首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The gap junctional intercellular communication-deficient mouse skin papilloma cell line P3/22 expresses Cx43 but not E-cadherin. The E-cadherin gene-transfected cells (P3E1) communicate in a calcium-dependent manner and they were used to study how E-cadherin restores the function of connexins. At low calcium, Cx43 molecules remain in the cytoplasm of P3E1 cells and appear at cell-cell contact areas only in high-calcium medium. While Cx43 is unphosphorylated in P3E1 cells in low-calcium medium, two phosphorylated bands appeared at high calcium. However, when Cx26, which has no C-terminal tail that can undergo phosphorylation, was expressed in P3E1 cells, this connexin also moved to the plasma membrane after the calcium shift and partly colocalized with Cx43, suggesting that C-terminal phosphorylation is not essential for E-cadherin-mediated intracellular transport of connexins. In low calcium, both Cx26 and Cx43 remained and colocalized in the endoplasmic reticulum. As early as 30 min after the shift to high-calcium medium, both Cx43 and Cx26 began to accumulate in the Golgi apparatus. Intracellular movement of connexins to the cytoplasmic membrane at high calcium was effectively blocked by cytochalasin D and brefeldin A. These results suggest that E-cadherin junction formation at high calcium leads to formation of actin cables, which directly or indirectly transport connexins from the cytoplasm to the cell-cell contact membranes via the Golgi apparatus.  相似文献   

2.
Gap junctions (GJs) have been shown to play a role in tumor progression including a variety of keratinocyte-derived and non-keratinocyte-derived skin tumors. Here we show that the synthesis of the GJ proteins connexin 26 and connexin 30 (Cx26 and Cx30) is induced in keratinocyte-derived epithelial skin tumors whereas there is either no change or a downregulation of Cx43. Cx26, Cx30, and Cx43 are absent in non-epithelial skin tumors. Further, Cx26 and Cx30 are induced in the epidermis adjacent to malignant melanoma but absent in the epidermis adjacent to benign non-epithelial skin lesions (melanocytic nevi and angioma). The keratinocyte-derived skin tumors are very heterogeneous regarding the Cx26/Cx30 pattern in the epidermis at the periphery of the tumors. We did not observe any difference in the localization of the very similar proteins Cx26 and Cx30 but a variation in intensity of immunoreactivity. As the staining patterns of Cx26 and Cx30 antibodies are not identical to those of CK6, a marker for hyperproliferation, and CK17, a marker for trauma, we discuss that the induction of these gap junctional proteins exceeds a reflection of reactive hyperproliferative or traumatized epidermis. We further discuss the putative roles of these gap junctional proteins in tumor progression.  相似文献   

3.
We have used low stringency hybridization and polymerase chain reaction (PCR) amplification with degenerate oligonucleotides to identify four new members of the rat connexin gene family. On the basis of their predicted molecular mass, these proteins have been designated connexin (Cx) 40 (Cx40), Cx37, Cx33, and Cx31.1. The new connexins exhibit all of the conserved structural features of the connexin family, including highly similar extracellular and transmembrane domains but divergent major cytoplasmic domains. On the basis of primary sequence similarity, the connexin family may be divided into two classes. Cx40, Cx37, and Cx33 are similar to the previously characterized Cx43 and Cx46. Cx31.1 is similar to Cx26, Cx31, and Cx32. Cx37 and Cx40 mRNAs are expressed in a wide variety of adult organs and tissues, with particular abundance in lung. However, their relative levels are different in many organs and thus their distribution is not completely coincident. Cx33 and Cx31.1 genes exhibit a much more restricted pattern of expression; mRNAs are detected only in testes and skin, respectively. Chromosomal mapping studies indicate that Cx26 and Cx46 are tightly linked on chromosome 14, and Cx37 and Cx31.1 are linked on chromosome 4, while the rest of the connexin genes are dispersed.  相似文献   

4.
Mutations in Cx26 are a major cause of autosomal dominant and recessive forms of sensorineural deafness. Some mutations in Cx26 are associated not only with deafness but also with skin disease. We examined the subcellular localization and function of two green fluorescent protein (GFP)-tagged Cx26 point mutants that exhibit both phenotypes, G59A-GFP and D66H-GFP. D66H-GFP was retained within the brefeldin A-insensitive trans-Golgi network, whereas a population of G59A-GFP was transported to the cell surface. Neither G59A nor D66H formed gap junctions that were permeable to small fluorescent dyes, suggesting they are loss-of-function mutations. When co-expressed with wild-type Cx26, both G59A and D66H exerted dominant-negative effects on Cx26 function. G59A also exerted a trans-dominant negative effect on co-expressed wild type Cx32 and Cx43, whereas D66H exerted a trans-dominant negative effect on Cx43 but not Cx32. We propose that the severity of the skin disease is dependent on the specific nature of the Cx26 mutation and the trans-dominant selectivity of the Cx26 mutants on co-expressed connexins. Additional systematic mutations at residue D66, in which the overall charge of this motif was altered, suggested that the first extracellular loop is critical for Cx26 transport to the cell surface as well as function of the resulting gap junction channels.  相似文献   

5.
A large proportion of recessive nonsyndromic hearing loss is due to mutations in the GJB2 gene encoding connexin 26 (Cx26), a component of a gap junction. Within different ethnic groups there are specific common recessive mutations, each with a relatively high carrier frequency, suggesting the possibility of heterozygous advantage. Carriers of the R143W GJB2 allele, the most prevalent in the African population, present with a thicker epidermis than noncarriers. In this study, we show that (R143W)Cx26-expressing keratinocytes form a significantly thicker epidermis in an organotypic coculture skin model. In addition, we show increased migration of cells expressing (R143W)Cx26 compared to (WT)Cx26-overexpressing cells. We also demonstrate that cells expressing (R143W)Cx26 are significantly less susceptible to cellular invasion by the enteric pathogen Shigella flexneri than (WT)Cx26-expressing cells. These in vitro studies suggest an advantageous effect of (R143W)Cx26 in epithelial cells. The first two authors contributed equally to this work.  相似文献   

6.
Connexin disorders of the ear, skin, and lens   总被引:15,自引:0,他引:15  
Gap junctions provide coupled cells with a direct pathway for sharing ions, nutrients, and small metabolites, thus helping to maintain homeostasis in various tissues. Abnormal function and/or expression of specific connexin genes has been linked to several diseases, including genetic deafness, skin disease, peripheral neuropathies, and cataracts. Research has provided significant insight into the function of gap junction proteins in both in vitro and in vivo models; however, questions regarding the exact mechanisms by which connexin related diseases occur in mammalian systems remain. Here, we discuss the disease states that are related to three human connexin genes, Cx26 (GJB2), Cx46 (GJA3) and Cx50 (GJA8), and recent scientific evidence characterizing those diseases in various experimental models.  相似文献   

7.
In this study, we chose a differentiation-competent rat epidermal keratinocyte (REK) cell line to examine the role of Cx26 and disease-linked Cx26 mutants in organotypic epidermal differentiation. First, we generated stable REK cell lines expressing three skin disease-linked mutants (G59A, D66H and R75W). Second, we used an RNAi approach to knock down the expression of Cx26 in REKs. Interestingly, the three-dimensional (3D) architecture of the organotypic epidermis altered the intracellular spatial distribution of the mutants in comparison to 2D cultured REKs, highlighting the importance of using organotypic cultures. Unexpectedly, the presence of disease-linked mutants or the overexpression of wild-type Cx26 had little effect on the differentiation of the organotypic epidermis as determined by the architecture of the epidermis, expression of molecular markers indicative of epidermis differentiation (keratin 10, keratin 14, involucrin, loricrin) and stratification/cornification of the epidermis. Likewise, organotypic epidermis continued to differentiate normally upon Cx26 knockdown. While Cx26 has been reported to be upregulated during wound healing, no reduction in wound closure was observed in 2D REK cultures that expressed loss-of-function, dominant Cx26 mutants. In conclusion, we demonstrate that gain or loss of Cx26 function does not disrupt organotypic epidermal differentiation and offer insights into why patients harboring Cx26 mutations do not frequently present with more severe disease that encompasses thin skin. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Mutations in the GJB2 gene (Cx26) cause deafness in humans. Most are loss-of-function mutations and cause nonsyndromic deafness. Some mutations produce a gain of function and cause syndromic deafness associated with skin disorders, such as keratitis-ichthyosis-deafness syndrome (KIDS). Cx26-G45E is a lethal mutation linked to KIDS that forms constitutively active connexin hemichannels. The pathomechanism(s) by which mutant Cx26 hemichannels perturb normal epidermal cornification are poorly understood. We created an animal model for KIDS by generating an inducible transgenic mouse expressing Cx26-G45E in keratinocytes. Cx26-G45E mice displayed reduced viability, hyperkeratosis, scaling, skin folds, and hair loss. Histopathology included hyperplasia, acanthosis, papillomatosis, increased cell size, and osteal plugging. These abnormalities correlated with human KIDS pathology and were associated with increased hemichannel currents in transgenic keratinocytes. These results confirm the pathogenic nature of the G45E mutation and provide a new model for studying the role of aberrant connexin hemichannels in epidermal differentiation and inherited connexin disorders.  相似文献   

9.
Mutations in the human GJB2 gene, which encodes connexin26 (Cx26), underlie various forms of hereditary deafness and skin disease. While it has proven difficult to discern the exact pathological mechanisms that cause these disorders, studies have shown that the loss or abnormal function of Cx26 protein has a profound effect on tissue homeostasis. Here, we used the Xenopus oocyte expression system to examine the functional characteristics of a Cx26 mutation (G45E) that results in keratitis-ichthyosis-deafness syndrome (KIDS) with a fatal outcome. Our data showed that oocytes were able to express both wild-type Cx26 and its G45E variant, each of which formed hemichannels and gap junction channels. However, Cx26-G45E hemichannels displayed significantly greater whole cell currents than wild-type Cx26, leading to cell lysis and death. This severe phenotype could be rescued in the presence of elevated Ca2+ levels in the extracellular milieu. Cx26-G45E could also form intercellular channels with a similar efficiency as wild-type Cx26, however, with increased voltage sensitive gating. We also compared Cx26-G45E with a previously described Cx26 mutant, A40V, which has an overlapping human phenotype. We found that both dominant Cx26 mutants elicited similar functional consequences and that cells coexpressing mutant and wild-type connexins predominantly displayed mutant-like behavior. These data suggest that mutant hemichannels may act on cellular homeostasis in a manner that can be detrimental to the tissues in which they are expressed. connexin  相似文献   

10.
To identify motifs involved in oligomerization of the gap junction protein Cx26, we studied individual transmembrane (TM) domains and the full-length protein. Using the TOXCAT assay for interactions of isolated TM α-helices, we found that TM1, a Cx26 pore domain, had a strong propensity to homodimerize. We identified amino acids Val-37-Ala-40 (VVAA) as the TM1 motif required for homodimerization. Two deafness-associated Cx26 mutations localized in this region, Cx26V37I and Cx26A40G, differentially affected dimerization. TM1-V37I dimerized only weakly, whereas TM1-A40G did not dimerize. When the full-length mutants were expressed in HeLa cells, both Cx26V37I and Cx26A40G formed oligomers less efficiently than wild-type Cx26. A Cx26 cysteine substitution mutant, Cx26V37C formed dithiothreitol-sensitive dimers. Substitution mutants of Val-37 formed intercellular channels with reduced function, while mutants of Ala-40 did not form functional gap junction channels. Unlike wild-type Cx26, neither Cx26V37I nor Cx26A40G formed functional hemichannels in low extracellular calcium. Thus the VVAA motif of Cx26 is critical for TM1 dimerization, hexamer formation, and channel function. The differential effects of VVAA mutants on hemichannels and gap junction channels imply that inter-TM interactions can differ in unapposed and docked hemichannels. Moreover, Cx26 oligomerization appears dependent on transient TM1 dimerization as an intermediate step.  相似文献   

11.
To elucidate the mode of action of dominant mutant connexins in causing inherited skin diseases, transgenic mice were produced that express the true Vohwinkel syndrome-associated mutant Cx26 (D66H), from a keratin 10 promoter, specifically in the suprabasal epidermal keratinocytes. Following birth, the transgenic mice developed keratoderma similar to that of human carriers of Cx26 (D66H). Expression of the transgene resulted in a loss of Cx26 and Cx30 at intercellular junctions of epidermal keratinocytes and accumulation of these connexins in the cytoplasm. Injection of primary mouse keratinocytes with Lucifer Yellow showed no difference in terms of dye spreading between transgenic and non transgenic keratinocytes in vitro. Expression of the mutant Cx26 (D66H) did not interfere with the formation of the epidermal water barrier during late embryonic development. Attempts to produce transgenic mice expressing the wild type form of Cx26 from the K10 promoter failed to produce viable animals although transgenic embryos were recovered at days 9 and 12 of gestation, suggesting that the transgene might be embryonic lethal.  相似文献   

12.
It has been demonstrated that distinct germline mutations within four connexin (Cx) genes, Cx26, Cx30, Cx31, and Cx30.3, underlie hearing loss and/or epidermal disease. Here, we describe two Cx26 mutations associated with skin disease. With the goal of understanding the mechanism(s) of Cx-associated human disease and how different mutations within the same Cx protein can result in different disorders, we performed a number of functional analyses investigating the cellular effects of disease-associated Cx mutations in keratinocytes and other cell types. Epidermal disease-associated proteins studied were primarily cytoplasmic with limited trafficking ability. FACS analysis of WT and mutant EGFP-Cx31 transfected keratinocytes revealed a high percentage of cell death associated with the skin disease-associated mutant Cx31 proteins.  相似文献   

13.
It has been demonstrated that distinct germline mutations within four connexin (Cx) genes, Cx26, Cx30, Cx31, and Cx30.3, underlie hearing loss and/or epidermal disease. Here, we describe two Cx26 mutations associated with skin disease. With the goal of understanding the mechanism(s) of Cx-associated human disease and how different mutations within the same Cx protein can result in different disorders, we performed a number of functional analyses investigating the cellular effects of disease-associated Cx mutations in keratinocytes and other cell types. Epidermal disease-associated proteins studied were primarily cytoplasmic with limited trafficking ability. FACS analysis of WT and mutant EGFP-Cx31 transfected keratinocytes revealed a high percentage of cell death associated with the skin disease-associated mutant Cx31 proteins.  相似文献   

14.
We examined the subcellular localization and function of several Cx26 mutants that exhibit both sensorineural deafness and various skin disease phenotypes. To facilitate these aims, all Cx26 mutants were tagged at the carboxyl-terminal with green fluorescent protein (GFP), which has previously been shown not to affect Cx26 transport, assembly or function. In this article we focus on two point mutations (R75W and DeltaE42) that occur in the first extracellular loop region of Cx26, a region hypothesized to be critical for correct hemichannel docking between contacting cells. In gap junctional intercellular communication (GJIC)-deficient HeLa cells, both R75W-GFP and DeltaE42-GFP were transported to the cell surface and assembled into gap junction-like structures. Neither R75W-GFP nor DeltaE42-GFP formed gap junctions that were permeable to Lucifer Yellow suggesting they are loss-of-function mutations. We also examined the phenotype of these two mutations in a rat epidermal keratinocyte (REK) cell line that is capable of undergoing differentiation. Using antibodies against several members of the connexin family reportedly expressed by epidermal keratinocytes, we found these cells endogenously expressed Cx43 and Cx26 but not Cx30, Cx32, or Cx37. When expressed in REK cells, similar to in HeLa cells, R75W-GFP and DeltaE42-GFP were assembled at the cell surface into structures that resembled gap junctions. Future experiments will examine the effect of the Cx26 mutants on the function and differentiation of these epidermal keratinocytes.  相似文献   

15.
Connexin26 (Cx26) is a member of the connexin family, the building blocks for gap junction intercellular channels. These dodecameric assemblies are involved in gap junction-mediated cell–cell communication allowing the passage of ions and small molecules between two neighboring cells. Mutations in Cx26 lead to the disruption of gap junction-mediated intercellular communication with consequences such as hearing loss and skin disorders. We show here that a mutant of Cx26, M34A, forms an active hemichannel in lipid bilayer experiments. A comparison with the Cx26 wild-type is presented. Two different techniques using micro/nano-structured substrates for the formation of pore-suspending lipid membranes are used. We reconstituted the Cx26 wild-type and Cx26M34A into artificial lipid bilayers and observed single channel activity for each technique, with conductance levels of around 35, 70 and 165 pS for the wild-type. The conductance levels of Cx26M34A were found at around 45 and 70 pS.  相似文献   

16.
Gap junctional intercellular communication (GJIC) is a mechanism for direct cell-to-cell signalling and is mediated by gap junctions (GJs), which consist of proteins called connexins (Cxs). GJIC plays a critical role in tissue development and differentiation and is important in maintenance of tissue homeostasis. The purpose of the study was to evaluate the expression of Cx26, Cx32 and Cx43 in the human colon. Surgical specimens were obtained from patients who underwent surgical resection of colorectal tumours. Tissue samples (50 cases) were collected from normal colon, at the maximum distance from the tumor. Using antibodies for Cx26, Cx32 and Cx43, immunohistochemical detection was made. In epithelial cells, strong Cx26 immunoreactivity was found, whereas Cx32 and Cx43 were sparsely distributed. Strong Cx43 immunostaining in muscularis mucosae was observed. In the circular layer of muscularis externa, expression of Cx43 and Cx26 was seen, but only in the portion closest to the submucosa. No immunoreactivity was found in the longitudinal muscle layer. Small vessels stained positively only for Cx43. Furthermore, there was no difference in staining between samples derived from various sections of the colon. This study showed immunohistochemically for the first time the expression of Cx26 in human colon mucosa.  相似文献   

17.
To elucidate the mode of action of dominant mutant connexins in causing inherited skin diseases, transgenic mice were produced that express the true Vohwinkel syndrome-associated mutant Cx26 (D66H), from a keratin 10 promoter, specifically in the suprabasal epidermal keratinocytes. Following birth, the transgenic mice developed keratoderma similar to that of human carriers of Cx26 (D66H). Expression of the transgene resulted in a loss of Cx26 and Cx30 at intercellular junctions of epidermal keratinocytes and accumulation of these connexins in the cytoplasm. Injection of primary mouse keratinocytes with Lucifer Yellow showed no difference in terms of dye spreading between transgenic and non transgenic keratinocytes in vitro. Expression of the mutant Cx26 (D66H) did not interfere with the formation of the epidermal water barrier during late embryonic development. Attempts to produce transgenic mice expressing the wild type form of Cx26 from the K10 promoter failed to produce viable animals although transgenic embryos were recovered at days 9 and 12 of gestation, suggesting that the transgene might be embryonic lethal.  相似文献   

18.
KID syndrome (MIM 148210) is an ectodermal dysplasia characterized by the occurrence of localized erythematous scaly skin lesions, keratitis and severe bilateral sensorineural deafness. KID syndrome is inherited as an autosomic dominant disease, due to mutations in the gene encoding gap junction protein GJB2 (connexin 26, Cx26). Cx26 is a component of gap junction channels in the epidermis and in the stria vascularis of the cochlea. These channels play a role in the coordinated exchange of molecules and ions occurring in a wide spectrum of cellular activities. In this paper we describe two patients with Cx26 mutations cause cell death by the alteration of protein trafficking, membrane localization and probably interfering with intracellular ion concentrations. We discuss the pathogenesis of both the hearing and skin phenotypes.  相似文献   

19.
We examined the subcellular localization and function of several Cx26 mutants that exhibit both sensorineural deafness and various skin disease phenotypes. To facilitate these aims, all Cx26 mutants were tagged at the carboxyl-terminal with green fluorescent protein (GFP), which has previously been shown not to affect Cx26 transport, assembly or function. In this article we focus on two point mutations (R75W and ΔE42) that occur in the first extracellular loop region of Cx26, a region hypothesized to be critical for correct hemichannel docking between contacting cells. In gap junctional intercellular communication (GJIC)-deficient HeLa cells, both R75W-GFP and ΔE42-GFP were transported to the cell surface and assembled into gap junction-like structures. Neither R75W-GFP nor ΔE42-GFP formed gap junctions that were permeable to Lucifer Yellow suggesting they are loss-of-function mutations. We also examined the phenotype of these two mutations in a rat epidermal keratinocyte (REK) cell line that is capable of undergoing differentiation. Using antibodies against several members of the connexin family reportedly expressed by epidermal keratinocytes, we found these cells endogenously expressed Cx43 and Cx26 but not Cx30, Cx32, or Cx37. When expressed in REK cells, similar to in HeLa cells, R75W-GFP and ΔE42-GFP were assembled at the cell surface into structures that resembled gap junctions. Future experiments will examine the effect of the Cx26 mutants on the function and differentiation of these epidermal keratinocytes.  相似文献   

20.
A new member of the connexin gene family has been identified and designated rat connexin-31 (Cx31) based on its predicted molecular mass of 30,960 daltons. Cx31 is 270 amino acids long and is coded for by a single copy gene. It is expressed as a 1.7-kilobase mRNA that is detected in placenta, Harderian gland, skin, and eye. Cx31 is highly conserved and can be detected in species as distantly related to rat as Xenopus laevis. It exhibits extensive sequence similarity to the previously identified connexins, 58, 50, and 40% amino acid identity to Cx26, Cx32, and Cx43, respectively. When conservation of predicted phosphorylation sites is used to adjust the alignment of Cx31 to other connexins, a unique alignment of three predicted protein kinase C phosphorylation sites near the carboxyl terminus of Cx31 with three sites at the carboxyl terminus of Cx43 is revealed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号