首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.

Background

Angiogenesis, the formation of new blood vessels, has become an important target in cancer therapy. Angiogenesis plays an important role in tumor growth and metastasis. Koetjapic acid (KA) is a seco-A-ring oleanene triterpene isolated from S. koetjape. The solvent extract of this plant species was shown previously to have strong antiangiogenic activity; however the active ingredient(s) that conferred the biological activity and the mode of action was not established. Given the high concentration of KA in S. koetjape, an attempt has been made in this study to investigate the antiangiogenic properties of KA.

Results

Treatment with 10-50 μg/ml KA resulted in dose dependent inhibition of new blood vessels growth in ex vivo rat aortic ring assay. KA was found to be non-cytotoxic against HUVECs with IC50 40.97 ± 0.37 μg/ml. KA inhibited major angiogenesis process steps, endothelial cell migration and differentiation as well as VEGF expression.

Conclusions

The non-cytotoxic compound, KA, may be a potent antiangiogenic agent; its activity may be attributed to inhibition of endothelial cells migration and differentiation as well VEGF suppression.  相似文献   

2.
The quinazoline-derived alpha1-adrenoceptor antagonists, doxazosin and terazosin have been recently shown to induce an anoikis effect in human prostate cancer cells and to suppress prostate tumor vascularity in clinical specimens [Keledjian and Kyprianou, 2003]. This study sought to examine the ability of doxazosin to affect the growth of human vascular endothelial cells and to modulate vascular endothelial growth factor (VEGF)-mediated angiogenesis. Human umbilical vein endothelial cells (HUVECs) were used as an in vitro model to determine the effect of doxazosin on cell growth, apoptosis, adhesion, migration, and angiogenic response of endothelial cells. The effect of doxazosin on cell viability and apoptosis induction of human endothelial cells, was evaluated on the basis of trypan blue and Hoechst 33342 staining, respectively. Doxazosin antagonized the VEGF-mediated angiogenic response of HUVEC cells, by abrogating cell adhesion to fibronectin and collagen-coated surfaces and inhibiting cell migration, via a potential downregulation of VEGF expression. Furthermore there was a significant suppression of in vitro angiogenesis by doxazosin on the basis of VEGF-mediated endothelial tube formation (P < 0.01). Fibroblast growth factor-2 (FGF-2) significantly enhanced HUVEC cell tube formation (P < 0.01) and this effect was suppressed by doxazosin. These findings provide new insight into the ability of doxazosin to suppress the growth and angiogenic response of human endothelial cells by interfering with VEGF and FGF-2 action. This evidence may have potential therapeutic significance in using this quinazoline-based compound as an antiangiogenic agent for the treatment of advanced prostate cancer.  相似文献   

3.
2-Methoxyestradiol (2ME), an endogenous metabolite of 17β-estradiol, has been previously reported to possess antiangiogenic and antitumor properties. Herein, we demonstrate that the effects of this antiangiogenic steroid can be readily assayed in live zebrafish, introducing a convenient and robust new model system as a screening tool for both single cell and collective cell migration assays. Using the in vitro mammalian endothelial cell line EA.hy926, we first show that cell migration and angiogenesis, as estimated by wound assay and tube formation respectively, are antagonized by 2ME. In zebrafish (Danio rerio) larvae, dose-dependent exposure to 2ME diminishes (1) larval angiogenesis, (2) leukocyte recruitment to damaged lateral line neuromasts and (3) retards the lateral line primordium in its migration along the body. Our results indicate that 2ME has an effect on collective cell migration in vivo as well as previously reported anti-tumorigenic activity and suggests that the molecular mechanisms governing cell migration in a variety of contexts are conserved between fish and mammals. Moreover, we exemplify the versatility of the zebrafish larvae for testing diverse physiological processes and screening for antiangiogenic and antimigratory drugs in vivo.  相似文献   

4.
The formation of new blood vessels from pre-existing ones is required for the growth of solid tumors and for metastasis. Interaction of tumor-secreted vascular endothelial growth factor (VEGF) with its receptor(s) on endothelial cells triggers endothelial cell proliferation and migration, which facilitate tumor angiogenesis. Butyric acid (BuA), a fermentation product of dietary fibers in the colon, is shown to alter gene expression and is postulated to be anticarcinogenic. The results presented in this paper indicate that BuA can be antiangiogenic in vivo by inhibiting angiogenesis in chorioallantoic membrane assay. BuA was not cytotoxic to endothelial cells but was a potent antiproliferative agent besides being proapoptotic to endothelial cells as verified by FACS analysis. Conditioned media from BuA-treated Ehrlich ascites tumor cells showed a 30% decrease in VEGF concentration when compared with untreated cells. The decrease in VEGF mRNA and its receptor, KDR mRNA levels in EAT and endothelial cells respectively, suggests that the VEGF-KDR system of angiogenesis is the molecular target for the antiangiogenic action of BuA.  相似文献   

5.
Sanguinarine is a benzophenanthridine alkaloid derived from the root of Sanguinaria canadensis. Its principal pharmacologic use is in dental products where it has antibacterial, antifungal, and anti-inflammatory activities that reduce gingival inflammation and supragingival plaque formation. Angiogenesis is indispensable for inflammation, and most angiogenesis is dependent on vascular endothelial growth factor (VEGF). However, the effect of sanguinarine on angiogenesis is not known. In the present study, we examined the effect of sanguinarine on VEGF-induced angiogenesis in vitro and in vivo. Interestingly, sanguinarine markedly suppressed VEGF-induced endothelial cell migration, sprouting, and survival in vitro in a dose-dependent manner at nanomolar concentrations. Furthermore, sanguinarine potently suppressed blood vessel formation in vivo in mouse Matrigel plugs and the chorioallantoic membrane of chick embryos. Our biochemical assays indicated that sanguinarine strongly suppressed basal and VEGF-induced Akt phosphorylation, while it did not produce any changes in VEGF-induced activation of ERK1/2 and PLCγ1. Therefore, we conclude that sanguinarine is a potent antiangiogenic natural product, and its mode of action could involve the blocking of VEGF-induced Akt activation. Thus, in addition to antibacterial, antifungal, and anti-inflammatory activities, sanguinarine has a novel antiangiogenic role.  相似文献   

6.
Therapeutic angiogenesis is critical to wound healing and ischemic diseases such as myocardial infarction and stroke. For development of therapeutic agents, a search for new angiogenic agents is the key. Ferulic acid, a phytochemical found in many fruits and vegetables, exhibits a broad range of therapeutic effects on human diseases, including diabetes and cancer. This study investigated the augmenting effect of ferulic acid on angiogenesis through functional modulation of endothelial cells. Through endothelial cell migration and tube formation assays, ferulic acid (10?6–10?4 M) was found to induce significant angiogenesis in human umbilical vein endothelial cells (HUVECs) in vitro without cytotoxicity. With chorioallantoic membrane assay, ferulic acid (10?6–10?5 M) was also found to promote neovascularization in vivo. Using Western blot analysis and quantitative real-time polymerase chain reaction, we found that ferulic acid increased vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) expression in HUVECs. Furthermore, the amounts of hypoxic-induced factor (HIF) 1α mRNA and protein, the major regulator of VEGF and PDGF, also showed up-regulation by ferulic acid. Electrophoretic migration shift assay showed that the binding activity of HIF-1α was also enhanced with ferulic acid treatment of HUVECs. Moreover, inhibitors of extracellular-signal-regulated kinase 1/2 and phosphoinositide-3 kinase (PI3K) abolished the binding activity of HIF-1α and the subsequent activation of VEGF and PDGF production by ferulic acid. Thus, both mitogen-activated protein kinase and PI3K pathways were involved in the angiogenic effects of ferulic acid. Taken together, ferulic acid serves as an angiogenic agent to augment angiogenesis both in vitro and in vivo. This effect might be observed through the modulation of VEGF, PDGF and HIF-1α.  相似文献   

7.
Angiogenesis in the preovulatory follicle is confined to the theca cell layers, and penetration of capillaries through the basement membrane into the granulosa cell layers does not occur until after ovulation. However, elevated expression of the angiogenic growth factor (VEGF) has been reported in the cumulus cells surrounding the oocyte, which are expelled from the follicle during ovulation. This spatial and temporal discrepancy between VEGF expression and angiogenesis was studied here in the rat ovarian follicle, and we showed that cumulus cells secrete to the follicular fluid, in addition to VEGF, material with antiangiogenic activity that blocks endothelial cell proliferation, migration, and capillary formation in vitro. Hyaluronic acid produced by the cumulus cells can account for this antiangiogenic activity. Degradation of hyaluronic acid by hyaluronidase restored proliferation and migration of endothelial cells directed toward the cumulus. Inhibition of hyaluronic acid synthesis with 6-diazo-5-oxo-1-norleucine restored endothelial proliferation and migration in vitro, and it also resulted in early penetration of capillaries across the follicular basement membrane in vivo. These results support the role of hyaluronic acid produced by the cumulus cells as a high-molecular-weight, antiangiogenic shield that prevents premature vascularization of the preovulatory follicle by blocking endothelial cell migration and proliferation.  相似文献   

8.
Angiogenesis, the formation of new blood vessels from pre-existing vascular beds, is essential for tumor growth, invasion, and metastasis. Luteolin is a common dietary flavonoid found in fruits and vegetables. We studied the antiangiogenic activity of luteolin using in vitro, ex vivo, and in vivo models. In vitro studies using rat aortic ring assay showed that luteolin at non-toxic concentrations significantly inhibited microvessel sprouting and proliferation, migration, invasion and tube formation of endothelial cells, which are key events in the process of angiogenesis. Luteolin also inhibited ex vivo angiogenesis as revealed by chicken egg chorioallantoic membrane assay (CAM) and matrigel plug assay. Gelatin zymographic analysis demonstrated the inhibitory effect of luteolin on the activation of matrix metalloproteinases MMP-2 and MMP-9. Western blot analysis showed that luteolin suppressed VEGF induced phosphorylation of VEGF receptor 2 and their downstream protein kinases AKT, ERK, mTOR, P70S6K, MMP-2, and MMP-9 in HUVECs. Proinflammatory cytokines such as IL-1β, IL-6, IL-8, and TNF-α level were significantly reduced by the treatment of luteolin in PC-3 cells. Luteolin (10 mg/kg/d) significantly reduced the volume and the weight of solid tumors in prostate xenograft mouse model, indicating that luteolin inhibited tumorigenesis by targeting angiogenesis. CD31 and CD34 immunohistochemical staining further revealed that the microvessel density could be remarkably suppressed by luteolin. Moreover, luteolin reduced cell viability and induced apoptosis in prostate cancer cells, which were correlated with the downregulation of AKT, ERK, mTOR, P70S6K, MMP-2, and MMP-9 expressions. Taken together, our findings demonstrate that luteolin inhibits human prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis.  相似文献   

9.
Extensive angiogenesis, formation of new capillaries from pre-existing blood vessels, is an important feature of malignant glioma. Several antiangiogenic drugs targeting vascular endothelial growth factor (VEGF) or its receptors are currently in clinical trials as therapy for high-grade glioma and bevacizumab was recently approved by the FDA for treatment of recurrent glioblastoma. However, the modest efficacy of these drugs and emerging problems with anti-VEGF treatment resistance welcome the development of alternative antiangiogenic therapies. One potential candidate is histidine-rich glycoprotein (HRG), a plasma protein with antiangiogenic properties that can inhibit endothelial cell adhesion and migration. We have used the RCAS/TV-A mouse model for gliomas to investigate the effect of HRG on brain tumor development. Tumors were induced with platelet-derived growth factor-B (PDGF-B), in the presence or absence of HRG. We found that HRG had little effect on tumor incidence but could significantly inhibit the development of malignant glioma and completely prevent the occurrence of grade IV tumors (glioblastoma).  相似文献   

10.
The precise roles of tetraspanin CD9 are unclear. Here we show that CD9 plays a stimulus-independent role in angiogenesis and that inhibiting CD9 expression or function is a potential antiangiogenic therapy. Knocking down CD9 expression significantly inhibited in vitro endothelial cell migration and invasion induced by vascular endothelial growth factor (VEGF) or hepatocyte growth factor (HGF). Injecting CD9-specific small interfering RNA (siRNA-CD9) markedly inhibited HGF- or VEGF-induced subconjunctival angiogenesis in vivo. Both results revealed potent and stimulus-independent antiangiogenic effects of targeting CD9. Furthermore, intravitreous injections of siRNA-CD9 or anti-CD9 antibodies were therapeutically effective for laser-induced retinal and choroidal neovascularization in mice, a representative ocular angiogenic disease model. In terms of the mechanism, growth factor receptor and downstream signaling activation were not affected, whereas abnormal localization of integrins and membrane type-1 matrix metalloproteinase was observed during angiogenesis, by knocking down CD9 expression. Notably, knocking down CD9 expression did not induce death and mildly inhibited proliferation of quiescent endothelial cells under conditions without an angiogenic stimulus. Thus, CD9 does not directly affect growth factor-induced signal transduction, which is required in angiogenesis and normal vasculature, but is part of the angiogenesis machinery in endothelial cells during angiogenesis. In conclusion, targeting CD9 produced stimulus-independent antiangiogenic effects predominantly in activated endothelial cells during angiogenesis, and appears to be an effective and safe antiangiogenic approach. These results shed light on the biological roles of CD9 and may lead to novel antiangiogenic therapies.  相似文献   

11.
Nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit angiogenesis in vivo and in vitro, but the mechanism of this action is unclear. Angiogenesis—formation of new capillary vessels—requires endothelial proliferation, migration, and tube formation. It is stimulated by basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF). The cell cycle is regulated positively by cyclins and negatively by cyclin-dependent kinase inhibitors (CKI) and the retinoblastoma protein (pRb). Since the effects of NSAIDs on cell cycle-regulatory proteins in endothelial cells remain unknown, we examined the effect of indomethacin on bFGF-stimulated endothelial cell proliferation and on cell cycle regulatory proteins in rat primary aortic endothelial cells (RAEC). Indomethacin significantly inhibited basal and bFGF-stimulated endothelial cell proliferation. This inhibition correlated significantly with reduced cyclin D1 and increased p21 protein expression. Furthermore, indomethacin reduced pRb phosphorylation. These findings suggest that indomethacin arrests endothelial cell proliferation essential for angiogenesis by modulating cell cycle protein levels.  相似文献   

12.
血管内皮生长因子和抗肿瘤血管新生药物研究进展   总被引:1,自引:0,他引:1  
肿瘤的生长与迁移离不开新血管的形成,这使得抗血管新生成为肿瘤治疗的重要途径之一。血管内皮生长因子(VEGF)是针对内皮细胞作用最强、特异性最高的血管新生促进因子,因而VEGF是抗肿瘤治疗的重要靶点。我们简要介绍了VEGF的一些生物学特点及肿瘤血管新生,着重介绍了一些抗血管新生药物的最新研究成果及其临床应用。  相似文献   

13.
The present study was conducted to determine the effects of 1-O-acetylbritannilactone (ABL), a compound extracted from Inula britannica L., on vascular endothelial growth factor (VEGF) signaling and angiogenesis in endothelial cells (ECs). We showed that ABL promotes VEGF-induced cell proliferation, growth, migration, and tube formation in cultured human ECs. Furthermore, the modulatory effect of ABL on VEGF-induced Akt, MAPK p42/44, and p38 phosphorylation, as well as on upstream VEGFR-2 phosphorylation, were associated with VEGF-dependent Matrigel angiogenesis in vivo. In addition, animals treated with ABL (26 mg/kg/day) recovered blood flow significantly earlier than control animals, suggesting that ABL affects ischemia-mediated angiogenesis and arteriogenesis in vivo. Finally, we demonstrated that ABL strongly reduced the levels of VEGFR-2 on the cell surface, enhanced VEGFR-2 endocytosis, which consistent with inhibited VE-cadherin, a negative regulator of VEGF signaling associated with VEGFR-2 complex formation, but did not alter VE-cadherin or VEGFR-2 expression in ECs. Our results suggest that ABL may serve as a novel therapeutic intervention for various cardiovascular diseases, including chronic ischemia, by regulating VEGF signaling and modulating angiogenesis.  相似文献   

14.
Angiogenesis occurs during tissue growth, development and wound healing. It is also required for tumor progression and represents a rational target for therapeutic intervention. NBM-T-BMX-OS01 (BMX), derived from the semisynthesis of osthole, an active ingredient isolated from Chinese herb Cnidium monnieri (L.) Cuss., was recently shown to enhance learning and memory in rats. In this study, we characterized the anti-angiogenic activities of NBM-T-BMX-OS01 (BMX) in an effort to develop novel inhibitors to suppress angiogenesis and tumor growth. BMX inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration and endothelial tube formation in human umbilical endothelial cells (HUVECs). BMX also attenuated VEGF-induced microvessel sprouting from aortic rings ex vivo and reduced HCT116 colorectal cancer cells-induced angiogenesis in vivo. Moreover, BMX inhibited the phosphorylation of VEGFR2, FAK, Akt and ERK in HUVECs exposed to VEGF. BMX was also shown to inhibit HCT116 cell proliferation and to suppress the growth of subcutaneous xenografts of HCT116 cells in vivo. Taken together, this study provides evidence that BMX modulates vascular endothelial cell remodeling and leads to the inhibition of tumor angiogenesis. These results also support the role of BMX as a potential drug candidate and warrant the clinical development in the treatment of cancer.  相似文献   

15.
We previously reported that alendronate inhibits intraperitoneal dissemination in an in vivo ovarian cancer model. Recently, nitrogen-containing bisphosphonates have been reported to have antiangiogenic activities. In this study, alendronate inhibited human umbilical vein endothelial cell (HUVEC) migration and capillary-like structure formation in vitro. These inhibitory effects were associated with reduced Rho activation and suppression of the formation of actin stress fibers and focal adhesions in HUVECs. Furthermore, the inhibition by alendronate was reversed by geranylgeraniol, which abrogated the inhibition of Rho geranylgeranylation. Next, we examined the effect of alendronate on angiogenesis in disseminated ovarian tumors of athymic immunodeficient mice. Alendronate treatment reduced the intra-tumor neoangiogenesis compared with that in the non-treated mice, although tumor-derived VEGF expression was not altered. In conclusion, the in vivo anti-tumor effect of alendronate might be derived, at least in part, from its direct antiangiogenic effects on intra-tumor endothelial cells by inhibiting Rho geranylgeranylation.  相似文献   

16.
Epithelial ovarian cancer (EOC) metastasizes transcoelomically to the peritoneum and omentum, and despite surgery and chemotherapy, recurrent disease is likely. Metastasis requires the induction of proangiogenic changes in the omental microenvironment and EOC-induced omental angiogenesis is currently a key therapeutic target. In particular, antiangiogenic therapies targeting the vascular endothelial growth factor A (VEGFA) pathway are commonly used, although, with limited effects. Here, using human omental microvascular endothelial cells (HOMECs) and ovarian cancer cell lines as an in vitro model, we show that factors secreted from EOC cells increased proliferation, migration, and tube-like structure formation in HOMECs. However, EOC-induced angiogenic tube-like formation and migration were unaffected by inhibition of tyrosine kinase activity of VEGF receptors 1 and 2 (Semaxanib; SU5416) or neutralization of VEGFA (neutralizing anti-VEGFA antibody), although VEGFA165-induced HOMEC migration and tube-like structure formation were abolished. Proteomic investigation of the EOC secretome identified several alternative angiogenesis-related proteins. We screened these for their ability to induce an angiogenic phenotype in HOMECs, i.e., proliferation, migration, and tube-like structure formation. Hepatocyte growth factor (HGF) and insulin-like growth factor binding protein 7 (IGFBP-7) increased all three parameters, and cathepsin L (CL) increased migration and tubule formation. Further investigation confirmed expression of the HGF receptor c-Met in HOMECs. HGF- and EOC-induced proliferation and angiogenic tube structure formation were blocked by the c-Met inhibitor PF04217903. Our results highlight key alternative angiogenic mediators for metastatic EOC, namely, HGF, CL, and IGFBP-7, suggesting that effective antiangiogenic therapeutic strategies for this disease require inhibition of multiple angiogenic pathways.  相似文献   

17.
Vascular permeability factor (VPF)/VEGF is a potent multifunctional cytokine and growth factor that has critical roles in vasculogenesis and in both physiological and pathological angiogenesis. Because it has been recently shown that the neurotransmitter dopamine at pharmacological dose can inhibit VEGF/VPF-mediated microvascular permeability, proliferation, and migration of endothelial cells in vitro, we therefore hypothesized that endogenous dopamine may regulate the actions of VPF/VEGF in vivo. We report that VPF/VEGF-induced phosphorylation of VEGF receptor 2, focal adhesion kinase, and MAPK in the endothelial cells is strikingly increased in both dopamine-depleted and dopamine D(2) receptor knockout mice compared with normal controls, thereby indicating that endogenous dopamine regulate these critical signaling cascades required for the in vivo endothelial functions of VPF/VEGF. Together, these observations provide new mechanistic insight into the dopamine-mediated inhibition of the activities of VPF/VEGF and suggest that endogenous neurotransmitter dopamine might be an important physiological regulator of VPF/VEGF activities in vivo.  相似文献   

18.
《Phytomedicine》2015,22(1):103-110
Raddeanin A (RA) is an active triterpenoid saponin from a traditional Chinese medicinal herb, Anemone raddeana Regel. It was previously reported that RA possessed attractive antitumor activity through inhibiting proliferation and inducing apoptosis of multiple cancer cells. However, whether RA can inhibit angiogenesis, an essential step in cancer development, remains unknown. In this study, we found that RA could significantly inhibit human umbilical vein endothelial cell (HUVEC) proliferation, motility, migration, and tube formation. RA also dramatically reduced angiogenesis in chick embryo chorioallantoic membrane (CAM), restrained the trunk angiogenesis in zebrafish, and suppressed angiogenesis and growth of human HCT-15 colorectal cancer xenograft in mice. Western blot assay showed that RA suppressed VEGF-induced phosphorylation of VEGFR2 and its downstream protein kinases including PLCγ1, JAK2, FAK, Src, and Akt. Molecular docking simulation indicated that RA formed hydrogen bonds and hydrophobic interactions within the ATP binding pocket of VEGFR2 kinase domain. Our study firstly provides the evidence that RA has high antiangiogenic potency and explores its molecular basis, demonstrating that RA is a potential agent or lead candidate for antiangiogenic cancer therapy.  相似文献   

19.
The purpose of this study is to investigate the anti-angiogenic activities of NSK-01105, a novel sorafenib derivative, in in vitro, ex vivo and in vivo models, and explore the potential mechanisms. NSK-01105 significantly inhibited vascular endothelial growth factor (VEGF)-induced migration and tube formation of human umbilical vein endothelial cells at non-cytotoxic concentrations as shown by wound-healing, transwell migration and endothelial cell tube formation assays, respectively. Cell viability and invasion of LNCaP and PC-3 cells were significantly inhibited by cytotoxicity assay and matrigel invasion assay. Furthermore, NSK-01105 also inhibited ex vivo angiogenesis in matrigel plug assay. Western blot analysis showed that NSK-01105 down-regulated VEGF-induced phosphorylation of VEGF receptor 2 (VEGFR2) and the activation of epidermal growth factor receptor (EGFR). Tumor volumes were significantly reduced by NSK-01105 at 60 mg/kg/day in both xenograft models. Immunohistochemical staining demonstrated a close association between inhibition of tumor growth and neovascularization. Collectively, our results suggest a role of NSK-01105 in treatment for human prostate tumors, and one of the potential mechanisms may be attributed to anti-angiogenic activities.  相似文献   

20.
Netrins are secreted molecules involved in axon guidance and angiogenesis. However, the role of netrins in the vasculature remains unclear. Netrin-4 and netrin-1 have been found to be either pro- or antiangiogenic factors. Previously, we found that netrin-1 acts as an anti-angiogenic factor in rats by inhibiting alkali burn-induced corneal neovascularization. Here, we further investigate the effects of netrin-4, another member of the same netrin family, on neovascularization in vitro and in vivo. We found that netrin-4 functions similarly as netrin-1 in angiogenesis. In vitro angiogenesis assay shows that netrin-4 affected human umbilical vein endothelial cell (HUVEC) tube formation, viability and proliferation, apoptosis, migration, and invasion in a dose-dependent manner. Netrin-4 was topically applied in vivo to alkali-burned rat corneas on day 0 (immediately after injury) and/or day 10 post-injury. Netrin-4 subsequently suppressed and reversed corneal neovascularization. Netrin-4 inhibited corneal epithelial and stromal cell apoptosis, inhibited vascular endothelial growth factor (VEGF), but promoted pigment epithelium-derived factor (PEDF) expression, decreased NK-KB p65 expression, and inhibits neutrophil and macrophage infiltration. These results indicate that netrin-4 shed new light on its potential roles in treatmenting for angiogenic diseases that affect the ocular surface, as well as other tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号