首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
探讨单核细胞在炎症因子刺激下通过功能蛋白O-糖基化和p38 MAPK磷酸化、调控其对血管内皮的粘附和侵袭的分子机制。将IFN-γ与LPS体外共刺激后的THP-1细胞加至单层血管内皮细胞EA.hy926共培养,观察单核细胞对血管内皮的粘附和侵袭;并通过测量电阻变化来反应血管内皮通透性的改变。采用Western blot方法检测单核细胞THP-1中p38 MAPK磷酸化的变化,O-GLcNAc糖基转移酶(OGT)和O-GLcNAc糖基化蛋白表达量的变化。分析验证p38 MAPK抑制剂对IFN-γ与LPS诱导的单核细胞对血管内皮粘附和迁移的影响,同时检测OGT、O-GLcNAc糖基化蛋白差异表达的影响。结果显示,IFN-γ与LPS可以共作用促进THP-1对血管内皮的粘附和侵袭,降低血管内皮通透性。同时激活p38 MAPK,此过程与OGT及O-GLcNAc糖基化蛋白表达降低相关。采用p38抑制剂预处理,可逆转上述IFN-γ与LPS诱导的生物学变化。综上,在炎症反应中,单核细胞对血管内皮的粘附和侵袭力的变化受功能蛋白糖基化和磷酸化的双向调控。  相似文献   

4.
We characterized promoter activity of a phenylpropanoid biosynthetic gene encoding 4-coumarate Co-A ligase (4CL), Pta4Clα, from Pinus taeda. Histochemical- and quantitative assays of GUS expression in the vascular tissue were performed using transgenic tobacco plants expressing promoter-GUS reporters. Deletion analysis of the Pta4Clα promoter showed that the region ?524 to ?252, which has two AC elements, controls the high expression levels in ray-parenchyma cells of older tobacco stems. High activity level of the promoter domain of Pta4CLα was also detected in the xylem cells under bending stress. DNA-protein complexes were detected in the reactions of the Pta4CLα promoter fragments with the nuclear proteins of xylem of P. taeda. The AC elements in the Pta4CLα promoter appeared to have individual roles during xylem development that are activated in a coordinated manner in response to stress in transgenic tobacco.  相似文献   

5.
Sterol regulatory element-binding proteins (SREBPs) activate genes of cholesterol and fatty acid metabolism. In each case, a ubiquitous co-regulatory factor that binds to a neighboring recognition site is also required for efficient promoter activation. It is likely that gene- and pathway-specific regulation by the separate SREBP isoforms is dependent on subtle differences in how the individual proteins function with specific co-regulators to activate gene expression. In the studies reported here we extend these observations significantly by demonstrating that SREBPs are involved in both sterol regulation and carbohydrate activation of the FAS promoter. We also demonstrate that the previously implicated Sp1 site is largely dispensable for sterol regulation in established cultured cells, whereas a CCAAT-binding factor/nuclear factor Y is critically important. In contrast, carbohydrate activation of the FAS promoter in primary hepatocytes is dependent upon SREBP and both the Sp1 and CCAAT-binding factor/nuclear factor Y sites. Because 1c is the predominant SREBP isoform expressed in hepatocytes and 1a is more abundant in sterol depleted established cell lines, this suggests that the different SREBP isoforms utilize distinct co-regulatory factors to activate target gene expression.  相似文献   

6.
7.
Nutrient-sensitive pathways regulate both O-GlcNAc transferase (OGT) and AMP-activated protein kinase (AMPK), cooperatively connecting metabolic homeostasis to regulation of numerous intracellular processes essential for life. Similar to phosphorylation, catalyzed by kinases such as AMPK, O-GlcNAcylation is a highly dynamic Ser/Thr-specific post-translational modification of nuclear, cytoplasmic, and mitochondrial proteins catalyzed exclusively by OGT. OGT and AMPK target a multitude of intracellular proteins, with the net effect to protect cells from the damaging effects of metabolic stress. Despite hundreds of studies demonstrating significant overlap in upstream and downstream signaling processes, no study has investigated if OGT and AMPK can directly regulate each other. We show acute activation of AMPK alters the substrate selectivity of OGT in several cell lines and nuclear localization of OGT in C2C12 skeletal muscle myotubes. Nuclear localization of OGT affects O-GlcNAcylation of numerous nuclear proteins and acetylation of Lys-9 on histone 3 in myotubes. AMPK phosphorylates Thr-444 on OGT in vitro; phosphorylation of Thr-444 is tightly associated with AMPK activity and nuclear localization of OGT in myotubes, and phospho-mimetic T444E-OGT exhibits altered substrate selectivity. Conversely, the α- and γ-subunits of AMPK are O-GlcNAcylated, O-GlcNAcylation of the γ1-subunit increases with AMPK activity, and acute inhibition of O-GlcNAc cycling disrupts activation of AMPK. We have demonstrated significant cross-talk between the O-GlcNAc and AMPK systems, suggesting OGT and AMPK may cooperatively regulate nutrient-sensitive intracellular processes that mediate cellular metabolism, growth, proliferation, and/or tissue function.  相似文献   

8.
9.
10.
11.
The ten-eleven translocation (TET) family of dioxygenases (TET1/2/3) converts 5-methylcytosine to 5-hydroxymethylcytosine and provides a vital mechanism for DNA demethylation. However, how TET proteins are regulated is largely unknown. Here we report that the O-linked β-GlcNAc (O-GlcNAc) transferase (OGT) is not only a major TET3-interacting protein but also regulates TET3 subcellular localization and enzymatic activity. OGT catalyzes the O-GlcNAcylation of TET3, promotes TET3 nuclear export, and, consequently, inhibits the formation of 5-hydroxymethylcytosine catalyzed by TET3. Although TET1 and TET2 also interact with and can be O-GlcNAcylated by OGT, neither their subcellular localization nor their enzymatic activity are affected by OGT. Furthermore, we show that the nuclear localization and O-GlcNAcylation of TET3 are regulated by glucose metabolism. Our study reveals the differential regulation of TET family proteins by OGT and a novel link between glucose metabolism and DNA epigenetic modification.  相似文献   

12.
13.
14.
Yeh CC  Kao SJ  Lin CC  Wang SD  Liu CJ  Kao ST 《Life sciences》2007,80(20):1821-1831
To investigate the modulation of lung local immune responses of hesperidin (HES) on the acute lung inflammation induced by LPS in vivo. Mice were challenged with intratracheal lipopolysaccharide (100 μg) 30 min before with treatment hesperidin (200 mg/kg oral administration) or vehicle. After 4 and 24 h, bronchoalveolar lavage fluid was obtained to measure proinflammatory (TNF-α, IL-1β, IL-6), anti-inflammatory (IL-10, IL-4, IL-12) cytokines, chemokines (KC, MCP-1 and MIP-2), total cell counts, nitric oxide production, and proteins. Lung histology was performed in inflated-fixed lungs. Hesperidin downregulate the LPS-induced expression of TNF-α, IL-1β, IL-6, KC, MIP-2, MCP-1, and IL-12. It also enhanced the production of IL-4, IL-10. Total leukocyte counts; nitric oxide production, iNOS expression, and proteins were significantly decreased by hesperidin. In vitro, HES suppressed the expression of IL-8 on A549 cells and THP-1 cells, the expression of TNF-α, IL-1β, and IL-6 on THP-1 cells, the expression of ICAM-1 and VCAM-1 on A549 cells which effect cell adhesion function. The suppression of those molecules is controlled by NF-κB and AP-1, which are activated by IκB and MAPK pathways. HES inhibits those pathways, thereby suppressing the expression of IL-8, TNFα, IL-1β, IL-6, IL-12, ICAM-1 and VCAM-1. This study indicates that HES had a markedly immunomodulatory effect in a clinically relevant model of ARDS. Nevertheless, further investigations are required to determine the potential clinical usefulness of HES in the adjunctive therapy of ARDS.  相似文献   

15.
16.
Apolipoprotein F (ApoF) regulates cholesteryl ester transfer protein activity. We previously observed that hepatic APOF mRNA levels are decreased by high fat, cholesterol-enriched diets. Here we show in human liver C3A cells that APOF mRNA levels are reduced by agonists of LXR and PPARα nuclear receptors. This negative regulation requires co-incubation with the RXR agonist, retinoic acid. Bioinformatic analysis of the ~2 kb sequence upstream of the APOF promoter identified one potential LXR and 4 potential PPARα binding sites clustered between nucleotides −2007 and −1961. ChIP analysis confirmed agonist-dependent binding of LXRα, PPARα, and RXRα to this hormone response element complex (HREc). A luciferase reporter containing the 2 kb 5′ APOF sequence was negatively regulated by LXR and PPARα ligands as seen in cells. This regulation was maintained in constructs lacking the ~1700 nucleotides between the HREc and the APOF proximal promoter. Mutations of the HREc that disrupted LXRα and PPARα binding led to the loss of reporter construct inhibition by agonists of these nuclear receptors. siRNA knockdown studies showed that APOF gene regulation by LXRα or PPARα agonists did not require an interaction between these two nuclear receptors. Thus, APOF is subject to negative regulation by agonist-activated LXR or PPARα nuclear receptors binding to a regulatory element ~1900 bases 5′ to the APOF promoter. High fat, cholesterol-enriched diets likely reduce APOF gene expression via these receptors interacting at this regulatory site.  相似文献   

17.
18.
The present study was conducted to see the role of NF-κB in virulent (Mycobacterium tuberculosis H37Rv) and avirulent (M. tuberculosis H37Ra) mycobacterial infection in THP-1 cells. To inactivate NF-κB, pCMV-IκBαM dn containing THP-1 cell line was generated which showed marked increase in apoptosis with M. tuberculosis H37Rv and M. tuberculosis H37Ra. Infected THP-1-IκBαM dn cells showed decrease in mitochondrial membrane potential, cytochrome c release, activation of caspase-3 and enhanced TNF-α production. Increase in apoptosis of infected THP-1-IκBαM dn cells resulted in inhibition of intracellular mycobacterial growth. Differential NF-κB activation potential was observed with M. tuberculosis H37Rv and M. tuberculosis H37Ra. Both the strains activated NF-κB after 4 h in THP-1 cells however after 48 h only M. tuberculosis H37Rv activated NF-κB which lead to up-regulation of bcl-2 family anti-apoptotic member, bfl-1/A1. Our results indicated that NF-κB activation may be a determinant factor for the success of virulent mycobacteria within macrophages.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号