane.  相似文献   

4.
Summary The SCO1 gene of Saccharomyces cerevisiae encodes a 30 kDa protein which is specifically required for a post-translational step in the accumulation of subunits 1 and 2 of cytochrome c oxidase (COXI and COXII). Antibodies directed against a -Gal::SCO1 fusion protein detect SCO1 in the mitochondrial fraction of yeast cells. The SCO1 protein is an integral membrane protein as shown by its resistance to alkaline extraction and by its solubilization properties upon treatment with detergents. Based on the results obtained by isopycnic sucrose gradient centrifugation and by digitonin treatment of mitochondria, SCO1 is a component of the inner mitochondrial membrane. Membrane localization is mediated by a stretch of 17 hydrophobic amino acids in the amino-terminal region of the protein. A truncated SCO1 derivative lacking this segment, is no longer bound to the membrane and simultaneously loses its biological function. The observation that membrane localization of SCO1 is affected in mitochondria of a rho 0 strain, hints at the possible involvement of mitochondrially coded components in ensuring proper membrane insertion.  相似文献   

5.
Saccharomyces cerevisiae cells lacking Mne1 are deficient in intron splicing in the gene encoding the Cox1 subunit of cytochrome oxidase but contain wild-type levels of the bc(1) complex. Thus, Mne1 has no role in splicing of COB introns or expression of the COB gene. Northern experiments suggest that splicing of the COX1 aI5β intron is dependent on Mne1 in addition to the previously known Mrs1, Mss116, Pet54, and Suv3 factors. Processing of the aI5β intron is similarly impaired in mne1Δ and mrs1Δ cells and overexpression of Mrs1 partially restores the respiratory function of mne1Δ cells. Mrs1 is known to function in the initial transesterification reaction of splicing. Mne1 is a mitochondrial matrix protein loosely associated with the inner membrane and is found in a high mass ribonucleoprotein complex specifically associated with the COX1 mRNA even within an intronless strain. Mne1 does not appear to have a secondary function in COX1 processing or translation, because disruption of MNE1 in cells containing intronless mtDNA does not lead to a respiratory growth defect. Thus, the primary defect in mne1Δ cells is splicing of the aI5β intron in COX1.  相似文献   

6.
Homologous recombination is a conserved molecular process that has primarily evolved for the repair of double-stranded DNA breaks and stalled replication forks. However, the recombination machinery in mitochondria is poorly understood. Here, we show that the yeast mitochondrial nucleoid protein, Mgm101, is related to the Rad52-type recombination proteins that are widespread in organisms from bacteriophage to humans. Mgm101 is required for repeat-mediated recombination and suppression of mtDNA fragmentation in vivo. It preferentially binds to single-stranded DNA and catalyzes the annealing of ssDNA precomplexed with the mitochondrial ssDNA-binding protein, Rim1. Transmission electron microscopy showed that Mgm101 forms large oligomeric rings of ~14-fold symmetry and highly compressed helical filaments. Specific mutations affecting ring formation reduce protein stability in vitro. The data suggest that the ring structure may provide a scaffold for stabilization of Mgm101 by preventing the aggregation of the otherwise unstable monomeric conformation. Upon binding to ssDNA, Mgm101 is remobilized from the rings to form distinct nucleoprotein filaments. These studies reveal a recombination protein of likely bacteriophage origin in mitochondria and support the notion that recombination is indispensable for mtDNA integrity.  相似文献   

7.
  1. Download : Download high-res image (157KB)
  2. Download : Download full-size image
  相似文献   

8.
A mutation shown to cause resistance to chloramphenicol inSaccharomyces cerevisiae was mapped to the central loop in domain V of the yeast mitochondrial 21S rRNA. The mutant 21S rRNA has a base pair exchange from U2677 (corresponding to U2504 inEscherichia coli) to C2677, which significantly reduces rightward frameshifting at a UU UUU UCC A site in a + 1 U mutant. There is evidence to suggest that this reduction also applies to leftward frameshifting at the same site in a – 1 U mutant. The mutation did not increase the rate of misreading of a number of mitochondrial missense, nonsense or frameshift (of both signs) mutations, and did not adversely affect the synthesis of wild-type mitochondrial gene products. It is suggested here that ribosomes bearing either the C2677 mutation or its wild-type allele may behave identically during normal decoding and only differ at sites where a ribosomal stall, by permitting non-standard decoding, differentially affects the normal interaction of tRNAs with the chloramphenicol resistant domain V. Chloramphenicol-resistant mutations mapping at two other sites in domain V are described. These mutations had no effect on frameshifting.  相似文献   

9.
Cell polarity is induced and maintained by separation of the apical and basolateral domains through specialized cell-cell junctions. The Crumbs protein and its binding partners are involved in formation and stabilization of adherens junctions. In this study, we describe a novel component of the mammalian Crumbs complex, the FERM domain protein EPB41L5, which associates with the intracellular domains of all three Crumbs homologs through its FERM domain. Surprisingly, the same FERM domain is involved in binding to the HOOK domain of MPP5/PALS1, a previously identified interactor of Crumbs. Co-expression and co-localization studies suggested that in several epithelial derived tissues Epb4.1l5 interacts with at least one Crumbs homolog, and with Mpp5. Although at early embryonic stages Epb4.1l5 is found at the basolateral membrane compartment, in adult tissues it co-localizes at the apical domain with Crumbs proteins and Mpp5. Overexpression of Epb4.1l5 in polarized MDCK cells affects tightness of cell junctions and results in disorganization of the tight junction markers ZO-1 and PATJ. Our results emphasize the importance of a conserved Crumbs-MPP5-EPB41L5 polarity complex in mammals.  相似文献   

10.
Strains of Saccharomyces cerevisiae that express either the wild type or the amyotrophic lateral sclerosis-associated mutant human copper-zinc superoxide dismutase (SOD1) proteins A4V and G93A, respectively, in a yeast SOD1-deficient parent strain were used to investigate the hypothesis that expression of a mutant SOD1 protein causes deficient mitochondrial electron transport as a possible mechanism for disease induction. Mitochondria isolated from the wild type SOD1-expressing yeast were identical to mitochondria from the parent strain in heme content and activities of complexes II, III, and IV. Mitochondria isolated from the A4V-expressing yeast had decreased rates of electron transport in complexes II+III, III, and IV and corresponding decreases in hemes b, c-c1, and a-a3 content compared to mitochondria from wild type human SOD1-expressing yeast. Mitochondria isolated from G93A-expressing yeast had decreased rates of electron transport in complex IV and probably in complex II with a corresponding decrease in heme a-a3 content. These results suggest that mutant SOD1-expression causes defective electron transport complex assembly and that the yeast system will provide an excellent model for the study of the mechanism of mutant SOD1-induced mitochondrial electron transport defects.  相似文献   

11.
12.
13.
14.
The fungal preprotein translocase of the mitochondrial outer membrane (TOM complex) comprises import receptors Tom70, Tom20, and Tom22, import channel Tom40, and small Tom proteins Tom5, Tom6, and Tom7, which regulate TOM complex assembly. These components are conserved in mammals; unlike the other components, however, Tom5 and Tom6 remain unidentified in mammals. We immuno-isolated the TOM complex from HeLa cells expressing hTom22-FLAG and identified the human counterparts of Tom5 and Tom6, together with the other components including Tom7. These small Tom proteins are associated with Tom40 in the TOM complex. Knockdown of Tom7, but not Tom5 and Tom6, strongly compromised stability of the TOM complex. Conversely, knockdown of hTom40 decreased the level of all small Tom proteins. Matrix import of preprotein was affected by double knockdown of any combination of small Tom proteins. These results indicate that human small Tom proteins maintain the structural integrity of the TOM complex.  相似文献   

15.
Small molecule modulators of mitochondrial function have been attracted much attention in recent years due to their potential therapeutic applications for neurodegenerative diseases. The mitochondrial translocator protein (TSPO) is a promising target for such compounds, given its involvement in the formation of the mitochondrial permeability transition pore in response to mitochondrial stress. In this study, we performed a ligand-based pharmacophore design and virtual screening, and identified a potent hit compound, 7 (VH34) as a TSPO ligand. After validating its biological activity against amyloid-β (Aβ) induced mitochondrial dysfunction and in acute and transgenic Alzheimer’s disease (AD) model mice, we developed a library of analogs, and we found two most active compounds, 31 and 44, which restored the mitochondrial membrane potential, ATP production, and cell viability under Aβ-induced mitochondrial toxicity. These compounds recovered learning and memory function in acute AD model mice with improved pharmacokinetic properties.  相似文献   

16.
The antioxidative enzyme copper-zinc superoxide dismutase (Sod1) is an important cellular defence system against reactive oxygen species (ROS). While the majority of this enzyme is localized to the cytosol, about 1% of the cellular Sod1 is present in the intermembrane space (IMS) of mitochondria. These amounts of mitochondrial Sod1 are increased for certain Sod1 mutants that are linked to the neurodegenerative disease amyotrophic lateral sclerosis (ALS). To date, only little is known about the physiological function of mitochondrial Sod1. Here, we use the model system Saccharomyces cerevisiae to generate cells in which Sod1 is exclusively localized to the IMS. We find that IMS-localized Sod1 can functionally substitute wild type Sod1 and that it even exceeds the protective capacity of wild type Sod1 under conditions of mitochondrial ROS stress. Moreover, we demonstrate that upon expression in yeast cells the common ALS-linked mutant Sod1G93A becomes enriched in the mitochondrial fraction and provides an increased protection of cells from mitochondrial oxidative stress. Such an effect cannot be observed for the catalytically inactive mutant Sod1G85R. Our observations suggest that the targeting of Sod1 to the mitochondrial IMS provides an increased protection against respiration-derived ROS.  相似文献   

17.
The assembly of cytochrome c oxidase (COX) is essential for a functional mitochondrial respiratory chain, although the consequences of a loss of assembled COX at yeast stationary phase, an excellent model for terminally differentiated cells in humans, remain largely unexamined. In this study, we show that a wild-type respiratory competent yeast strain at stationary phase is characterized by a decreased oxidative capacity, as seen by a reduction in the amount of assembled COX and by a decrease in protein levels of several COX assembly factors. In contrast, loss of assembled COX results in the decreased abundance of many mitochondrial proteins at stationary phase, which is likely due to decreased membrane potential and changes in mitophagy. In addition to an altered mitochondrial proteome, COX assembly mutants display unexpected changes in markers of cellular oxidative stress at stationary phase. Our results suggest that mitochondria may not be a major source of reactive oxygen species at stationary phase in cells lacking an intact respiratory chain.  相似文献   

18.
Wurm CA  Jakobs S 《FEBS letters》2006,580(24):5628-5634
The mitochondrial inner membrane exhibits a complex topology. Its infolds, the cristae membranes, are contiguous with the inner boundary membrane (IBM), which runs parallel to the outer membrane. Using live cells co-expressing functional fluorescent fusion proteins, we report on the distribution of inner membrane proteins in budding yeast. To this end we introduce the enlarged mitochondria of Deltamdm10, Deltamdm31, Deltamdm32, and Deltammm1 cells as a versatile model system to study sub-mitochondrial protein localizations. Proteins of the F(1)F(0) ATP synthase and of the respiratory chain complexes III and IV were visualized in the cristae-containing interior of the mitochondria. In contrast, proteins of the TIM23 complex and of the presequence translocase-associated motor were strongly enriched at the IBM. The different protein distributions shown here demonstrate that the cristae membranes and the IBM are functionally distinct sub-compartments.  相似文献   

19.
20.
Mrp2 is a protein component of the small subunit of mitochondrial ribosomes in the yeast Saccharomyces cerevisiae. We have examined the expression of Mrp2 in yeast mutants lacking mitochondrial DNA and found that the steady-state level of Mrp2 is dramatically decreased relative to wild type. These data suggest that the accumulation of Mrp2 depends on the expression of one or more mitochondrial gene products. The mitochondrial genome of S. cerevisiae encodes two components of the small ribosomal subunit, 15S rRNA and the Var1 protein, both of which are necessary for the formation of mature 37S subunits. Several studies have shown that in the absence of Var1 incomplete subunits accumulate, which lack a limited number of ribosomal proteins. Here, we show that Mrp2 is one of the proteins absent from subunits lacking Var1, indicating that Var1 plays an important role in the incorporation of Mrp2 into mitochondrial ribosomal subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号