首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Resistance to apoptosis is afforded by inhibitor of apoptosis proteins (IAPs) which bind to and inhibit the caspases responsible for cleavage of substrates leading to apoptotic cell death. Smac (or DIABLO), a proapoptotic protein released from the mitochondrial intermembrane space into the cytosol, promotes apoptosis by binding to IAPs, thus reversing their inhibitory effects on caspases. We have developed a high-throughput fluorescence polarization assay utilizing a fluorescein-labeled peptide similar to the "IAP binding" domain of Smac N terminus complexed with the BIR3 domain of X-linked IAP (XIAP) to identify small-molecule mimics of the action of Smac. The IC(50)s of peptides and a tetrapeptidomimetic homologous to the N terminus of Smac demonstrated the specificity and utility of this assay. We have screened the National Cancer Institute "Training Set" of 230 compounds, with well-defined biological actions, and the "Diversity Set" of 2000 chemically diverse structures for compounds which significantly reduced fluorescence polarization. Highly fluorescing or fluorescence-quenching compounds (false positives) were distinguished from those which interfered with Smac peptide binding to the XIAP-BIR3 in a dose-dependent manner (true positives). This robust assay offers potential for high-throughput screening discovery of novel compounds simulating the action of Smac/DIABLO.  相似文献   

2.
Mitochondria play a pivotal role during stress-induced apoptosis as several proapoptotic proteins are released to the cytosol to activate caspases. Smac/DIABLO is one of the proapoptotic proteins released from the mitochondria and has been shown to inactivate IAPs. However, gene knockout studies in mice revealed a redundant role for Smac during development and cell death. By applying RNA interference-mediated loss of function approach, we demonstrate that Smac/DIABLO is required for the activation of effector but not initiator caspases during stress and receptor-mediated cell death in HeLa cells. Cells with reduced Smac resist apoptosis and retained clonogenicity. Our results suggest an obligatory role for Smac/DIABLO in these tumor cells during several pathways of apoptosis induction.  相似文献   

3.
Smac/DIABLO (second mitochondria-derived activator of caspase/direct IAP-binding proteinwith low PI) is a 29 kDa mitochondrial precursor protein,which is proteolytically processed in mitochondriainto a 23 kDa mature protein.It is released from the mitochondrial intermembrane space to cytosol after anapoptotic trigger.Smac/DIABLO acts as a dimer and it contributes to caspase activation by sequestering theinhibitor of apoptosis proteins (IAPs).In order to further investigate the mechanism of Smac/DIABLOaction,we used the mature form of Smac/DIABLO as a bait and screened proteins that interact with matureSmac/DIABLO in human liver cDNA library using the yeast two-hybrid system.Forty-two colonies wereobtained after 5.8x 10~6 colonies were screened by nutrition limitation and X-galactosidase assay.After DNAsequence analysis and homology retrieval,one of the candidate proteins was identified as TRAF domain ofthe TNF receptor associated factor 3 (TRAF3).The interaction site between TRAF3 and Smac/DIABLOwas identified by β-galactosidase test. The interaction between TRAF3 and Smac/DIABLO via TRAF domainwas identified in vivo by co-immunoprecipitation in HepG2 cells,and the direct interaction between TRAF3and Smac/DIABLO in vitro was identified by GST-pull down assay.Co-expression of TRAF3 and matureSmac/DIABLO in 293 cells could enhance the Smac/DIABLO-mediated apoptosis.These results suggestedthat TRAF3 interacted with Smac/DIABLO via TRAF domain,leading to an increased proapoptotic effectof Smac/DIABLO in cytoplasm.  相似文献   

4.
5.
目的:观察大鼠供心不同时程低温保存后线粒体Smac/DIABLO蛋白表达的差异。方法:根据不同的低温保存时程,SD大鼠随机分5组(n=8)。采用Langendorff离体鼠心灌注法停搏大鼠心脏,检测心脏在4℃条件下celsior保存液中分别保存0、3、6、9、12h后,心肌细胞线粒体内超氧化物岐化酶(SOD)活性和丙二醛(MDA)含量的变化。并采用Westom blotting蛋白印迹分析法观察心肌细胞Smac/DIABLO蛋白表达情况,原位末端标记(TUNEL)染色法检测心肌细胞凋亡。结果:①随着低温保存时间的延长,心肌细胞线粒体内SOD活性随之降低,MDA含量随之升高,心肌细胞凋亡指数也逐渐增高。②随着低温保存时间的延长,Smac/DIABLO蛋白表达逐渐增多,至低温保存6h后最为显著,随后又逐渐减弱。结论:随着低温保存时间的延长,可能由于心肌细胞抗氧自由基的能力逐步减弱,致使诱导细胞凋亡的心肌线粒体Smac/DIABLO蛋白表达逐渐增强,心肌细胞凋亡逐渐增多。  相似文献   

6.
Inhibitor of apoptosis protein (IAP)-binding proteins such as Grim, Reaper and HID have been shown to exert a critical role in regulating caspase activity in species such as D. Melanogaster. However, a comparable role for the mammalian homologue of second mitochondrial-derived activator of caspase/direct IAP-binding protein with low pI (Smac/DIABLO) has yet to be clearly established in vivo. Despite tremendous interest in recent years in the use of so-called Smac mimetics to enhance chemotherapeutic potency, our understanding of the true physiologic nature of Smac/DIABLO in regulating programmed cell death (PCD) remains elusive. In order to critically evaluate the role of Smac/DIABLO in regulating mammalian PCD, deficiency of caspase-3 was used as a sensitizing mutation in order to reduce aggregate levels of executioner caspase activity. We observe that combinatorial deletion of Diablo and Casp3, but neither alone, results in perinatal lethality in mice. Consistent with this, examination of both intrinsic and extrinsic forms of PCD in lines of murine embryonic fibroblasts demonstrate that loss of Smac/DIABLO alters both caspase-dependent and caspase-independent intrinsic PCD. Comparative small interfering RNA inhibition studies of X-linked inhibitor of apoptosis, cellular inhibitor of apoptosis (cIAP)-1, cIAP-2, caspase-6 and -7 in both wild-type and Casp3/Diablo DKO mouse embryonic fibroblast lineages, supports a model in which Smac/DIABLO acts to enhance the early phase executioner caspase activity through the modulation of inhibitory interactions between specific IAP family members and executioner caspases-3 and -7.  相似文献   

7.
During apoptosis, a key event is the release of Smac/DIABLO (an inhibitor of XIAP) and cytochrome c (Cyt-c, an activator of caspase-9) from mitochondria to cytosol. It was not clear, however, whether the releasing mechanisms of these two proteins are the same. Using a combination of single living-cell analysis and immunostaining techniques, we investigated the dynamic process of Smac and Cyt-c release during UV-induced apoptosis in HeLa cells. We found that YFP-labeled Smac and GFP-labeled Cyt-c were released from mitochondria in the same time window, which coincided with the mitochondrial membrane potential depolarization. Furthermore, using immunostaining, we found that the endogenous Smac and Cyt-c were always released together within an individual cell. Finally, when cells were pre-treated with caspase inhibitor (z-VAD-fmk) to block caspase activation, the process of Smac release, like that of Cyt-c, was not affected. This was true for both YFP-labeled Smac and endogenous Smac. These results suggest that in HeLa cells, both Smac and Cyt-c are released from mitochondria during UV-induced apoptosis through the same permeability transition mechanism, which we believe is triggered by the aggregation of Bax in the outer mitochondrial membrane to form lipid-protein complex.  相似文献   

8.
We have constructed Ad CMV-Smac, a recombinant adenovirus encoding Smac/DIABLO, the recently described second mitochondrial activator of caspases. Transfection of ovarian carcinoma cells with Ad CMV-Smac at multiplicities of infection of 3-60 pfu/cell leads to increasing apoptosis in a dose-dependent manner. Western blot analysis confirms that Smac-induced apoptosis proceeds via a pathway mediated primarily by caspase-9 that can be inhibited by zLEHD-fmk and overexpression of the X-linked inhibitor of apoptosis protein (XIAP). In contrast, there is no cleavage of either caspase-8 or caspase-12. Ad CMV-Smac appears to induce apoptosis independently of cytochrome c release from mitochondria and is not inhibited by overexpression of Bcl-2. Ad CMV-Smac can combine with other proapoptotic factors, such as cisplatin, paclitaxel, and procaspase-3, to produce greater levels of apoptosis in transfected cells.  相似文献   

9.
Hip2 is a ubiquitin-conjugating enzyme that is involved in the cell cycle and suppression of cell death. To understand its role further, we tried to identify proteins that interact with Hip2. Using the immunoprecipitation technique and one-dimensional gel electrophoresis, we identified Smac/DIABLO, a proapoptotic molecule, as a protein that interacts with Hip2. The interaction of Hip2 and Smac was confirmed through in vivo and in vitro experiments. Hip2 promoted degradation of mature Smac through the ubiquitin proteasome pathway. As a result, Hip2 significantly blocked cell death induced by staurosporine and Smac. This study suggests that Hip2 might be involved in the regulation of Smac-mediated apoptosis.  相似文献   

10.
Apoptotic response of keratinocytes to UVB irradiation has physiological significance on photocarcinogenesis. Here, we show that the sustained release of Smac/DIABLO from mitochondria is an important event for the onset of apoptosis in keratinocytes exposed to UVB irradiation. In human keratinocyte HaCaT cells, UVB irradiation at 500 J/m2, but not at 150 J/m2, induces apoptosis. Significant activations of caspases-9 and -3, and slight activation of caspase-7 were observed only in 500 J/m2 UVB irradiated HaCaT cells. Correspondingly, the cleavage of PARP, a substrate of caspases-3 and -7, was detected in cells irradiated at 500 J/m2 UVB, but not at 150 J/m2. However, with both 150 and 500 J/m2 UVB irradiation, cytochrome c, an activator of caspase-9 via the formation of apoptosome, was released from mitochondria to the cytosol at the same extent. In contrast, significant amounts of Smac/DIABLO are released from mitochondria to the cytosol only with 500 J/m2 UVB irradiation, and that the level of XIAP is decreased. These results suggest that the extent of Smac/DIABLO efflux from mitochondria is a determinant whether a cell will undergo apoptosis or survival.  相似文献   

11.
Redistribution of cytochrome c and Smac/DIABLO from mitochondria occurs during apoptosis, although the relative timing of their release is not well characterized. Double immunocytochemistry was utilized here to study quantitatively the patterns of release of cytochrome c and Smac/DIABLO from mitochondria in single cells. Human osteosarcoma cells and murine embryonic cortical neurons were analyzed during apoptosis induced by staurosporine. In osteosarcoma cells treated with staurosporine for 24 h, a substantial proportion of cells (36%) released cytochrome c from the mitochondria before Smac/DIABLO. In contrast, these proteins were released mostly concordantly in neurons; only a minority of cells (< or = 15%) released cytochrome c without Smac/DIABLO (or vice versa) from mitochondria. Patterns of release in either cell type were unaltered by addition of the caspase inhibitor, zVAD-fmk. The double immunocytochemistry procedure facilitated clear definition of the temporal release of cytochrome c and Smac/DIABLO from mitochondria in intact apoptotic cells, enabling us to demonstrate for the first time that their mutual redistribution during apoptosis varies between different cell types.  相似文献   

12.
Survivin was initially described as an inhibitor of apoptosis and attracted growing attention as one of the most tumor-specific genes in the human genome and a promising target for cancer therapy. Lately, it has been shown that survivin is a multifunctional protein that takes part in several crucial cell processes. At first, it was supposed that survivin functions only as a homodimer, but now data indicate that many processes require monomeric survivin. Moreover, recent studies reveal a special mechanism regulating the balance between monomeric and dimeric forms of the protein. In this paper we studied the mutant form of survivin that was unable to dimerize and investigated its role in apoptosis. We showed that survivin monomer interacts with Smac/DIABLO and X-linked inhibitor of apoptosis protein (XIAP) both in vitro and in vivo. Due to this feature, it protects cells from caspase-dependent apoptosis even more efficiently than the wild-type survivin. We also identified that mutant monomeric survivin prevents apoptosis-inducing factor release from the mitochondrial intermembrane space, protecting human fibrosarcoma HT1080 cells from caspase-independent apoptosis. On the other hand, our results indicate that only wild-type survivin, but not the monomer mutant form, enhances tubulin stability in cells. These findings suggest that survivin partly performs its functions as a monomer and partly as a dimer. The mechanism of dimer-monomer balance regulation may also work as a "switcher" between survivin functions and thereby explain remarkable functional diversities of this protein.  相似文献   

13.
Direct interaction of Smac with NADE promotes TRAIL-induced apoptosis   总被引:1,自引:0,他引:1  
Second mitochondria-derived activator of caspase (Smac) has been implicated in the activation of apoptosis in response to cell stress. We screened for Smac/DIABLO-binding protein for further understanding of Smac-mediated apoptosis. We identified NADE, previously known as p75NTR-associated cell death executor, as a Smac-binding protein. Smac-NADE interaction was mapped to the N-terminal region of Samc and the C-terminal region of NADE. Co-expression of NADE and Smac promotes TRAIL-induced apoptosis in MCF-7 cells. Interestingly, the co-presence of Smac and NADE inhibits XIAP-mediated Smac ubiquitination. In conclusion, our results provide the first evidence that the interaction between Smac and NADE regulates apoptosis through the inhibition of Smac ubiquitination.  相似文献   

14.
During apoptotic stimulation, the serine threonine kinase, MEKK1, is cleaved into an activated 91 kDa kinase fragment. This cleavage is mediated by caspase 3 and leads to further caspase 3 activation and apoptosis. Forced expression of the 91 kDa kinase fragment induces apoptosis through changes in membrane potential of the mitochondria mediated by permeability transition pore opening. MEKK1 activation, however, fails to release cytochrome c from the mitochondria. Herein, we determined that overexpression of MEKK1 causes mitochondrial Smac/Diablo release correlating with MEKK1-induced apoptosis. Furthermore, using siRNA that lowers Smac/Diablo expression, MEKK1-induced apoptosis was significantly reduced. Mouse embryonic fibroblast cells lacking MEKK1 expression are also resistant to etoposide-induced mitochondrial Smac/Diablo release. In contrast, etoposide-induced mitochondrial cytochrome c release was not inhibited. MEKK1 also activates the MAP kinase JNK, but MEKK1-induced mitochondrial Smac/Diablo release and apoptosis are independent of MEKK1 mediated JNK activation. Taken together, release of Smac/Diablo from the mitochondria plays a role in MEKK1-induced apoptosis.  相似文献   

15.
Here we demonstrate that JNK3 can phosphorylate Smac. Smac phosphorylation attenuates its ability to activate apoptosome activity in HeLa S-100 cell lysates. Addition of the X-linked inhibitor of apoptosis protein (XIAP) to the S-100 markedly suppresses apoptosome activity, and this suppressive effect of XIAP is neutralized by adding unphosphorylated Smac, but not phosphorylated Smac. Furtherover, JNK3-mediated phosphorylation of Smac markedly attenuates the interaction between Smac and XIAP, as measured by BIACORE assays and non-denaturing gel shift assays. When JNK3 activity is down-regulated in etoposide-induced HeLa cells by transiently overexpressing a dominant negative version of JNK3 (DN-JNK3), the caspase-3 activity as well as PARP cleavages are markedly enhanced. And the interaction of Smac with XIAP also increases by down-regulating JNK3 activity under the same conditions. These results suggest that JNK3 activity can attenuate the progression of apoptosis through a novel mechanism of action, the down-regulation of interaction between Smac and XIAP.  相似文献   

16.
Li TF  Luo YM  Lu CZ 《生理学报》2004,56(2):172-177
应用红藻氨酸(kainic acid,KA)诱导的大鼠边缘叶癫痫发作模型,检测第二个线粒体源的半胱天冬蛋白酶激活物,直接与凋亡抑制蛋白结合的低等电点蛋白(second mitochondrial activator of caspases/direct inhibitor of apoptosis protein-binding protein of low isoelectric point[PI],Smac/DIABLO)和X染色体连锁的凋亡抑制蛋白(X-chromosome-linked inhibitor of apoptosis protein,XIAP)在癫痫大鼠海马神经元表达。单侧杏仁核内注射KA诱导癫痫发作,1h后用安定终止发作,然后分别用TUNEL染色和cresyl violet染色观察海马神经元存活和凋亡的变化,用免疫荧光和Western blot检测海马Smac/DIABLO、XIAP和半胱天冬蛋白酶-9(caspase-9)的表达。结果表明,发作终止2h时KA注射同侧海马CA3区细胞浆内Smac/DIABLO蛋白表达增加,4h时caspase-9出现裂解片断,8h时出现TUNEL阳性细胞,24h时达高峰。脑室内注射caspase-9抑制剂z-LEHD-fluoromethyl ketone(z-LEHD-fmk)可减少TUNEL阳性细胞,增加存活神经元。发作后KA注射同侧海马CA3区神经元caspase-9免疫反应性增强,Smac/DIABLO和XIAP弥散于整个神经元内。对侧海马未检测到TUNEL阳性细胞及Smac/DIABLO和XIAP蛋白的上述变化。以上结果提示,癫痫发作可诱导Smac/DIABLO蛋白从线粒体向细胞浆的移位、XIAP亚细胞分布改变和caspase-9的激活,Smac/DIABLO、XIAP和caspase-9可能参与了癫痫神经元损伤的病理生理机制,caspase-9可能是潜在的治疗靶点。  相似文献   

17.
Survivin is a member of the inhibitor of apoptosis protein (IAP) family that has been implicated in both apoptosis inhibition and cell cycle control. However, its inhibitory mechanism and subcellular localization remain controversial. In this report, we provided evidence for the first time that Survivin physically interacts with Smac/DIABLO both in vitro and in vivo. A point mutation (D71R) in the baculovirus IAP repeat motif and a C-terminal deletion mutant (Surv-BIR) of Survivin fail to bind to Smac/DIABLO and abrogate its ability to inhibit apoptosis. The N-terminal of mature Smac/DIABLO is absolutely required for Survivin.Smac complex formation. Subcellular distributions of Survivin and Smac/DIABLO showed that they co-localized within the cytosol during interphase. In addition, Survivin was found to be incapable of binding to caspase. We also identified that the co-presence of Smac/DIABLO and XIAP was required for Survivin to inhibit caspase cleavage in a cell-free system. In conclusion, our results provide the first evidence that the interaction between Smac/DIABLO and Survivin is an essential step underling the inhibition of apoptosis induced by Taxol.  相似文献   

18.
X-linked inhibitor of apoptosis protein (XIAP), the most potent member of the inhibitor of apoptosis protein (IAP) family, plays a crucial role in the regulation of apoptosis. XIAP is structurally characterized by three baculovirus IAP repeat (BIR) domains that mediate binding to and inhibition of caspases and a RING domain that confers ubiquitin ligase activity. The caspase inhibitory activity of XIAP can be eliminated by the second mitochondria-derived activator of caspases (Smac)/direct IAP-binding protein with low pI (DIABLO) during apoptosis. Here we report the identification and characterization of a novel isoform of Smac/DIABLO named Smac3, which is generated by alternative splicing of exon 4. Smac3 contains an NH2-terminal mitochondrial targeting sequence required for mitochondrial targeting of Smac3 and an IAP-binding motif essential for Smac3 binding to XIAP. Smac3 is released from mitochondria into the cytosol in response to apoptotic stimuli, where it interacts with the second and third BIR domains of XIAP. Smac3 disrupts processed caspase-9 binding to XIAP, promotes caspase-3 activation, and potentiates apoptosis. Strikingly, Smac3, but not Smac/DIABLO, accelerates XIAP auto-ubiquitination and destruction. Smac3-stimulated XIAP ubiquitination is contingent upon the physical association of XIAP with Smac3 and an intact RING domain of XIAP. Smac3-accelerated XIAP destabilization is, at least in part, attributed to its ability to enhance XIAP ubiquitination. Our study demonstrates that Smac3 is functionally additive to, but independent of, Smac/DIABLO.  相似文献   

19.
The X-linked inhibitor of apoptosis protein (XIAP) is a potent cellular inhibitor of apoptosis. Designing small-molecule inhibitors that target the BIR3 domain of XIAP, where Smac/DIABLO (second mitochondria-derived activator of caspase/direct IAP-binding protein with low pI) and caspase-9 bind, is a promising strategy for inhibiting the antiapoptotic activity of XIAP and for overcoming apoptosis resistance of cancer cells mediated by XIAP. Herein, we report the development of a homogeneous high-throughput assay based on fluorescence polarization for measuring the binding affinities of small-molecule inhibitors to the BIR3 domain of XIAP. Among four fluorescent probes tested, a mutated N-terminal Smac peptide (AbuRPFK-(5-Fam)-NH(2)) showed the highest affinity (Kd =17.92 nM) and a large dynamic range (deltamP = 231 +/- 0.9), and was selected as the most suitable probe for the binding assay. The binding conditions (DMSO tolerance and stability) have been investigated. Under optimized conditions, a Z' factor of 0.88 was achieved in a 96-well format for high-throughput screening. It was found that the popular Cheng-Prusoff equation is invalid for the calculation of the competitive inhibition constants (Ki values) for inhibitors in the FP-based competitive binding assay conditions, and accordingly, a new mathematical equation was developed, validated, and used to compute the Ki values. An associated Web-based computer program was also developed for this task. Several known Smac peptides with high and low affinities have been evaluated under the assay conditions and the results obtained indicated that the FP-based competitive binding assay performs correctly as designed: it can quantitatively and accurately determine the binding affinities of Smac-based peptide inhibitors with a wide range of affinities, and is suitable for high-throughput screening of inhibitors binding to the XIAP BIR3 domain.  相似文献   

20.
The protein-protein interaction between WDR5 (WD40 repeat protein 5) and MLL1 (mixed-lineage leukemia 1) is important for maintaining optimal H3K4 methyltransferase activity of MLL1. Dysregulation of MLL1 catalytic function is relevant to mixed-lineage leukemia, and targeting WDR5-MLL1 interaction could be a promising therapeutic strategy for leukemia harboring MLL1 fusion proteins. To date, several peptidomimetic and non-peptidomimetic small-molecule inhibitors targeting WDR5-MLL1 interaction have been reported, yet the discovery walk of new drugs inhibiting MLL1 methytransferase activity is still in its infancy. It’s urgent to find other small-molecule WDR5-MLL1 inhibitors with novel scaffolds. In this study, through fluorescence polarization (FP)-based high throughput screening, several small-molecule inhibitors with potent inhibitory activities in vitro against WDR5-MLL1 interaction were discovered. Nuclear Magnetic Resonance (NMR) assays were carried out to confirm the direct binding between hit compounds and WDR5. Subsequent similarity-based analog searching of the 4 hits led to several inhibitors with better activity, among them, DC_M5_2 displayed highest inhibitory activity with IC50 values of 9.63?±?1.46?µM. Furthermore, a molecular docking study was performed and disclosed the binding modes and interaction mechanisms between two most potent inhibitors and WDR5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号