首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The open reading frame rv1364c of Mycobacterium tuberculosis, which regulates the stress-dependent σ factor, σ(F), has been analyzed structurally and functionally. Rv1364c contains domains with sequence similarity to the RsbP/RsbW/RsbV regulatory system of the stress-response σ factor of Bacillus subtilis. Rv1364c contains, sequentially, a PAS domain (which shows sequence similarity to the PAS domain of the B. subtilis RsbP protein), an active phosphatase domain, a kinase (anti-σ(F) like) domain and?a C-terminal anti-σ(F) antagonist like domain. The crystal structures of two PAS domain constructs (at 2.3 and 1.6??) and a phosphatase/kinase dual domain construct (at 2.6??) are described. The PAS domain is shown to bind palmitic acid but to have 100 times greater affinity for palmitoleic acid. The full-length protein can exist in solution as both monomer and dimer. We speculate that a switch between monomer and dimer, possibly resulting from fatty acid binding,?affects the accessibility of the serine of the C-terminal, anti-σ(F) antagonist domain for dephosphorylation by the phosphatase domain thus indirectly altering the availability of σ(F).  相似文献   

2.
3.
In this study, Rv2613c, a protein that is encoded by the open reading frame Rv2613c in Mycobacterium tuberculosis H37Rv, was expressed, purified, and characterized for the first time. The amino acid sequence of Rv2613c contained a histidine triad (HIT) motif consisting of H-phi-H-phi-H-phi-phi, where phi is a hydrophobic amino acid. This motif has been reported to be the characteristic feature of several diadenosine 5′,5′′′-P1,P4-tetraphosphate (Ap4A) hydrolases that catalyze Ap4A to adenosine 5′-triphosphate (ATP) and adenosine monophosphate (AMP) or 2 adenosine 5′-diphosphate (ADP). However, enzymatic activity analyses for Rv2613c revealed that Ap4A was converted to ATP and ADP, but not AMP, indicating that Rv2613c has Ap4A phosphorylase activity rather than Ap4A hydrolase activity. The Ap4A phosphorylase activity has been reported for proteins containing a characteristic H-X-H-X-Q-phi-phi motif. However, no such motif was found in Rv2613c. In addition, the amino acid sequence of Rv2613c was significantly shorter compared to other proteins with Ap4A phosphorylase activity, indicating that the primary structure of Rv2613c differs from those of previously reported Ap4A phosphorylases. Kinetic analysis revealed that the Km values for Ap4A and phosphate were 0.10 and 0.94 mM, respectively. Some enzymatic properties of Rv2613c, such as optimum pH and temperature, and bivalent metal ion requirement, were similar to those of previously reported yeast Ap4A phosphorylases. Unlike yeast Ap4A phosphorylases, Rv2613c did not catalyze the reverse phosphorolysis reaction. Taken together, it is suggested that Rv2613c is a unique protein, which has Ap4A phosphorylase activity with an HIT motif.  相似文献   

4.
Rv2466c is a key oxidoreductase that mediates the reductive activation of TP053, a thienopyrimidine derivative that kills replicating and non-replicating Mycobacterium tuberculosis, but whose mode of action remains enigmatic. Rv2466c is a homodimer in which each subunit displays a modular architecture comprising a canonical thioredoxin-fold with a Cys19-Pro20-Trp21-Cys22 motif, and an insertion consisting of a four α-helical bundle and a short α-helical hairpin. Strong evidence is provided for dramatic conformational changes during the Rv2466c redox cycle, which are essential for TP053 activity. Strikingly, a new crystal structure of the reduced form of Rv2466c revealed the binding of a C-terminal extension in α-helical conformation to a pocket next to the active site cysteine pair at the interface between the thioredoxin domain and the helical insertion domain. The ab initio low-resolution envelopes obtained from small angle x-ray scattering showed that the fully reduced form of Rv2466c adopts a “closed” compact conformation in solution, similar to that observed in the crystal structure. In contrast, the oxidized form of Rv2466c displays an “open” conformation, where tertiary structural changes in the α-helical subdomain suffice to account for the observed conformational transitions. Altogether our structural, biochemical, and biophysical data strongly support a model in which the formation of the catalytic disulfide bond upon TP053 reduction triggers local structural changes that open the substrate binding site of Rv2466c allowing the release of the activated, reduced form of TP053. Our studies suggest that similar structural changes might have a functional role in other members of the thioredoxin-fold superfamily.  相似文献   

5.
Mycobacteria harbor a unique class of adenylyl cyclases with a complex domain organization consisting of an N-terminal putative adenylyl cyclase domain fused to a nucleotide-binding adaptor shared by apoptotic protease-activating factor-1, plant resistance proteins, and CED-4 (NB-ARC) domain, a tetratricopeptide repeat (TPR) domain, and a C-terminal helix-turn-helix (HTH) domain. The products of the rv0891c-rv0890c genes represent a split gene pair, where Rv0891c has sequence similarity to adenylyl cyclases, and Rv0890c harbors the NB-ARC-TPR-HTH domains. Rv0891c had very low adenylyl cyclase activity so it could represent a pseudoenzyme. By analyzing the genomic locus, we could express and purify Rv0890c and find that the NB-ARC domain binds ATP and ADP, but does not hydrolyze these nucleotides. Using systematic evolution of ligands by exponential enrichment (SELEX), we identified DNA sequences that bound to the HTH domain of Rv0890c. Uniquely, the HTH domain could also bind RNA. Atomic force microscopy revealed that binding of Rv0890c to DNA was sequence independent, and binding of adenine nucleotides to the protein induced the formation of higher order structures that may represent biocrystalline nucleoids. This represents the first characterization of this group of proteins and their unusual biochemical properties warrant further studies into their physiological roles in future.  相似文献   

6.
7.
Rv2613c is a diadenosine 5′,5?-P1,P4-tetraphosphate (Ap4A) phosphorylase from Mycobacterium tuberculosis H37Rv. Sequence analysis suggests that Rv2613c belongs to the histidine triad (HIT) motif superfamily, which includes HIT family diadenosine polyphosphate (ApnA) hydrolases and Ap4A phosphorylases. However, the amino acid sequence of Rv2613c is more similar to that of HIT family ApnA hydrolases than to that of typical Ap4A phosphorylases. Here, we report the crystal structure of Rv2613c, which is the first structure of a protein with ApnA phosphorylase activity, and characterized the structural basis of its catalytic activity. Our results showed that the structure of Rv2613c is similar to those of other HIT superfamily proteins. However, Asn139, Gly146, and Ser147 in the active site of Rv2613c replace the corresponding Gln, Gln, and Thr residues that are normally found in HIT family ApnA hydrolases. Furthermore, analyses of Rv2613c mutants revealed that Asn139, Gly146, and Ser147 are important active-site residues and that Asn139 has a critical role in catalysis. The position of Gly146 might influence the phosphorylase activity. In addition, the tetrameric structure of Rv2613c and the presence of Trp160 might be essential for the formation of the Ap4A binding site. These structural insights into Rv2613c may facilitate the development of novel structure-based inhibitors for treating tuberculosis.  相似文献   

8.
9.
Ribonucleases (RNases) maintain the cellular RNA pool by RNA processing and degradation. In many bacteria, including the human pathogen Mycobacterium tuberculosis (Mtb), the enzymes mediating several central RNA processing functions are still unknown. Here, we identify the hypothetical Mtb protein Rv2179c as a highly divergent exoribonuclease. Although the primary sequence of Rv2179c has no detectable similarity to any known RNase, the Rv2179c crystal structure reveals an RNase fold. Active site residues are equivalent to those in the DEDD family of RNases, and Rv2179c has close structural homology to Escherichia coli RNase T. Consistent with the DEDD fold, Rv2179c has exoribonuclease activity, cleaving the 3′ single-strand overhangs of duplex RNA. Functional orthologs of Rv2179c are prevalent in actinobacteria and found in bacteria as phylogenetically distant as proteobacteria. Thus, Rv2179c is the founding member of a new, large RNase family with hundreds of members across the bacterial kingdom.  相似文献   

10.
Mycobacterium tuberculosis profoundly exploits protein phosphorylation events carried out by serine/threonine protein kinases (STPKs) for its survival and pathogenicity. Forkhead-associated domains (FHA), the phosphorylation-responsive modules, have emerged as prominent players in STPK mediated signaling. In this study, we demonstrate the association of the previously uncharacterized FHA domain-containing protein Rv0019c with cognate STPK PknB. The consequent phosphorylation of Rv0019c is shown to be dependent on the conserved residues in the Rv0019c FHA domain and activation loop of PknB. Furthermore, by creating deletion mutants we identify Thr36 as the primary phosphorylation site in Rv0019c. During purification of Rv0019c from Escherichia coli, the E. coli protein chloramphenicol acetyltransferase (CAT) specifically and reproducibly copurifies with Rv0019c in a FHA domain-dependent manner. On the basis of structural similarity of E. coli CAT with M. tuberculosis PapA5, a protein involved in phthiocerol dimycocerosate biosynthesis, PapA5 is identified as an interaction partner of Rv0019c. The interaction studies on PapA5, purified as an unphosphorylated protein from E. coli, with Rv0019c deletion mutants reveal that the residues N-terminal to the functional FHA domain of Rv0019c are critical for formation of the Rv0019c-PapA5 complex and thus constitute a previously unidentified phosphoindependent binding motif. Finally, PapA5 is shown to be phosphorylated on threonine residue(s) by PknB, whereas serine/threonine phosphatase Mstp completely reverses the phosphorylation. Thus, our data provides initial clues for a possible regulation of PapA5 and hence the phthiocerol dimycocerosate biosynthesis by PknB, either by direct phosphorylation of PapA5 or indirectly through Rv0019c.  相似文献   

11.
The open reading frame Rv2228c from Mycobacterium tuberculosis is predicted to encode a protein composed of two domains, each with individual functions, annotated through sequence similarity searches. The N-terminal domain is homologous with prokaryotic and eukaryotic RNase H domains and the C-terminal domain with α-ribazole phosphatase (CobC). The N-terminal domain of Rv2228c (Rv2228c/N) and the full-length protein were expressed as fusions with maltose binding protein (MBP). Rv2228c/N was shown to have RNase H activity with a hybrid RNA/DNA substrate as well as double-stranded RNase activity. The full-length protein was shown to have additional CobC activity. The crystal structure of the MBP-Rv2228c/N fusion protein was solved by molecular replacement and refined at 2.25-Å resolution (R = 0.182; Rfree = 0.238). The protein is monomeric in solution but associates in the crystal to form a dimer. The Rv2228c/N domain has the classic RNase H fold and catalytic machinery but lacks several surface features that play important roles in the cleavage of RNA/DNA hybrids by other RNases H. The absence of either the basic protrusion of some RNases H or the hybrid binding domain of others appears to be compensated by the C-terminal CobC domain in full-length Rv2228c. The double-stranded-RNase activity of Rv2228c/N contrasts with classical RNases H and is attributed to the absence in Rv2228c/N of a key phosphate binding pocket.The bacterium Mycobacterium tuberculosis is the causative agent of the disease tuberculosis (TB), which kills 2 million to 3 million people worldwide every year. One-third of the world''s population has latent infection, and 10% of these will develop the active form of the disease. The evolution of multidrug-resistant strains and the increase in HIV-related immunocompromisation have led to serious reemergence of the disease. The sequencing and annotation of the M. tuberculosis genome (9) have enabled a fuller evaluation of the biology of this important human pathogen and the identification of new potential targets for anti-TB drug discovery, although annotations are potentially compromised by the absence of direct structural or functional data (5). Some examples of misannotations have already been noted (6, 20, 46).An area of direct relevance to the emergence of drug-resistant strains of M. tuberculosis is that of DNA replication and repair (3). Although many genes homologous to the DNA repair machinery of other organisms can be recognized, some apparent absences have been noted (29). Here, we focus on an unusual gene product, Rv2228c, which is annotated as a bifunctional, two-domain protein, comprising an N-terminal RNase H domain and a C-terminal domain homologous with α-ribazole phosphatase (CobC), presumed to act in vitamin B12 biosynthesis.The RNases H are a family of endonucleases that specifically degrade the RNA of RNA/DNA hybrids (43). These enzymes are found in eukaryotes, bacteria, archaea, and retroviruses, where they have essential roles in DNA replication and repair (11, 17, 19, 22, 32). They are highly variable in size, sequence, and specificity, making classification difficult. Most commonly, they are divided into two classes: type 1 and type 2. The classical type 1 RNase H enzymes are encoded by the rnhA gene and are typically less than 20 kDa in size, although N-terminal and C-terminal extensions frequently provide additional domains that modulate function (8, 44). Eukaryotic RNase HI enzymes, for example, have N-terminal hybrid binding domains that precede the C-terminal catalytic domain (7). The type 2 RNase H enzymes, encoded by the rnhB or rnhC gene, are typically larger and more diverse in sequence but nevertheless have in common a similar RNase H catalytic domain (7).The M. tuberculosis genome contains no classical rnhA gene, although one rnhB gene, encoding Rv2902c, is present. BLAST searches do, however, identify the N-terminal domain of the open reading frame Rv2228c (Rv2228c/N) as having 31% sequence identity with RNase HI from Escherichia coli (EcRNaseH) and 23% identity with human RNase HI (HsRnaseH). This leads to the hypothesis that this domain provides the essential RNase HI activity in M. tuberculosis. The C-terminal domain of Rv2228c presents a puzzle, however. It has 34% sequence identity with the α-ribazole phosphatase CobC of Synechococcus sp., but it is also homologous with PhoE from Bacillus subtilis (34% identity) and Rv3214 from M. tuberculosis (28% identity), both of which have acid phosphatase activity (39, 46). Bifunctional proteins similar to Rv2228c are encoded by the genomes of other Actinomycetales bacteria, including those of the Mycobacterium, Streptomyces, Corynebacterium, and Nocardia genera, and one of these bifunctional proteins, SCO2299 from Streptomyces coelicolor, has RNase HI activity in its N-terminal domain and acid phosphatase activity in its C-terminal domain (34).We undertook the structural and functional characterization of Rv2228c/N in order to establish the function of this domain and the possible significance of its associated C-terminal domain. The crystal structure of Rv2228c/N, determined at 2.25-Å resolution as a maltose binding protein (MBP) fusion protein, reveals a classic RNase H fold, but with structural and functional characteristics that make it most like the archaeal RNase H from Sulfolobus tokodaii and differentiate it from classical RNases H. Functional studies confirm the RNase H activity of Rv2228c/N and show that the C-terminal domain has both acid phosphatase and CobC activity, together with a role in enhancing the RNase H activity of the N-terminal domain.  相似文献   

12.
13.
Tuberculosis (TB) is a major global health threat caused by Mycobacterium tuberculosis (Mtb). It is further fueled by the HIV pandemic and by increasing incidences of multidrug resistant Mtb-strains. Rv2827c, a hypothetical protein from Mtb, has been implicated in the survival of Mtb in the macrophages of the host. The three-dimensional structure of Rv2827c has been determined by the three-wavelength anomalous diffraction technique using bromide-derivatized crystals and refined to a resolution of 1.93 Å. The asymmetric unit of the orthorhombic crystals contains two independent protein molecules related by a non-crystallographic translation. The tertiary structure of Rv2827c comprises two domains: an N-terminal domain displaying a winged helix topology and a C-terminal domain, which appears to constitute a new and unique fold. Based on structural homology considerations and additional biochemical evidence, it could be established that Rv2827c is a DNA-binding protein. Once the understanding of the structure-function relationship of Rv2827c extends to the function of Rv2827c in vivo, new clues for the rational design of novel intervention strategies may be obtained.  相似文献   

14.
The genome of the human pathogen Mycobacterium tuberculosis (Mtb) encodes ~4,400 proteins, but one third of them have unknown functions. We solved the crystal structure of Rv3651, a hypothetical protein with no discernible similarity to proteins with known function. Rv3651 has a three‐domain architecture that combines one cG MP‐specific phosphodiesterases, a denylyl cyclases and F hlA (GAF) domain and two P er‐A RNT‐S im (PAS) domains. GAF and PAS domains are sensor domains that are typically linked to signaling effector molecules. Unlike these sensor‐effector proteins, Rv3651 is an unusual sensor domain‐only protein with highly divergent sequence. The structure suggests that Rv3651 integrates multiple different signals and serves as a scaffold to facilitate signal transfer.  相似文献   

15.
The intracellular infections of Mycobacterium tuberculosis, which is the causative agent of tuberculosis, are regulated by many cyclic dinucleotide signaling. Rv2837c from M. tuberculosis is a soluble, stand-alone DHH-DHHA1 domain phosphodiesterase that down-regulates c-di-AMP through catalytic degradation and plays an important role in M. tuberculosis infections. Here, we report the crystal structure of Rv2837c (2.0 Å), and its complex with hydrolysis intermediate 5′-pApA (2.35 Å). Our structures indicate that both DHH and DHHA1 domains are essential for c-di-AMP degradation. Further structural analysis shows that Rv2837c does not distinguish adenine from guanine, which explains why Rv2837c hydrolyzes all linear dinucleotides with almost the same efficiency. We observed that Rv2837c degraded other c-di-NMPs at a lower rate than it did on c-di-AMP. Nevertheless, our data also showed that Rv2837c significantly decreases concentrations of both c-di-AMP and c-di-GMP in vivo. Our results suggest that beside its major role in c-di-AMP degradation Rv2837c could also regulate c-di-GMP signaling pathways in bacterial cell.  相似文献   

16.
The Rv2477c protein of Mycobacterium tuberculosis (Mtb) belongs to the ATP-binding cassette (ABC) subfamily F that contains proteins with tandem nucleotide-binding domains but lacking transmembrane domains. ABC-F subfamily proteins have been implicated in diverse cellular processes such as translation, antibiotic resistance, cell growth and nutrient sensing. In order to investigate the biochemical characteristics of Rv2477c, we expressed it in Escherichia coli, purified it and characterized its enzymatic functions. We show that Rv2477c displays strong ATPase activity (Vmax = 45.5 nmol/mg/min; Km = 90.5 μM) that is sensitive to orthovanadate. The ATPase activity was maximal in the presence of Mn2+ at pH 5.2. The Rv2477c protein was also able to hydrolyze GTP, TTP and CTP but at lower rates. Glutamate to glutamine substitutions at amino acid residues 185 and 468 in the two Walker B motifs of Rv2477c severely inhibited its ATPase activity. The antibiotics tetracycline and erythromycin, which target protein translation, were able to inhibit the ATPase activity of Rv2477c. We postulate that Rv2477c could be involved in mycobacterial protein translation and in resistance to tetracyclines and macrolides. This is the first report of the biochemical characterization of an ABC-F subfamily protein in Mtb.  相似文献   

17.
Mycobacterium tuberculosis virulence is highly metal‐dependent with metal availability modulating the shift from the dormant to active states of M. tuberculosis infection. Rv0045c from M. tuberculosis is a proposed metabolic serine hydrolase whose folded stability is dependent on divalent metal concentration. Herein, we measured the divalent metal inhibition profile of the enzymatic activity of Rv0045c and found specific divalent transition metal cations (Cu2+ ≥ Zn2+ > Ni2+ > Co2+) strongly inhibited its enzymatic activity. The metal cations bind allosterically, largely affecting values for k cat rather than K M. Removal of the artificial N‐terminal 6xHis‐tag did not change the metal‐dependent inhibition, indicating that the allosteric inhibition site is native to Rv0045c. To isolate the site of this allosteric regulation in Rv0045c, the structures of Rv0045c were determined at 1.8 Å and 2.0 Å resolution in the presence and absence of Zn2+ with each structure containing a previously unresolved dynamic loop spanning the binding pocket. Through the combination of structural analysis with and without zinc and targeted mutagenesis, this metal‐dependent inhibition was traced to multiple chelating residues (H202A/E204A) on a flexible loop, suggesting dynamic allosteric regulation of Rv0045c by divalent metals. Although serine hydrolases like Rv0045c are a large and diverse enzyme superfamily, this is the first structural confirmation of allosteric regulation of their enzymatic activity by divalent metals.  相似文献   

18.
Recent efforts have underlined the role of serine/threonine protein kinases in growth, pathogenesis, and cell wall metabolism in Mycobacterium tuberculosis. Although most kinases have been investigated for their physiological roles, little information is available regarding how serine/threonine protein kinase-dependent phosphorylation regulates the activity of kinase substrates. Herein, we focused on M. tuberculosis Rv2175c, a protein of unknown function, conserved in actinomycetes, and recently identified as a substrate of the PknL kinase. We solved the solution structure of Rv2175c by multidimensional NMR and demonstrated that it possesses an original winged helix-turn-helix motif, indicative of a DNA-binding protein. The DNA-binding activity of Rv2175c was subsequently confirmed by fluorescence anisotropy, as well as in electrophoretic mobility shift assays. Mass spectrometry analyses using a combination of MALDI-TOF and LC-ESI/MS/MS identified Thr9 as the unique phosphoacceptor. This was further supported by complete loss of PknL-dependent phosphorylation of an Rv2175c_T9A mutant. Importantly, the DNA-binding activity was completely abrogated in a Rv2175c_T9D mutant, designed to mimic constitutive phosphorylation, but not in a mutant lacking the first 13 residues. This implies that the function of the N-terminal extension is to provide a phosphoacceptor (Thr9), which, following phosphorylation, negatively regulates the Rv2175c DNA-binding activity. Interestingly, the N-terminal disordered extension, which bears the phosphoacceptor, was found to be restricted to members of the M. tuberculosis complex, thus suggesting the existence of an original mechanism that appears to be unique to the M. tuberculosis complex.In response to its environment, Mycobacterium tuberculosis (M. tb)3 activates or represses the expression of a number of genes to promptly adjust to new conditions. More precisely, during the infection process, cross-talk of signals between the host and the bacterium take place, resulting in reprogramming the host signaling network. Many of these stimuli are transduced in the bacteria via sensor kinases, enabling the pathogen to adapt its cellular response to survive in hostile environments. Although the two-component systems represent the classic prokaryotic mechanism for detection and response to environmental changes, the serine/threonine and tyrosine protein kinases (STPKs) associated with their phosphatases have emerged as important regulatory systems in prokaryotic cells (13). M. tb contains eleven STPKs (4, 5), and most are being investigated for their physiological roles and potential application for future drug development to combat tuberculosis (6). Through phosphorylation these STPKs are also thought to play important functions in cell signaling responses as well as in essential metabolic pathways. The cell wall of M. tb plays a critical role in the defense of this pathogen in the host, and changes in cell wall composition in response to various environmental stimuli are critical to M. tb adaptation during infection. Although little is known regarding the cell wall regulatory mechanisms in M. tb, there is now an increasing body of evidence indicating that these processes largely rely on STPK-dependent mechanisms (79).Moreover, little information on the range of functions regulated by the STPKs is available, and the complicated mycobacterial phosphoproteome is still far from being deciphered. Understanding mycobacterial kinase biology has been severely impeded by the difficulty to identify direct kinase substrates and the subsequent characterization of the phosphorylation site(s). However, several recent studies have reported the identification and characterization of the phosphorylation sites in substrates related to various metabolic pathways in mycobacteria. These include the Fork Head associated-containing protein GarA, a key regulator of the tricarboxylic cycle (10, 11); PbpA, a penicillin-binding protein required for cell division (12); Wag31, a homologue of the cell division protein DivIVA that regulates growth, morphology, and polar cell wall biosynthesis in mycobacteria (13); the β-ketoacyl acyl carrier protein synthase mtFabH, which participates in mycolic acid biosynthesis (9); the anti-anti-sigma factor Rv0516c (14); the alternate sigma factor SigH, which is a central regulator of the response to oxidative stress (15); as well as the essential mycobacterial chaperone GroEL1 (16).Therefore, a further characterization of STPKs substrates is critical to unraveling the mechanisms by which STPK-dependent phosphorylation induces modifications, thus regulating their activity, ultimately conditioning biological responses in mycobacteria. Such studies may also provide the key to designing new inhibitors that target signal transduction pathways specific to M. tb.We recently characterized a novel substrate/kinase pair in M. tb, PknL/Rv2175c (17). pknL is associated with the ∼30-kb dcw (division cell wall) gene cluster, which encompasses several genes involved in cell wall synthesis and cell division (17, 18), raising the possibility that PknL might participate in the regulation of this gene cluster. Moreover, pknL (Rv2176) is adjacent to the Rv2175c gene, encoding a 16-kDa protein of unknown function. We further demonstrated that phosphorylation of the activation loop Thr-173 residue was required for optimal PknL-mediated phosphorylation of Rv2175c. Moreover, Rv2175c belongs to a mycobacterial “core” of 219 genes, identified by macroarray and bioinformatic analysis, common to M. tb- and Mycobacterium leprae-encoding proteins showing no similarity with proteins from other organisms. The presence of Rv2175c as a member of this set of genes emphasizes the importance of Rv2175c in the physiology of M. tb. In this context, we reasoned that the structural determination of Rv2175c would provide a valuable basis for a better understanding of the function of this protein.Therefore, we have undertaken the structural determination of Rv2175 using multidimensional NMR techniques. Herein, we provide strong evidence that Rv2175c is a DNA-binding protein and investigated how phosphorylation of a unique Thr residue in the N-terminal domain of the protein affects its DNA-binding activity.  相似文献   

19.
Toxin-antitoxin systems, ubiquitous in prokaryotic genomes, have been proposed to play an important role in several stress responses. While Mycobacterium tuberculosis contains more than 80 putative TA loci, the roles they play in this pathogen are yet to be studied. Here, we characterize a chromosomal Rv1102c-Rv1103c TA system in M. tuberculosis. We found that the Rv1102c toxin interacts with the Rv1103c antitoxin in a pull-down assay and the yeast two-hybrid system. Rv1102c cleaved the era mRNA in Escherichia coli, and cleavage was inhibited by co-expression of Rv1103c. Heterologous expression of Rv1102c led to growth arrest in E. coli, which was fully recovered only when Rv1103c was co-expressed in cis with Rv1102c, suggesting that the production and assembly of Rv1102c and Rv1103c are tightly linked. Our additional results indicate that translational coupling of the Rv1102c and Rv1103c genes is important for Rv1102c-Rv1103c binding. Finally, we discovered that the expression of Rv1102c induced growth arrest and increased the level of persister cells in Mycobacterium smegmatis. These results suggest that the Rv1102c-Rv1103c TA system could play a role in M. tuberculosis pathogenesis via generating bacilli that survive in the face of multidrug therapy.  相似文献   

20.
Rv2118c belongs to the class of conserved hypothetical proteins from Mycobacterium tuberculosis H37Rv. The crystal structure of Rv2118c in complex with S-adenosyl-l-methionine (AdoMet) has been determined at 1.98 A resolution. The crystallographic asymmetric unit consists of a monomer, but symmetry-related subunits interact extensively, leading to a tetrameric structure. The structure of the monomer can be divided functionally into two domains: the larger catalytic C-terminal domain that binds the cofactor AdoMet and is involved in the transfer of methyl group from AdoMet to the substrate and a smaller N-terminal domain. The structure of the catalytic domain is very similar to that of other AdoMet-dependent methyltransferases. The N-terminal domain is primarily a beta-structure with a fold not found in other methyltransferases of known structure. Database searches reveal a conserved family of Rv2118c-like proteins from various organisms. Multiple sequence alignments show several regions of high sequence similarity (motifs) in this family of proteins. Structure analysis and homology to yeast Gcd14p suggest that Rv2118c could be an RNA methyltransferase, but further studies are required to establish its functional role conclusively. Copyright 12001 Academic Press.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号