首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mitochondrial encephalopathy, lactic acidosis and strokelike episodes (MELAS) syndrome is a mitochondrial disorder characterized by a wide variety of clinical presentations and a multisystemic organ involvement. In this study, we report a Tunisian girl with clinical features of MELAS syndrome who was negative for the common m.3243A>G mutation, but also for the reported mitochondrial DNA (mtDNA) mutations and deletions. Screening of the entire mtDNA genome showed several known mitochondrial variants besides to a novel transition m.1640A>G affecting a wobble adenine in the anticodon stem region of the tRNAVal. This nucleotide was conserved and it was absent in 150 controls suggesting its pathogenicity. In addition, no mutations were found in the nuclear polymerase gamma-1 gene (POLG1). These results suggest further investigation nuclear genes encoding proteins responsible for stability and structural components of the mtDNA or to the oxidative phosphorylation machinery to explain the phenotypic variability in the studied family.  相似文献   

2.
3.
The pathobiochemical pathways determining the wide variability in phenotypic expression of mitochondrial DNA (mtDNA) mutations are not well understood. Most pathogenic mtDNA mutations induce a general defect in mitochondrial respiration and thereby ATP synthesis. Yet phenotypic expression of the different mtDNA mutations shows large variations that are difficult to reconcile with ATP depletion as sole pathogenic factor, implying that additional mechanisms contribute to the phenotype. Here, we use DNA microarrays to identify changes in nuclear gene expression resulting from the presence of the A3243G diabetogenic mutation and from a depletion of mtDNA (rho0 cells). We find that cells respond mildly to these mitochondrial states with both general and specific changes in nuclear gene expression. This observation indicates that cells can sense the status of mtDNA. A number of genes show divergence in expression in rho0 cells compared to cells with the A3243G mutation, such as genes involved in oxidative phosphorylation. As a common response in A3243G and rho0 cells, mRNA levels for extracellular matrix genes are up-regulated, while the mRNA levels of genes involved in ubiquitin-mediated protein degradation and in ribosomal protein synthesis is down-regulated. This reduced expression is reflected at the level of cytosolic protein synthesis in both A3243G and rho0 cells. Our finding that mitochondrial dysfunction caused by different mutations affects nuclear gene expression in partially distinct ways suggests that multiple pathways link mitochondrial function to nuclear gene expression and contribute to the development of the different phenotypes in mitochondrial disease.  相似文献   

4.
Many pathogenic mitochondrial DNA mutations are heteroplasmic, with a mixture of mutated and wild-type mtDNA present within individual cells. The severity and extent of the clinical phenotype is largely due to the distribution of mutated molecules between cells in different tissues, but mechanisms underpinning segregation are not fully understood. To facilitate mtDNA segregation studies we developed assays that measure m.3243A>G point mutation loads directly in hundreds of individual cells to determine the mechanisms of segregation over time. In the first study of this size, we observed a number of discrete shifts in cellular heteroplasmy between periods of stable heteroplasmy. The observed patterns could not be parsimoniously explained by random mitotic drift of individual mtDNAs. Instead, a genetically metastable, heteroplasmic mtDNA segregation unit provides the likely explanation, where stable heteroplasmy is maintained through the faithful replication of segregating units with a fixed wild-type/m.3243A>G mutant ratio, and shifts occur through the temporary disruption and re-organization of the segregation units. While the nature of the physical equivalent of the segregation unit remains uncertain, the factors regulating its organization are of major importance for the pathogenesis of mtDNA diseases.  相似文献   

5.
The mitochondrial DNA m.3243A > G mutation is well-known to cause a variety of clinical phenotypes, including diabetes, deafness, and osteoporosis. Here, we report isolation and expansion of urine-derived stem cells (USCs) from patients carrying the m.3243A > G mutation, which demonstrate bimodal heteroplasmy. USCs with high levels of m.3243A > G mutation displayed abnormal mitochondrial morphology and function, as well as elevated ATF5-dependent mitochondrial unfolded protein response (UPRmt), together with reduced Wnt/β-catenin signaling and osteogenic potentials. Knockdown of ATF5 in mutant USCs suppressed UPRmt, improved mitochondrial function, restored expression of GSK3B and WNT7B, and rescued osteogenic potentials. These results suggest that ATF5-dependent UPRmt could be a core disease mechanism underlying mitochondrial dysfunction and osteoporosis related to the m.3243A > G mutation, and therefore could be a novel putative therapeutic target for this genetic disorder.Subject terms: Mechanisms of disease, Diabetes  相似文献   

6.
We report here the characterization of a four-generation Han Chinese family with maternally transmitted diabetes mellitus. Six (two males/four females) of eight matrilineal relatives in this family exhibited diabetes. The age of onset in diabetes varies from 15 years to 33 years, with an average of 26 years. Two of affected matrilineal relatives also exhibited hearing impairment. Molecular analysis of mitochondrial DNA (mtDNA) showed the presence of heteroplasmic tRNA(Lue(UUR)) A3243G mutation, ranging from 35% to 58% of mutations in blood cells of matrilineal relatives. The levels of heteroplasmic A3243G mutation seem to be correlated with the severity and age-at-onset of diabetes in this family. Sequence analysis of the complete mitochondrial genome in this pedigree revealed the presence of the A3243G mutation and 38 other variants belonging to the Eastern Asian haplogroup M7C. However, none of other mtDNA variants are evolutionarily conserved and implicated to have significantly functional consequence. Thus, the A3243G mutation is the sole pathogenic mtDNA mutation associated with diabetes in this Chinese family.  相似文献   

7.
Pathogenic mitochondrial DNA mutations are common in the general population   总被引:4,自引:2,他引:2  
Mitochondrial DNA (mtDNA) mutations are a major cause of genetic disease, but their prevalence in the general population is not known. We determined the frequency of ten mitochondrial point mutations in 3168 neonatal-cord-blood samples from sequential live births, analyzing matched maternal-blood samples to estimate the de novo mutation rate. mtDNA mutations were detected in 15 offspring (0.54%, 95% CI = 0.30–0.89%). Of these live births, 0.00107% (95% CI = 0.00087–0.0127) harbored a mutation not detected in the mother's blood, providing an estimate of the de novo mutation rate. The most common mutation was m.3243A→G. m.14484T→C was only found on sub-branches of mtDNA haplogroup J. In conclusion, at least one in 200 healthy humans harbors a pathogenic mtDNA mutation that potentially causes disease in the offspring of female carriers. The exclusive detection of m.14484T→C on haplogroup J implicates the background mtDNA haplotype in mutagenesis. These findings emphasize the importance of developing new approaches to prevent transmission.  相似文献   

8.
The pathomechanisms underlying oxidative phosphorylation (OXPHOS) diseases are not well-understood, but they involve maladaptive changes in mitochondria-nucleus communication. Many studies on the mitochondria-nucleus cross-talk triggered by mitochondrial dysfunction have focused on the role played by regulatory proteins, while the participation of miRNAs remains poorly explored. MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes) is mostly caused by mutation m.3243A>G in mitochondrial tRNALeu(UUR) gene. Adverse cardiac and neurological events are the commonest causes of early death in m.3243A>G patients. Notably, the incidence of major clinical features associated with this mutation has been correlated to the level of m.3243A>G mutant mitochondrial DNA (heteroplasmy) in skeletal muscle. In this work, we used a transmitochondrial cybrid model of MELAS (100% m.3243A>G mutant mitochondrial DNA) to investigate the participation of miRNAs in the mitochondria-nucleus cross-talk associated with OXPHOS dysfunction. High-throughput analysis of small-RNA-Seq data indicated that expression of 246 miRNAs was significantly altered in MELAS cybrids. Validation of selected miRNAs, including miR-4775 and miR-218-5p, in patient muscle samples revealed miRNAs whose expression declined with high levels of mutant heteroplasmy. We show that miR-218-5p and miR-4775 are direct regulators of fetal cardiac genes such as NODAL, RHOA, ISL1 and RXRB, which are up-regulated in MELAS cybrids and in patient muscle samples with heteroplasmy above 60%. Our data clearly indicate that TGF-β superfamily signaling and an epithelial-mesenchymal transition-like program are activated in MELAS cybrids, and suggest that down-regulation of miRNAs regulating fetal cardiac genes is a risk marker of heart failure in patients with OXPHOS diseases.  相似文献   

9.

Background and objective

Mutations of mitochondrial DNA are associated with diabetes mellitus (DM). The present case–control study aimed to investigate the mutations of mitochondrial DNA in DM patients of Chinese Han ethnicity.

Methods and results

A total of 770 DM patients and 309 healthy control individuals were enrolled. The mitochondrial DNA was extracted from blood cells and analyzed by the polymerase chain reaction–restriction fragment length polymorphism assay. In the diabetes group, there were 13 (1.69%) individuals carrying the mt3243 A → G mutation while none of the healthy control had this mutation. Though the 14709, 3316, 3394, and 12026 mutation variants were identified in 9, 17, 18 and 28 in DM patients respectively, there were no significant differences compared with control group. And the 3256, 8296, 8344, 8363, 3426 and 12258 mutations were not detected in either group. In the diabetes group, two double mutations were identified: A3243G+T3394C and A3243G+A12026G.

Conclusion

Our data suggested that mitochondrial gene tRNALeu(UUR) 3243 A → G mutation may be one risk of prevalence of DM and associated with worse clinical status in Chinese Han population.  相似文献   

10.
V W Liu  C Zhang    P Nagley 《Nucleic acids research》1998,26(5):1268-1275
In 60 human tissue samples (encompassing skeletal muscle, heart and kidney) obtained from subjects aged from under 1 to 90 years, we used quantitative PCR procedures to quantify mitochondrial DNA (mtDNA) molecules carrying the 4977 bp deletion (mtDNA4977) and 3243 A-->G base substitution. In addition, the prevalence of multiple mtDNA deletions was assessed in a semi-quantitative manner. For all three tissues, the correlations between the accumulation of the particular mtDNA mutations and age of the subject are highly significant. However, differential extents of accumulation of the two specific mutations in the various tissues were observed. Thus, the mean abundance (percentage of mutant mtDNA out of total mtDNA) of mtDNA4977in a subset of age-matched adults is substantially higher in skeletal muscle than in heart and kidney. However, the mean abundance of the 3243 A-->G mutation in skeletal muscle was found to be lower than that in heart and kidney. Visualisation of arrays of PCR products arising from multiple mtDNA deletions in DNA extracted from adult skeletal muscle, was readily made after 30 cycles of PCR. By contrast, in DNA extracted from adult heart or kidney, amplification for 35 cycles of PCR was required to detect multiple mtDNA deletions. Although such multiple deletions are less abundant in heart and kidney than in skeletal muscle, in all tissue extracts there are unique patterns of bands, even from different tissues of the same subject. The differential accumulation of mtDNA4977, other mtDNA deletions and the 3243 A-->G mutation in the three tissues analysed presumably reflects different metabolic and senescence characteristics of these various tissues.  相似文献   

11.
Mitochondrial encephalopathy, lactic acidosis and strokelike episodes (MELAS) syndrome is a mitochondrial disorder characterized by a wide variety of clinical presentations and a multisystemic organ involvement. In this study, we report a Tunisian girl with clinical features of MELAS syndrome who was negative for the common m.3243A>G mutation, but also for the reported mitochondrial DNA (mtDNA) mutations and deletions. Screening of the entire mtDNA genome showed several known mitochondrial variants besides to a novel transition m.1640A>G affecting a wobble adenine in the anticodon stem region of the tRNA(Val). This nucleotide was conserved and it was absent in 150 controls suggesting its pathogenicity. In addition, no mutations were found in the nuclear polymerase gamma-1 gene (POLG1). These results suggest further investigation nuclear genes encoding proteins responsible for stability and structural components of the mtDNA or to the oxidative phosphorylation machinery to explain the phenotypic variability in the studied family.  相似文献   

12.
《Endocrine practice》2020,26(2):241-246
Objective: Maternally inherited diabetes and deafness (MIDD) is a rare diabetic syndrome mainly caused by a point mutation in the mitochondrial DNA (mtDNA), mt3243 adenine to guanine (A>G). The objective of this paper is to review the genetic inheritance, clinical manifestations, and treatment of patients with MIDD.Methods: The current review used a literature search of scientific papers on this rare syndrome.Results: mtDNA is primarily inherited through the maternal oocyte; therefore, the genetic abnormalities in MIDD are associated with maternal inheritance. Mitochondria contain circular mtDNA, which codes for various mitochondrial genes. The mtDNA can be heteroplasmic, containing more than one type of mtDNA sequence; if one of the mtDNAs contains the mt3243 A>G mutation, a patient may develop MIDD. Patients can inherit different amounts of mutated mtDNA and normal mtDNA that affect the severity of the clinical manifestations of MIDD. The most common clinical manifestations include diabetes mellitus, deafness, ophthalmic disease, cardiac disease, renal disease, gastrointestinal disease, short stature, and myopathies. In order to effectively treat patients with MIDD, it is important to recognize the underlying pathophysiology of this specific form of diabetes and the pathophysiology associated with the organ-specific complications present in this disease.Conclusion: The heteroplasmic inheritance of mutated mtDNA plays an important role in the clinical manifestations of various mitochondrial diseases, specifically MIDD. This review will alert endocrinologists of the signs and symptoms of MIDD and important clinical considerations when managing this disease.Abbreviations: ATP = adenosine triphosphate; CoQ10 = coenzyme Q10; MELAS = mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke; MIDD = maternally inherited diabetes and deafness; mtDNA = mitochondrial DNA; tRNA = transfer ribonucleic acid; ROS = reactive oxygen species; T2DM = type 2 diabetes mellitus  相似文献   

13.
Segregation of mitochondrial DNA (mtDNA) is an important underlying pathogenic factor in mtDNA mutation accumulation in mitochondrial diseases and aging, but the molecular mechanisms of mtDNA segregation are elusive. Lack of high-throughput single-cell mutation load assays lies at the root of the paucity of studies in which, at the single-cell level, mitotic mtDNA segregation patterns have been analyzed. Here we describe development of a novel fluorescence-based, non-gel PCR restriction fragment length polymorphism method for single-cell A3243G mtDNA mutation load measurement. Results correlated very well with a quantitative in situ Padlock/rolling circle amplification-based genotyping method. In view of the throughput and accuracy of both methods for single-cell A3243G mtDNA mutation load determination, we conclude that they are well suited for segregation analysis.  相似文献   

14.
The accumulation of heteroplasmic mitochondrial DNA (mtDNA) deletions and single nucleotide variants (SNVs) is a well-accepted facet of the biology of aging, yet comprehensive mutation spectra have not been described. To address this, we have used next generation sequencing of mtDNA-enriched libraries (Mito-Seq) to investigate mtDNA mutation spectra of putamen from young and aged donors. Frequencies of the “common” deletion and other “major arc” deletions were significantly increased in the aged cohort with the fold increase in the frequency of the common deletion exceeding that of major arc deletions. SNVs also increased with age with the highest rate of accumulation in the non-coding control region which contains elements necessary for translation and replication. Examination of predicted amino acid changes revealed a skew towards pathogenic SNVs in the coding region driven by mutation bias. Levels of the pathogenic m.3243A>G tRNA mutation were also found to increase with age. Novel multimeric tandem duplications that resemble murine control region multimers and yeast ρ mtDNAs, were identified in both young and aged specimens. Clonal ∼50 bp deletions in the control region were found at high frequencies in aged specimens. Our results reveal the complex manner in which the mitochondrial genome alters with age and provides a foundation for studies of other tissues and disease states.  相似文献   

15.
Clonally expanded mitochondrial DNA (mtDNA) deletions accumulate with age in human substantia nigra (SN) and high levels cause respiratory chain deficiency. In other human tissues, mtDNA point mutations clonally expand with age. Here, the abundance of mtDNA point mutations within single SN neurons from aged controls was investigated. From 31 single cytochrome c oxidase normal SN neurons, only one clonally expanded mtDNA point mutation was identified, suggesting in these neurons mtDNA point mutations occur rarely, whereas mtDNA deletions are frequently observed. This contrasts observations in mitotic tissues and suggests that different forms of mtDNA maintenance may exist in these two cell types.  相似文献   

16.
To evaluate eight frequently encountered mitochondrial DNA (mtDNA) point mutations (A3243G, T8993G/C, A8344G, A1555G, G11778A, G3460A and T14484C) in Chinese, we recruited 1559 sporadic patients suspected of mitochondrial diseases and 206 family members. In suspected patients, 158 cases were detected with one of these eight mtDNA mutations (10.1%). A3243G was the most common mtDNA mutation both in suspected patients (9.4%) and in the relatives (34.2%). In addition, the ratios of A3243G (mutant/wild-type) and A8344G were significantly correlated with the patients’ age of examination. Moreover, in 76 unrelated probands, the ratio of A3243G was correlated well with their seizures and myopathies.  相似文献   

17.
The A3243G mutation in the human mitochondrial tRNALeu(UUR) gene causes a number of human diseases. This mutation reduces the level and fraction of aminoacylated tRNALeu(UUR) and eliminates nucleotide modification at the wobble position of the anticodon. These deficiencies are associated with mitochondrial translation defects that result in decreased levels of mitochondrial translation products and respiratory chain enzyme activities. We have suppressed the respiratory chain defects in A3243G mutant cells by overexpressing human mitochondrial leucyl-tRNA synthetase. The rates of oxygen consumption in suppressed cells were directly proportional to the levels of leucyl-tRNA synthetase. Fifteenfold higher levels of leucyl-tRNA synthetase resulted in wild-type respiratory chain function. The suppressed cells had increased steady-state levels of tRNALeu(UUR) and up to threefold higher steady-state levels of mitochondrial translation products, but did not have rates of protein synthesis above those in parental mutant cells. These data suggest that suppression of the A3243G mutation occurred by increasing protein stability. This suppression of a tRNA gene mutation by increasing the steady-state levels of its cognate aminoacyl-tRNA synthetase is a model for potential therapies for human pathogenic tRNA mutations.  相似文献   

18.
Mitochondrial dysfunction has repeatedly been reported associated with type 2 diabetes mellitus (T2DM) and metabolic syndrome (MS), as have mitochondrial DNA (mtDNA) tRNA and duplication mutations and mtDNA haplogroup lineages. We identified 19 Taiwanese T2DM and MS pedigrees from Taiwan, with putative matrilineal transmission, one of which harbored the pathogenic mtDNA tRNALeu(UUR) nucleotide (nt) 3243A>G mutation on the N9a3 haplogroup background. We then recruited three independent Taiwanese cohorts, two from Taipei (N?=?498, mean age 52 and N?=?1002, mean age 44) and one from a non-urban environment (N?=?501, mean age 57). All three cohorts were assessed for an array of metabolic parameters, their mtDNA haplogroups determined, and the haplogroups correlated with T2DM/MS phenotypes. Logistic regression analysis revealed that mtDNA haplogroups D5, F4, and N9a conferred T2DM protection, while haplogroups F4 and N9a were risk factors for hypertension (HTN), and F4 was a risk factor for obesity (OB). Additionally, the 5263C>T (ND2 A165V) variant commonly associated with F4 was associated with hypertension (HTN). Cybrids were prepared with macro-haplogroup N (defined by variants m.ND3 10398A (114T) and m.ATP6 8701A (59T)) haplogroups B4 and F1 mtDNAs and from macro-haplogroup M (variants m.ND3 10398G (114A) and m.ATP6 8701G (59A)) haplogroup M9 mtDNAs. Additionally, haplogroup B4 and F1 cybrids were prepared with and without the mtDNA variant in ND1 3394T>C (Y30H) reported to be associated with T2DM. Assay of mitochondria complex I in these cybrids revealed that macro-haplogroup N cybrids had lower activity than M cybrids, that haplogroup F cybrids had lower activity than B4 cybrids, and that the ND1 3394T>C (Y30H) variant reduced complex I on both the B4 and F1 background but with very different cumulative effects. These data support the hypothesis that functional mtDNA variants may contribute to the risk of developing T2DM and MS.  相似文献   

19.
Maternally Inherited Diabetes and Deafness (MIDD) is a rare form of diabetes due to defects in mitochondrial DNA (mtDNA). 3243 A>G is the mutation most frequently associated with this condition, but other mtDNA variants have been linked with a diabetic phenotype suggestive of MIDD. From 1989 to 2009, we clinically diagnosed mitochondrial diabetes in 11 diabetic children. Diagnosis was based on the presence of one or more of the following criteria: 1) maculopathy; 2) hearing impairment; 3) maternal heritability of diabetes/impaired fasting glucose and/or hearing impairment and/or maculopathy in three consecutive generations (or in two generations if 2 or 3 members of a family were affected). We sequenced the mtDNA in the 11 probands, in their mothers and in 80 controls. We identified 33 diabetes-suspected mutations, 1/33 was 3243A>G. Most patients (91%) and their mothers had mutations in complex I and/or IV of the respiratory chain. We measured the activity of these two enzymes and found that they were less active in mutated patients and their mothers than in the healthy control pool. The prevalence of hearing loss (36% vs 75-98%) and macular dystrophy (54% vs 86%) was lower in our mitochondrial diabetic adolescents than reported in adults. Moreover, we found a hitherto unknown association between mitochondrial diabetes and celiac disease. In conclusion, mitochondrial diabetes should be considered a complex syndrome with several phenotypic variants. Moreover, deafness is not an essential component of the disease in children. The whole mtDNA should be screened because the 3243A>G variant is not as frequent in children as in adults. In fact, 91% of our patients were mutated in the complex I and/or IV genes. The enzymatic assay may be a useful tool with which to confirm the pathogenic significance of detected variants.  相似文献   

20.
The mutation 3243A-->G is the most common heteroplasmic pathogenic mitochondrial DNA (mtDNA) mutation in humans, but it is not understood why the proportion of this mutation decreases in blood during life. Changing levels of mtDNA heteroplasmy are fundamentally related to the pathophysiology of the mitochondrial disease and correlate with clinical progression. To understand this process, we simulated the segregation of mtDNA in hematopoietic stem cells and leukocyte precursors. Our observations show that the percentage of mutant mtDNA in blood decreases exponentially over time. This is consistent with the existence of a selective process acting at the stem cell level and explains why the level of mutant mtDNA in blood is almost invariably lower than in nondividing (postmitotic) tissues such as skeletal muscle. By using this approach, we derived a formula from human data to correct for the change in heteroplasmy over time. A comparison of age-corrected blood heteroplasmy levels with skeletal muscle, an embryologically distinct postmitotic tissue, provides independent confirmation of the model. These findings indicate that selection against pathogenic mtDNA mutations occurs in a stem cell population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号