首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We have found that the hyperthermophilic archaeon Pyrobaculum calidifontis VA1 produced a thermostable esterase. We isolated and sequenced the esterase gene (estPc) from strain VA1. estPc consisted of 939 bp, corresponding to 313 amino acid residues with a molecular mass of 34,354 Da. As estPc showed significant identity (30%) to mammalian hormone-sensitive lipases (HSLs), esterase of P. calidifontis (Est) could be regarded as a new member of the HSL family. Activity levels of the enzyme were comparable or higher than those of previously reported enzymes not only at high temperature (6,410 U/mg at 90°C), but also at ambient temperature (1,050 U/mg at 30°C). The enzyme displayed extremely high thermostability and was also stable after incubation with various water-miscible organic solvents at a concentration of 80%. The enzyme also exhibited activity in the presence of organic solvents. Est of P. calidifontis showed higher hydrolytic activity towards esters with short to medium chains, with p-nitrophenyl caproate (C6) the best substrate among the p-nitrophenyl esters examined. As for the alcoholic moiety, the enzyme displayed esterase activity towards esters with both straight- and branched-chain alcohols. Most surprisingly, we found that this Est enzyme hydrolyzed the tertiary alcohol ester tert-butyl acetate, a feature very rare among previously reported lipolytic enzymes. The extreme stability against heat and organic solvents, along with its activity towards a tertiary alcohol ester, indicates a high potential for the Est of P. calidifontis in future applications.  相似文献   

2.
An esterase gene, est10, was identified from the genomic library of a deep-sea psychrotrophic bacterium Psychrobacter pacificensis. The esterase exhibited the optimal activity around 25 °C and pH 7.5, and maintained as high as 55.0 % of its maximum activity at 0 °C, indicating its cold adaptation. Est10 was fairly stable under room temperatures, retaining more than 80 % of its original activity after incubation at 40 °C for 2 h. The highest activity was observed against the short-chain substrate p-nitrophenyl butyrate (C4) among the tested p-nitrophenyl esters (C2–C16). It was slightly activated at a low concentration (1 mM) of Zn2+, Mg2+, Ba2+, Ca2+, Cu2+, Fe3+, urea and EDTA, but was inhibited by DTT and totally inactivated by PMSF. Interestingly, increased salinity considerably stimulated Est10 activity (up to 143.2 % of original activity at 2 M NaCl) and stability (up to 126.4 % after incubation with 5 M NaCl for 6.5 h), proving its salt tolerance. 0.05 and 0.1 % Tween 20, Tween 80, Triton X-100 and CHAPS increased the activity and stability of Est10 while SDS, CTAB had the opposite effect. Est10 was quite active after incubation with several 30 % organic solvents (methanol, DMSO, ethanediol) but exhibited little activity with 30 % isopropanol, ethanol, n-butanol and acetonitrile.  相似文献   

3.
Due to potential use for variety of biotechnological applications, genes encoding thermoalkalophilic esterase from three different Geobacillus strains isolated from thermal environmental samples in Balçova (Agamemnon) geothermal site were cloned and respective proteins were expressed in Escherichia coli (E.coli) and characterized in detail. Three esterases (Est1, Est2, Est3) were cloned directly by PCR amplification using consensus degenerate primers from genomic DNA of the strains Est1, Est2 and Est3 which were from mud, reinjection water and uncontrolled thermal leak, respectively. The genes contained an open reading frame (ORF) consisting of 741 bp for Est1 and Est2, which encoded 246 amino acids and ORF of Est3 was 729 bp encoded 242 amino acids. The esterase genes were expressed in E. coli and purified using His-Select HF nickel affinity gel. The molecular mass of the recombinant enzyme for each esterase was approximately 27.5 kDa. The three esterases showed high specific activity toward short chain p-NP esters. Recombinant Est1, Est2, Est3 have exhibited similar activity and the highest esterase activity of 1,100 U/mg with p-nitrophenyl acetate (pNPC2) as substrate was observed with Est1. All three esterase were most active around 65°C and pH 9.5–10.0. The effect of organic solvents, several metal ions, inhibitors and detergents on enzyme activity for purified Est1, Est2, Est3 were determined separately and compared.  相似文献   

4.
Jiang X  Xu X  Huo Y  Wu Y  Zhu X  Zhang X  Wu M 《Archives of microbiology》2012,194(3):207-214
A deep-sea sediment metagenomic library was constructed and screened for lipolytic enzymes by activity-based approach. Nine novel lipolytic enzymes were identified, and the amino acid sequences shared 56% to 84% identity to other lipolytic enzymes in the database. Phylogenetic analysis showed that these enzymes belonged to family IV lipolytic enzymes. One of the lipolytic enzymes, Est6, was successfully cloned and expressed in Escherichia coli Rosetta in a soluble form. The recombinant protein was purified by Ni-nitrilotriacetic affinity chromatography column and characterized using p-nitrophenyl esters with various chain lengths. The est6 gene consisted of 909 bp that encoded 302 amino acid residues. Est6 was most similar to a lipolytic enzyme from uncultured bacterium (ACL67845, 61% identity) isolated from the South China Sea marine sediment metagenome. The characterization of Est6 revealed that it was a cold-active esterase and exhibited the highest activity toward p-nitrophenyl butyrate (C4) at 20°C and pH 7.5.  相似文献   

5.
With the aim of isolating a biocatalyst able to catalyze biodiesel production from microbial source, Ralstonia sp. CS274 was isolated and a lipase from the strain (RL74) was purified. Molecular weight of RL74 was estimated to be 28,000 Da by SDS-PAGE. The activity was highest at 50-55 °C and pH 8.0-9.5 and was stable at pH 7.0-12.0 and up to 45 °C. It was resistant to oxidizing and reducing agents and the activity was enhanced by detergents. RL74 was 1,3 specific and Km and Vmax for p-nitrophenyl palmitate were 2.73 ± 0.6 mM and 101.4 ± 1.9 mM/min mg, respectively. N-terminal amino acid sequence showed partial homology with that of Penicillium lipases. RL74 produced biodiesel more efficiently in palm oil than in soybean oil; and the production was highest at pH 8.0, at 5% methanol and at 20% water content.  相似文献   

6.
A glucose-tolerant β-glucosidase was purified to homogeneity from prune (Prunus domestica) seeds by successive ammonium sulfate precipitation, hydrophobic interaction chromatography and anion-exchange chromatography. The molecular mass of the enzyme was estimated to be 61 kDa by SDS-PAGE and 54 kDa by gel permeation chromatography. The enzyme has a pI of 5.0 by isoelectric focusing and an optimum activity at pH 5.5 and 55 °C. It is stable at temperatures up to 45 °C and in a broad pH range. Its activity was completely inhibited by 5 mM of Ag+ and Hg2+. The enzyme hydrolyzed both p-nitrophenyl β-d-glucopyranoside with a Km of 3.09 mM and a Vmax of 122.1 μmol/min mg and p-nitrophenyl β-d-fucopyranoside with a Km of 1.65 mM and a Vmax of 217.6 μmol/min mg, while cellobiose was not a substrate. Glucono-δ-lactone and glucose competitively inhibited the enzyme with Ki values of 0.033 and 468 mM, respectively.  相似文献   

7.
A new gene encoding an esterase (designated as EstEP16) was identified from a metagenomic library prepared from a sediment sample collected from a deep-sea hydrothermal field in east Pacific. The open reading frame of this gene encoded 249 amino acid residues. It was cloned, overexpressed in Escherichia coli, and the recombinant protein was purified to homogeneity. The monomeric EstEP16 presented a molecular mass of 51.7 kDa. Enzyme assays using p-nitrophenyl esters with different acyl chain lengths as the substrates confirmed its esterase activity, yielding highest specific activity with p-nitrophenyl acetate. When p-nitrophenyl butyrate was used as a substrate, recombinant EstEP16 exhibited highest activity at pH 8.0 and 60 °C. The recombinant enzyme retained about 80% residual activity after incubation at 90 °C for 6 h, which indicated that EstEP16 was thermostable. Homology modeling of EstEP16 was developed with the monoacylglycerol lipase from Bacillus sp. H-257 as a template. The structure showed an α/β-hydrolase fold and indicated the presence of a typical catalytic triad. The activity of EstEP16 was inhibited by addition of phenylmethylsulfonyl fluoride, indicating that it contains serine residue, which plays a key role in the catalytic mechanism.  相似文献   

8.
An endo-(1→3)-β-d-glucanase (L0) with molecular mass of 37 kDa was purified to homogeneity from the crystalline style of the scallop Chlamys albidus. The endo-(1→3)-β-d-glucanase was extremely thermolabile with a half-life of 10 min at 37 °C. L0 hydrolyzed laminaran with Km ∼ 0.75 mg/mL, and catalyzed effectively transglycosylation reactions with laminaran as donor and p-nitrophenyl β d-glucoside as acceptor (Km ∼ 2 mg/mL for laminaran) and laminaran as donor and as acceptor (Km ∼ 5 mg/mL) yielding p-nitrophenyl β d-glucooligosaccharides (n = 2-6) and high-molecular branching (1→3),(1→6)-β-d-glucans, respectively. Efficiency of hydrolysis and transglycosylation processes depended on the substrate structure and decreased appreciably with the increase of the percentage of β-(1→6)-glycosidic bonds, and laminaran with 10% of β-(1→6)-glycosidic bonds was the optimal substrate for both reactions. The CD spectrum of L0 was characteristic for a protein with prevailing β secondary-structural elements. Binding L0 with d-glucose as the best acceptor for transglycosylation was investigated by the methods of intrinsic tryptophan fluorescence and CD. Glucose in concentration sufficient to saturate the enzyme binding sites resulted in a red shift in the maximum of fluorescence emission of 1-1.5 nm and quenching the Trp fluorescence up to 50%. An apparent association constant of L0 with glucose (Ka = 7.4 × 105 ± 1.1 × 105 M−1) and stoichiometry (n = 13.3 ± 0.7) was calculated. The cDNA encoding L0 was sequenced, and the enzyme was classified in glycoside hydrolases family 16 on the basis of the amino acid sequence similarity.  相似文献   

9.
A novel nonheme chloroperoxidase (RhEst1), with promiscuous esterase activity for enantioselective hydrolysis of ethyl (S)-2,2-dimethylcyclopropanecarboxylate, was identified from a shotgun library of Rhodococcus sp. strain ECU1013. RhEst1 was overexpressed in Escherichia coli BL21(DE3), purified to homogeneity, and functionally characterized. Fingerprinting analysis revealed that RhEst1 prefers para-nitrophenyl (pNP) esters of short-chain acyl groups. pNP esters with a cyclic acyl moiety, especially that with a cyclobutanyl group, were also substrates for RhEst1. The Km values for methyl 2,2-dimethylcyclopropanecarboxylate (DmCpCm) and ethyl 2,2-dimethylcyclopropane carboxylate (DmCpCe) were 0.25 and 0.43 mM, respectively. RhEst1 could serve as an efficient hydrolase for the bioproduction of optically pure (S)-2,2-dimethyl cyclopropane carboxylic acid (DmCpCa), which is an important chiral building block for cilastatin. As much as 0.5 M DmCpCe was enantioselectively hydrolyzed into (S)-DmCpCa, with a molar yield of 47.8% and an enantiomeric excess (ee) of 97.5%, indicating an extremely high enantioselectivity (E = 240) of this novel and unique biocatalyst for green manufacturing of highly valuable chiral chemicals.  相似文献   

10.
A genomic library of Bacillus coagulans strain 81-11 was screened in Escherichia coli JM83 for lipolytic activity by using tributyrin agar plates. A 2.4 kb DNA fragment was subcloned from a lipolytic-positive clone and completely sequenced. Nucleotide sequence analysis predicted a 723 bp open reading frame (ORF), designated estC1, encoding a protein of 240 amino acids with an estimated molecular mass of 27 528 Da and a pI of 9.15. The deduced amino acid sequence of the estC1 gene exhibited significant amino acid sequence identity with carboxylesterases from thermophilic Geobacillus spp. and sequence analysis showed that the protein contains the signature G-X-S-X-G included in most esterases and lipases. Enzyme assays using p-nitrophenyl (p-NP) esters with different acyl chain lengths as the substrate confirmed the esterase activity. EstC1 exhibited a marked preference for esters of short-chain fatty acids, yielding the highest activity with p-NP butyrate. Maximum activity was found at pH 8 and 50°C, although the enzyme displayed stability at temperatures up to 60°C.  相似文献   

11.

Objectives

To investigate the properties of a novel metagenome-derived member of the hormone-sensitive lipase family of lipolytic enzymes.

Results

A forest soil metagenome-derived gene encoding an esterase (Est06) belonging to the hormone-sensitive lipase family of lipolytic enzymes was subcloned, heterologously expressed and characterized. Est06 is a polypeptide of 295 amino acids with a molecular mass of 31 kDa. The deduced protein sequence shares 61% similarity with a hypothetical protein from the marine symbiont Candidatus Entotheonella sp. TSY1. Purified Est06 exhibited high affinity for acyl esters with short-chain fatty acids, and showed optimum activity with p-nitrophenyl valerate (C5). Maximum enzymatic activity was at 50 °C and pH 7. Est06 exhibited high stability at moderate temperatures by retaining all of its catalytic activity below 30 °C over 13 days. Additionally, Est06 displayed high stability between pH 5 and 9. Esterase activity was not inhibited by metal ions or detergents, although organic solvents decreased activity.

Conclusions

The combination of Est06 properties place it among novel biocatalysts that have potential for industrial use including low temperature applications.
  相似文献   

12.
Three new lipolytic genes were isolated from a forest soil metagenomic library by functional screening on tributyrin agar plates. The genes SBLip1, SBLip2 and SBLip5.1 respectively encode polypeptides of 445, 346 and 316 amino acids. Phylogenetic analyses revealed that SBLip2 and SBLip5.1 belong to bacterial esterase/lipase family IV, whereas SBLip1 shows similarity to class C β-lactamases and is thus related to esterase family VIII. The corresponding genes were overexpressed and their products purified by affinity chromatography for characterization. Analyses of substrate specificity with different p-nitrophenyl esters showed that all three enzymes have a preference for short-acyl-chain p-nitrophenyl esters, a feature of carboxylesterases as opposed to lipases. The β-lactamase activity of SBLip1, measured with the chromogenic substrate nitrocefin, was very low. The three esterases have the same optimal pH (pH 10) and remain active across a relatively broad pH range, displaying more than 60 % activity between pH 6 and 10. The temperature optima determined were 35 °C for SBLip1, 45 °C for SBLip2 and 50 °C for SBLip5.1. The three esterases displayed different levels of tolerance to salts, solvents and detergents, SBLip2 being overall more tolerant to high concentrations of solvent and SBLip5.1 less affected by detergents.  相似文献   

13.
A novel esterase gene was isolated by functional screening of a metagenomic library prepared from an activated sludge sample. The gene (est-XG2) consists of 1,506 bp with GC content of 74.8 %, and encodes a protein of 501 amino acids with a molecular mass of 53 kDa. Sequence alignment revealed that Est-XG2 shows a maximum amino acid identity (47 %) with the carboxylesterase from Thermaerobacter marianensis DSM 12885 (YP_004101478). The catalytic triad of Est-XG2 was predicted to be Ser192-Glu313-His412 with Ser192 in a conserved pentapeptide (GXSXG), and further confirmed by site-directed mutagenesis. Phylogenetic analysis suggested Est-XG2 belongs to the bacterial lipase/esterase family VII. The recombinant Est-XG2, expressed and purified from Escherichia coli, preferred to hydrolyze short and medium length p-nitrophenyl esters with the best substrate being p-nitrophenyl acetate (K m and k cat of 0.33 mM and 36.21 s?1, respectively). The purified enzyme also had the ability to cleave sterically hindered esters of tertiary alcohols. Biochemical characterization of Est-XG2 revealed that it is a thermophilic esterase that exhibits optimum activity at pH 8.5 and 70 °C. Est-XG2 had moderate tolerance to organic solvents and surfactants. The unique properties of Est-XG2, high thermostability and stability in the presence of organic solvents, may render it a potential candidate for industrial applications.  相似文献   

14.
Lipase from Candida rugosa (CRL) was encapsulated within a chemically inert sol-gel support in the presence of calix(aza)crowns as the new additives. The catalytic activity of the encapsulated lipases was evaluated both in the hydrolysis of p-nitrophenyl palmitate (p-NPP) and the enantioselective hydrolysis of racemic Naproxen methyl ester. It has been observed that the percent activity yields of the calix(aza)crown based encapsulated lipases were higher than that of the free lipase. Improved enantioselectivity was observed with the calix(aza)crown-based encapsulated lipases as compared to encapsulated free lipase. The reaction of Naproxen methyl ester resulted in 48.4% conversion for 24 h and 98% enantiomeric excess for the S-acid, corresponding to an E value of >300 (= 166 for the encapsulated free enzyme). Moreover, the encapsulated lipases were still retained about 18% of their conversion ratios after the sixth reuse in the enantioselective reaction.  相似文献   

15.
A novel cold-adapted lipolytic enzyme gene, est97, was identified from a high Arctic intertidal zone sediment metagenomic library. The deduced amino acid sequence of Est97 showed low similarity with other lipolytic enzymes, the maximum being 30 % identity with a putative lipase from Vibrio caribbenthicus. Common features of lipolytic enzymes, such as the GXSXG sequence motif, were detected. The gene product was over-expressed in Escherichia coli and purified. The recombinant Est97 (rEst97) hydrolysed various ρ-nitrophenyl esters with the best substrate being ρ-nitrophenyl hexanoate (K m and k cat of 39 μM and 25.8 s?1, respectively). This esterase activity of rEst97 was optimal at 35 °C and pH 7.5 and the enzyme was unstable at temperatures above 25 °C. The apparent melting temperature, as determined by differential scanning calorimetry was 39 °C, substantiating Est97 as a cold-adapted esterase. The crystal structure of rEst97 was determined by the single wavelength anomalous dispersion method to 1.6 Å resolution. The protein was found to have a typical α/β-hydrolase fold with Ser144-His226-Asp197 as the catalytic triad. A suggested, relatively short lid domain of rEst97 is composed of residues 80–114, which form an α-helix and a disordered loop. The cold adaptation features seem primarily related to a high number of methionine and glycine residues and flexible loops in the high-resolution structures.  相似文献   

16.
The Streptomyces coelicolor A3(2) gene SCI11.14c was overexpressed and purified as a His-tagged protein from heterologous host, Streptomyces lividans. The purification procedure resulted in 34.1-fold increase in specific activity with an overall yield of 21.4%. Biochemical and physical properties of the purified enzyme were investigated and it was shown that it possesses (aryl)esterase and a true lipase activity. The enzyme was able to hydrolyze p-nitrophenyl-, α- and β-naphthyl esters and poly(oxyethylene) sorbitan monoesters (Tween 20–80). It showed pronounced activity towards p-nitrophenyl and α- and β-naphthyl esters of C12–C16. Higher activity was observed with α-naphthyl esters. The enzyme hydrolyzed triolein (specific activity: 91.9 U/mg) and a wide range of oils with a preference for those having higher content of linoleic or oleic acid (C18:2; C18:1, cis). The active-site serine specific inhibitor 3,4-dichloroisocoumarin (DCI) strongly inhibited the enzyme, while tetrahydrofurane and 1,4-dioxane significantly increased (2- and 4- fold, respectively) hydrolytic activity of lipase towards p-nitrophenyl caprylate. The enzyme exhibited relatively high temperature optimum (55 °C) and thermal stability. CD analysis revealed predominance of α-helical structure (54% α-helix, 21% β-sheet) and a Tm value at 66 °C.  相似文献   

17.
A gene (axe) encoding the AXE thermostable esterase in Thermobifida fusca NTU22 was cloned into a Yarrowia lipolytica P01g host strain. Recombinant expression resulted in extracellular esterase production at levels as high as 70.94 U/ml in Hinton flask culture broth, approximately 140 times higher than observed in a Pichia pastoris expression system. After 72 h of fermentation by the Y. lipolytica transformant in the fed-batch fermentor, the fermentation broth accumulated 41.11 U/ml esterase activity. Rice bran, wheat bran, bagasse and corncob were used as hydrolysis substrates for the esterase, with corncob giving the best ferulic acid yield. The corncob was incubated with T. fusca xylanase (Tfx) for 12 h and then with the AXE esterase for an additional 12 h. Ferulic acid accumulated to 396 μM in the culture broth, a higher concentration than with esterase alone or with Tfx and esterase together for 24 h.  相似文献   

18.
Duan C  Luo M  Xing X 《Bioresource technology》2011,102(15):7349-7353
Methanol was produced from methane with a high conversion rate using a high cell density process with Methylosinus trichosporium OB3b in the presence of a high concentration of phosphate buffer. More than 1.1 g/L methanol accumulated in the reaction media under optimized reaction conditions (17 g dry cell/L, 400 mmol/L phosphate, and 10 mmol/L MgCl2) in the presence of 20 mmol/L sodium formate. The conversion rate of methane was over 60%. About 0.95 g/L methanol was produced when the biotransformation was carried out in a membrane aerated reactor into which methane and oxygen were introduced via two separate dense silicone tubing. Our results provide an efficient method and a promising process for high-rate conversion of methane to methanol.  相似文献   

19.
The genes encoding six novel esterolytic/lipolytic enzymes, termed LC‐Est1~6, were isolated from a fosmid library of a leaf‐branch compost metagenome by functional screening using tributyrin agar plates. These enzymes greatly vary in size and amino acid sequence. The highest identity between the amino acid sequence of each enzyme and that available from the database varies from 44 to 73%. Of these metagenome‐derived enzymes, LC‐Est1 is characterized by the presence of a long N‐terminal extension (LNTE, residues 26–283) between a putative signal peptide (residues 1–25) and a C‐terminal esterase domain (residues 284–510). A putative esterase from Candidatus Solibacter usitatus (CSu‐Est) is the only protein, which shows the significant amino acid sequence identity (46%) to the entire region of LC‐Est1. To examine whether LC‐Est1 exhibits activity and its LNTE is important for activity and stability of the esterase domain, LC‐Est1 (residues 26–510), LC‐Est1C (residues 284–510), and LC‐Est1C* (residues 304–510) were overproduced in E. coli, purified, and characterized. LC‐Est1C* was only used for structural analysis. The crystal structure of LC‐Est1C* highly resembles that of the catalytic domain of Thermotoga maritima esterase, suggesting that LNTE is not required for folding of the esterase domain. The enzymatic activity of LC‐Est1C was lower than that of LC‐Est1 by 60%, although its substrate specificity was similar to that of LC‐Est1. LC‐Est1C was less stable than LC‐Est1 by 3.3°C. These results suggest that LNTE of LC‐Est1 rather exists as an independent domain but is required for maximal activity and stability of the esterase domain.  相似文献   

20.
Streptococcus mutans (S. mutans) uses a quorum sensing (QS) signaling system, which is dependent on competence stimulating peptide (CSP), to regulate diverse physiological activities including bacteriocin production, genetic transformation, and biofilm formation. However, the mechanism of the QS system-induced biofilm formation remains unclear. Here, we demonstrated that the late-stage biofilm formation was increased by the addition of exogenous CSP in S. mutans. The numbers of dead cells in biofilms formed in presence of CSP was 64.5% higher than that without CSP after 12 h (p < 0.05) and 76.3% higher after 24 h (p < 0.05), the numbers of live cells in biofilms formed in presence of CSP were 89.3% higher than that without CSP after 24 h (p < 0.01). The expression of QS-associated genes was increased 3.4-5.3-fold by CSP in biofilms. Our results revealed that cell viability of S. mutans grown in biofilms is affected by the CSP-dependent QS system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号