首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Recent findings have implicated gp130 receptor ligands, particularly ciliary neurotrophic factor (CNTF), as potential anti-obesity therapeutics. Neuropoietin (NP) is a recently discovered cytokine in the gp130 family that shares functional and structural features with CNTF and signals via the CNTF receptor tripartite complex comprised of CNTFRalpha, LIF receptor, and gp130. NP plays a role in the development of the nervous system, but the effects of NP on adipocytes have not been previously examined. Because CNTF exerts anti-obesogenic effects in adipocytes and NP shares the same receptor complex, we investigated the effects of NP on adipocyte development and insulin action. Using cultured 3T3-L1 adipocytes, we observed that NP has the ability to block adipogenesis in a dose- and time-dependent manner. We also observed that cultured adipocytes, as well as murine adipose tissue, are highly responsive to acute NP treatment. Rodents injected with NP had a substantial increase in STAT3 tyrosine phosphorylation and ERK 1 and 2 activation. We also observed the induction of SOCS-3 mRNA in 3T3-L1 adipocytes following NP treatment. Unlike CNTF, our studies have revealed that NP also substantially attenuates insulin-stimulated glucose uptake in 3T3-L1 adipocytes. In addition, NP blocks insulin action in adipose tissue in vivo. These observations are supported by data demonstrating that NP impairs insulin signaling via decreased activation of both IRS-1 and Akt. In summary, we have observed that both adipocytes in vitro and in vivo are highly responsive to NP, and this cytokine has the ability to affect insulin signaling in fat cells. These novel observations suggest that NP, unlike CNTF, may not be a viable obesity therapeutic.  相似文献   

3.
Cross-talk among gp130 cytokines in adipocytes   总被引:3,自引:0,他引:3  
  相似文献   

4.
Effects of cardiotrophin on adipocytes   总被引:2,自引:0,他引:2  
Cardiotrophin (CT-1) is a naturally occurring protein member of the interleukin (IL)-6 cytokine family and signals through the gp130/leukemia inhibitory factor receptor (LIFR) heterodimer. The formation of gp130/LIFR complex triggers the auto/trans-phosphorylation of associated Janus kinases, leading to the activation of Janus kinase/STAT and MAPK (ERK1 and -2) signaling pathways. Since adipocytes express both gp130 and LIFR proteins and are responsive to other IL-6 family cytokines, we examined the effects of CT-1 on 3T3-L1 adipocytes. Our studies have shown that CT-1 administration results in a dose- and time-dependent activation and nuclear translocation of STAT1, -3, -5A, and -5B as well as ERK1 and -2. We also confirmed the ability of CT-1 to induce signaling in fat cells in vivo. Our studies revealed that neither CT-1 nor ciliary neurotrophic factor treatment affected adipocyte differentiation. However, acute CT-1 treatment caused an increase in SOCS-3 mRNA in adipocytes and a transient decrease in peroxisome proliferator-activated receptor gamma (PPARgamma) mRNA that was regulated by the binding of STAT1 to the PPARgamma2 promoter. The effects of CT-1 on SOCS-3 and PPARgamma mRNA were independent of MAPK activation. Chronic administration of CT-1 to 3T3-L1 adipocytes resulted in a decrease of both fatty acid synthase and insulin receptor substrate-1 protein expression yet did not effect the expression of a variety of other adipocyte proteins. Moreover, chronic CT-1 treatment resulted in the development of insulin resistance as judged by a decrease in insulin-stimulated glucose uptake. In summary, CT-1 is a potent regulator of signaling in adipocytes in vitro and in vivo, and our current efforts are focused on determining the role of this cardioprotective cytokine on adipocyte physiology.  相似文献   

5.
Fusion proteins of the extracellular parts of cytokine receptors, also known as cytokine traps, turned out to be promising cytokine inhibitors useful in anti-cytokine therapies. Here we present newly designed cytokine traps for murine and human leukemia inhibitory factor (LIF) as prototypes for inhibitors targeting cytokines that signal through a heterodimer of two signaling receptors of the glycoprotein 130 (gp130) family. LIF signals through a receptor heterodimer of LIF receptor (LIFR) and gp130 and induces the tyrosine phosphorylation of STAT3 leading to target gene expression. The analysis of various receptor fusion and deletion constructs revealed that a truncated form of the murine LIF receptor consisting of the first five extracellular domains was a potent inhibitor for human LIF. For the efficient inhibition of murine LIF, the cytokine-binding module of murine gp130 had to be fused to the first five domains of murine LIFR generating mLIF-RFP (murine LIFR fusion protein). The tyrosine phosphorylation of STAT3 and subsequent gene induction induced by human or murine LIF are completely blocked by the respective inhibitor. Furthermore, both inhibitors are specific and do not alter the bioactivities of the closely related cytokines interleukin (IL)-6 and oncostatin M. The gained knowledge on the construction of LIF inhibitors can be transferred to the design of inhibitors for related cytokines such as IL-31, IL-27, and oncostatin M for the treatment of inflammatory and malignant diseases.  相似文献   

6.
He W  Gong K  Zhu G  Smith DK  Ip NY 《FEBS letters》2002,514(2-3):214-218
Ciliary neurotrophic factor (CNTF) is a member of the gp130 family of cytokines. The functional receptor complex of CNTF is composed of the CNTF receptor alpha (CNTFR), gp130 and the leukemia inhibitory factor receptor (LIFR). Three regions on CNTF have been identified as binding sites for its receptors. The ligand-receptor interactions are mediated through the cytokine binding domains (CBDs) and/or the immunoglobulin-like domains of the receptors. However, in the case of CNTF, the precise nature of the protein-protein contacts in the signaling complex has not yet been resolved. In this study, we provide the first demonstration that the membrane distal CBD (CBD1) of LIFR associates in vitro with soluble CNTFR in the absence of CNTF. Moreover, purified CBD1 partially blocks CNTF signaling, but not that of interleukin-6 or LIF, in human embryonal carcinoma cell line Ntera/D1 cells. These data raise the possibility that LIFR has the capability to form a ligand-free complex with CNTFR.  相似文献   

7.
Ciliary neurotrophic factor (CNTF) is a neurotrophic factor with therapeutic potential for neurodegenerative diseases. Moreover, therapeutic application of CNTF reduced body weight in mice and humans. CNTF binds to high or low affinity receptor complexes consisting of CNTFR·gp130·LIFR or IL-6R·gp130·LIFR, respectively. Clinical studies of the CNTF derivative Axokine revealed intolerance at higher concentrations, which may rely on the low-affinity binding of CNTF to the IL-6R. Here, we aimed to generate a CNTFR-selective CNTF variant (CV). CV-1 contained the single amino acid exchange R28E. Arg28 is in close proximity to the CNTFR binding site. Using molecular modeling, we hypothesized that Arg28 might contribute to IL-6R/CNTFR plasticity of CNTF. CV-2 to CV-5 were generated by transferring parts of the CNTFR-binding site from cardiotrophin-like cytokine to CNTF. Cardiotrophin-like cytokine selectively signals via the CNTFR·gp130·LIFR complex, albeit with a much lower affinity compared with CNTF. As shown by immunoprecipitation, all CNTF variants retained the ability to bind to CNTFR. CV-1, CV-2, and CV-5, however, lost the ability to bind to IL-6R. Although all variants induced cytokine-dependent cellular proliferation and STAT3 phosphorylation via CNTFR·gp130·LIFR, only CV-3 induced STAT3 phosphorylation via IL-6R·gp130·LIFR. Quantification of CNTF-dependent proliferation of CNTFR·gp130·LIFR expressing cells indicated that only CV-1 was as biologically active as CNTF. Thus, the CNTFR-selective CV-1 will allow discriminating between CNTFR- and IL-6R-mediated effects in vivo.  相似文献   

8.
The neurally active cytokine leukemia inhibitory factor (LIF) signals through a bipartite receptor complex composed of LIF receptor alpha (LIFR) and gp130. gp130 and LIFR contain consensus binding motifs for the protein tyrosine phosphatase SHP-2 surrounding tyrosines 118 and 115 (Y118 and Y115) of their cytoplasmic domains, respectively. These sites are necessary for maximal activation of mitogen-activated protein kinase (MAPK). Coexpression of catalytically inactive, but not wild-type, SHP-2 reduced LIFR- and gp130-mediated activation of MAPK up to 75%. Conversely, coexpression of the wild-type, but not catalytically inactive, SHP-1, a related phosphatase, reduced activity up to 80%, demonstrating that SHP-2 and SHP-1 have opposing effects on the MAPK pathway. Mutation of Y115 of the cytoplasmic domain of LIFR eliminates receptor-mediated tyrosine phosphorylation of SHP-2. In contrast, SHP-1 association with gp130 and LIFR is constitutive and independent of Y118 and Y115, respectively. SHP-1 has a positive regulatory role on LIF-stimulated vasoactive intestinal peptide (VIP) reporter gene expression in neuronal cells, whereas the effect of SHP-2 is negative. Furthermore, LIF-stimulated MAPK activation negatively regulates this VIP reporter gene induction. SHP-2 also negatively regulates LIF-dependent expression of choline acetyltransferase, but this regulation could be dissociated from its effects on MAPK activation. These data indicate that SHP-1 and SHP-2 are important regulators of LIF-dependent neuronal gene expression via both MAPK-dependent and -independent pathways.  相似文献   

9.
10.
Interleukin-6 (IL-6) and ciliary neurotrophic factor (CNTF) are "4-helical bundle" cytokines of the IL-6 type family of neuropoietic and hematopoietic cytokines. IL-6 signals by induction of a gp130 homodimer (e.g. IL-6), whereas CNTF and leukemia inhibitory factor (LIF) signal via a heterodimer of gp130 and LIF receptor (LIFR). Despite binding to the same receptor component (gp130) and a similar protein structure, IL-6 and CNTF share only 6% sequence identity. Using molecular modeling we defined a putative LIFR binding epitope on CNTF that consists of three distinct regions (C-terminal A-helix/N-terminal AB loop, BC loop, C-terminal CD-loop/N-terminal D-helix). A corresponding gp130-binding site on IL-6 was exchanged with this epitope. The resulting IL-6/CNTF chimera lost the capacity to signal via gp130 on cells without LIFR, but acquired the ability to signal via the gp130/LIFR heterodimer and STAT3 on responsive cells. Besides identifying a specific LIFR binding epitope on CNTF, our results suggest that receptor recognition sites of cytokines are organized as modules that are exchangeable even between cytokines with limited sequence homology.  相似文献   

11.
12.
gp130 is the common signal transducing receptor subunit of interleukin (IL)-6-type cytokines. gp130 either homodimerizes in response to IL-6 and IL-11 or forms heterodimers with the leukemia inhibitory factor (LIF) receptor (LIFR) in response to LIF, oncostatin M (OSM), ciliary neurotrophic factor (CNTF), cardiotrophin-1 (CT-1) or cardiotrophin-like cytokine resulting in the onset of cytoplasmic tyrosine phosphorylation cascades. The extracellular parts of both gp130 and LIFR consist of several Ig-like and fibronectin type III-like domains. The role of the membrane-distal domains of gp130 (D1, D2, D3) and LIFR in ligand binding is well established. In this study we investigated the functional significance of the membrane-proximal domains of gp130 (D4, D5, D6) in respect to heterodimerization with LIFR. Deletion of each of the membrane-proximal domains of gp130 (Delta 4, Delta 5 and Delta 6) leads to LIF unresponsiveness. Replacement of the gp130 domains by the corresponding domains of the related GCSF receptor either restores weak LIF responsiveness (D4-GCSFR), leads to constitutive activation of gp130 (D5-GCSFR) or results in an inactive receptor (D6-GCSFR). Mutation of a specific cysteine in D5 of gp130 (C458A) leads to constitutive heterodimerization with the LIFR and increased sensitivity towards LIF stimulation. Based on these findings, a functional model of the gp130-LIFR heterodimer is proposed that includes contacts between D5 of gp130 and the corresponding domain D7 of the LIFR and highlights the requirement for both receptor dimerization and adequate receptor orientation as a prerequisite for signal transduction.  相似文献   

13.
Ciliary neurotrophic factor (CNTF) is a cytokine supporting the differentiation and survival of a number of neural cell types. Its receptor complex consists of a ligand-binding component, CNTF receptor (CNTFR), associated with two signaling receptor components, gp130 and leukemia inhibitory factor receptor (LIFR). Striking phenotypic differences between CNTF- and CNTFR-deficient mice suggest that CNTFR serves as a receptor for a second developmentally important ligand. We recently demonstrated that cardiotrophin-like cytokine (CLC) associates with the soluble orphan receptor cytokine-like factor-1 (CLF) to form a heterodimeric cytokine that displayed activities only on cells expressing the tripartite CNTF receptor on their surface. In this present study we examined the membrane binding of the CLC/CLF composite cytokine and observed a preferential interaction of the cytokine with the CNTFR subunit. Signaling pathways recruited by the CLC/CLF complex in human neuroblastoma cell lines were also analyzed in detail. The results obtained showed an activation of Janus kinases (JAK1, JAK2, and TYK2) leading to a tyrosine phosphorylation of the gp130 and LIFR. The phosphorylated signaling receptors served in turn as docking proteins for signal transducing molecules such as STAT3 and SHP-2. In vitro analysis revealed that the gp130-LIFR pathway could also stimulate the phosphatidylinositol 3-kinase and the mitogen-activated protein kinase pathways. In contrast to that reported before for CNTF, soluble CNTFR failed to promote the action CLC/CLF, and an absolute requirement of the membrane form of CNTFR was required to generate a functional response to the composite cytokine. This study reinforces the functional similarity between CNTF and the CLC/CLF composite cytokine defining the second ligand for CNTFR.  相似文献   

14.
15.
Leukemia inhibitory factor (LIF), a member of the gp130 family of helical cytokines, is involved in the hemopoietic and neural systems. The LIF signal transducing complex contains two receptor molecules, the LIF receptor (LIFR) and gp130. The extracellular region of the LIFR is unique in that it includes three membrane-proximal fibronectin type III domains and two cytokine binding domains (CBDs) separated by an immunoglobulin-like domain. Although some mutagenesis data on LIF are available, it is not yet known which regions of LIFR or gp130 bind LIF. Nor is it known whether LIFR contacts gp130 in a manner similar to the growth hormone receptor dimer and, if so, through which of its CBDs. To attempt to elucidate these matters and to investigate the receptor complex, models of the CBDs of LIFR and the CBD of gp130 were constructed. Analyses of the electrostatic isopotential surfaces of the CBD models suggest that gp130 and the membrane-proximal CBD of LIFR hetero-dimerize and bind LIF through contacts similar to those seen in the growth hormone receptor dimer. This work further demonstrates the utility of electrostatic analyses of homology models and suggests a strategy for biochemical investigations of the LIF-receptor complex.  相似文献   

16.
In contrast to other hematopoietic cytokine receptors, the leukemia inhibitory factor receptor (LIFR) possesses two cytokine binding modules (CBMs). Previous studies suggested that the NH(2)-terminal CBM and the Ig-like domain of the LIFR are most important for LIF binding and activity. Using the recently engineered designer cytokine IC7, which induces an active heterodimer of the LIFR and gp130 after binding to the IL-6R, and several receptor chimeras of the LIFR and the interleukin-6 receptor (IL-6R) carrying the CBM of the IL-6R in place of the COOH-terminal LIFR CBM, we could assign individual receptor subdomains to individual binding sites of the ligand. The NH(2)-terminal CBM and the Ig-like domain of the LIFR bind to ligand site III, whereas the COOH-terminal CBM contacts site I. Furthermore, we show that LIFR mutants carrying the IL-6R CBM instead of the COOH-terminal CBM can replace the IL-6R by acting as an alpha-receptor for IL-6. However, in situations where a signaling competent receptor is bound at IL-6 site I, ligand binding to site III is an absolute requirement for participation of the receptor in a signaling heterodimer with gp130; i.e., a functional receptor complex of IL-6 type cytokines cannot be assembled solely via site I and II as in the growth hormone receptor complex.  相似文献   

17.
The related cytokines, interleukin-6 (IL-6), oncostatin M (OSM), and leukemia inhibitory factor (LIF) direct the formation of specific heteromeric receptor complexes to achieve signaling. Each complex includes the common signal-transducing subunit gp130. OSM and LIF also recruit the signaling competent, but structurally distinct OSMRbeta and LIFRalpha subunits, respectively. To test the hypothesis that the particularly prominent cell regulation by OSM is due to signals contributed by OSMRbeta, we introduced stable expression of human or mouse OSMRbeta in rat hepatoma cells which have endogenous receptors for IL-6 and LIF, but not OSM. Both mouse and human OSM engaged gp130 with their respective OSMRbeta subunits, but only human OSM also acted through LIFR. Signaling by OSMRbeta-containing receptors was characterized by highest activation of STAT5 and ERK, recruitment of the insulin receptor substrate and Jun-N-terminal kinase pathways, and induction of a characteristic pattern of acute phase proteins. Since LIF together with LIFRalpha appear to form a more stable complex with gp130 than OSM with gp130 and OSMRbeta, co-activation of LIFR and OSMR resulted in a predominant LIF-like response. These results suggest that signaling by IL-6 cytokines is not identical, and that a hierarchical order of cytokine receptor action exists in which LIFR ranks as dominant member.  相似文献   

18.
The functional receptor complex of ciliary neurotrophic factor (CNTF), a member of the gp130 family of cytokines, is composed of CNTF, the CNTF receptor alpha (CNTFR), gp130, and the leukemia inhibitory factor receptor (LIFR). However, the nature of the receptor-mediated interactions in this complex has not yet been resolved. To address this issue we have determined the solution structure of the C-terminal or BC domain of CNTFR and studied the interactions of CNTFR with LIFR and gp130. We reported previously that the membrane distal cytokine-binding domain (CBD1) of LIFR could interact in vitro with soluble CNTFR (sCNTFR) in the absence of CNTF. Here we show that the CBD of human gp130 can also bind in vitro to sCNTFR in the absence of CNTF. In addition, the gp130 CBD could compete with the LIFR CBD1 for the binding of sCNTFR. Substitution of residues in the gp130 CBD, the LIFR CBD1, and the CNTFR BC domain that are expected to be involved in receptor-receptor interactions significantly reduced their interactions. An NMR chemical shift perturbation study of the interaction between the BC domains of CNTFR and gp130 further mapped the interaction surface. These data suggest that both the gp130 CBD and the LIFR CBD1 interact with CNTFR in a similar way and provide insights into the nature of the CNTF receptor complex.  相似文献   

19.
20.
Human ciliary neurotrophic factor (CNTF) is a neurotrophic cytokine that exerts a neuroprotective effect in multiple sclerosis and amyotrophic lateral sclerosis. Clinical application of human CNTF, however, was prevented by high toxicity at higher dosages. Human CNTF elicits cellular responses by induction of a receptor complex consisting of the CNTF alpha-receptor (CNTFR), which is not involved in signal transduction, and the beta-receptors gp130 and leukemia inhibitory factor receptor (LIFR). Previous studies with rat CNTF demonstrated that rat CNTF is unable to interact with the human interleukin-6 alpha-receptor, whereas at high concentrations, it can directly induce a signaling heterodimer of human gp130 and human LIFR in the absence of the CNTF receptor. Here, we demonstrate that human CNTF cannot directly induce a heterodimer of human gp130 and LIFR. However, human CNTF can use both the membrane-bound and the soluble human IL-6R as a substitute for its cognate alpha-receptor and thus widen the target spectrum of human CNTF. Engineering a CNTFR-specific human CNTF variant may therefore be a prerequisite to improving the safety profile of CNTF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号