首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Golgi-derived coat protein I (COPI) vesicles mediate transport in the early secretory pathway. The minimal machinery required for COPI vesicle formation from Golgi membranes in vitro consists of (i) the hetero-heptameric protein complex coatomer, (ii) the small guanosine triphosphatase ADP-ribosylation factor 1 (Arf1) and (iii) transmembrane proteins that function as coat receptors, such as p24 proteins. Various and opposing reports exist on a role of ArfGAP1 in COPI vesicle biogenesis. In this study, we show that, in contrast to data in the literature, ArfGAP1 is not required for COPI vesicle formation. To investigate roles of ArfGAP1 in vesicle formation, we titrated the enzyme into a defined reconstitution assay to form and purify COPI vesicles. We find that catalytic amounts of Arf1GAP1 significantly reduce the yield of purified COPI vesicles and that Arf1 rather than ArfGAP1 constitutes a stoichiometric component of the COPI coat. Combining the controversial reports with the results presented in this study, we suggest a novel role for ArfGAP1 in membrane trafficking.  相似文献   

2.
COPI vesicles serve for transport of proteins and membrane lipids in the early secretory pathway. Their coat protein (coatomer) is a heptameric complex that is recruited to the Golgi by the small GTPase Arf1. Although recruited en bloc, coatomer can be viewed as a stable assembly of an adaptin‐like tetrameric subcomplex (CM4) and a trimeric ‘cage’ subcomplex (CM3). Following recruitment, coatomer stimulates ArfGAP‐dependent GTP hydrolysis on Arf1. Here, we employed recombinant coatomer subcomplexes to study the role of coatomer components in the regulation of ArfGAP2, an ArfGAP whose activity is strictly coatomer‐dependent. Within CM4, we define a novel hydrophobic pocket for ArfGAP2 interaction on the appendage domain of γ1‐COP. The CM4 subcomplex (but not CM3) is recruited to membranes through Arf1 and can subsequently recruit ArfGAP2. Neither CM3 nor CM4 in itself is effective in stimulating ArfGAP2 activity, but stimulation is regained when both subcomplexes are present. Our findings point to a distinct role of each of the two coatomer subcomplexes in the regulation of ArfGAP2‐dependent GTP hydrolysis on Arf1, where the CM4 subcomplex functions in GAP recruitment, while, similarly to the COPII system, the cage‐like CM3 subcomplex stimulates the catalytic reaction.  相似文献   

3.
We present evidence for two subpopulations of coatomer protein I vesicles, both containing high amounts of Golgi resident proteins but only minor amounts of anterograde cargo. Early Golgi proteins p24alpha2, beta1, delta1, and gamma3 are shown to be sorted together into vesicles that are distinct from those containing mannosidase II, a glycosidase of the medial Golgi stack, and GS28, a SNARE protein of the Golgi stack. Sorting into each vesicle population is Arf-1 and GTP hydrolysis dependent and is inhibited by aluminum and beryllium fluoride. Using synthetic peptides, we find that the cytoplasmic domain of p24beta1 can bind Arf GTPase-activating protein (GAP)1 and cause direct inhibition of ArfGAP1-mediated GTP hydrolysis on Arf-1 bound to liposomes and Golgi membranes. We propose a two-stage reaction to explain how GTP hydrolysis constitutes a prerequisite for sorting of resident proteins, yet becomes inhibited in their presence.  相似文献   

4.
The ArfGAP Glo3 is required for coat protein I vesicle generation in the Golgi–endoplasmic reticulum (ER) shuttle. The best-understood role of Glo3 is the stimulation of the GTPase activity of Arf1. In this study, we characterized functional domains of the ArfGAP Glo3 and identified an interaction interface for coatomer, SNAREs and cargo in the central region of Glo3 (BoCCS region). The GAP domain together with the BoCCS region is necessary and sufficient for all vital Glo3 functions. Expression of a truncated Glo3 lacking the GAP domain results in a dominant negative growth phenotype in glo3 Δ cells at 37°C. This phenotype was alleviated by mutating either the BoCCS region or the Glo3 regulatory motif (GRM), or by overexpression of ER–Golgi SNAREs or the ArfGAP Gcs1. The GRM is not essential for Glo3 function; it may act as an intrinsic sensor coupling GAP activity to SNARE binding to avoid dead-end complex formation at the Golgi membrane. Our data suggest that membrane-interaction modules and cargo-sensing regions have evolved independently in ArfGAP1s versus ArfGAP2/3s.  相似文献   

5.
Arf (ADP‐ribosylation factor) family small G proteins are crucial regulators of intracellular transport. The active GTP‐bound form of Arf interacts with a set of proteins—effectors—which mediate the downstream signalling events of Arf activation. A well‐studied class of Arf1 effectors comprises the coat complexes, such as the cis‐Golgi‐localized COPI (coat protein complex I) coat, and trans‐Golgi network‐endosomal clathrin coats. At least five different coats require Arf1‐GTP to localize to organelle membranes. How a single Arf protein recruits different coat complexes to distinct membrane sites raises the question of how specificity is achieved. Here, we propose a molecular mechanism of this specificity for the COPI coat by showing a direct and specific interaction between a COPI subunit and a cis‐Golgi localized subfamily of Arf guanine nucleotide exchange factors (GEFs) that takes place independently of Arf1 activation. In this way, a specific output on Arf1 activation can be programmed before the exchange reaction by the GEF itself.  相似文献   

6.
To investigate the role of cytoplasmic sequences in directing transmembrane protein trafficking through the Golgi, we analyzed the sorting of VSV tsO45 G fusions with either the native G cytoplasmic domain (G) or an alternative cytoplasmic tail derived from the chicken AE1‐4 anion exchanger (GAE). At restrictive temperature GAE and G accumulated in the ER, and upon shifting the cells to permissive temperature both proteins folded and underwent transport through the Golgi. However, GAE and G did not form hetero‐oligomers upon the shift to permissive temperature and they progressed through the Golgi with distinct kinetics. In addition, the transport of G through the proximal Golgi was Arf1 and COPI‐dependent, while GAE progression through the proximal Golgi was Arf1 and COPI‐independent. Although Arf1 did not regulate the sorting of GAE in the cis‐Golgi, Arf1 did regulate the exit of GAE from the TGN. The trafficking of GAE through the Golgi was similar to that of the native AE1‐4 anion exchanger, in that the progression of both proteins through the proximal Golgi was Arf1‐independent, while both required Arf1 to exit the TGN. We propose that the differential recognition of cytosolic signals in membrane‐spanning proteins by the Arf1‐dependent sorting machinery may influence the rate at which cargo progresses through the Golgi.   相似文献   

7.
The interaction of Mycobacterium tuberculosis (Mtb) with pulmonary epithelial cells is critical for early stages of bacillus colonization and during the progression of tuberculosis. Entry of Mtb into epithelial cells has been shown to depend on F‐actin polymerization, though the molecular mechanisms are still unclear. Here, we demonstrate that mycobacterial uptake into epithelial cells requires rearrangements of the actin cytoskeleton, which are regulated by ADP‐ribosylation factor 1 (Arf1) and phospholipase D1 (PLD1), and is dependent on the M3 muscarinic receptor (M3R). We show that this pathway is controlled by Arf GTPase‐activating protein 1 (ArfGAP1), as its silencing has an impact on actin cytoskeleton reorganization leading to uncontrolled uptake and replication of Mtb. Furthermore, we provide evidence that this pathway is critical for mycobacterial entry, while the cellular infection with other pathogens, such as Shigella flexneri and Yersinia pseudotuberculosis, is not affected. Altogether, these results reveal how cortical actin plays the role of a barrier to prevent mycobacterial entry into epithelial cells and indicate a novel role for ArfGAP1 as a restriction factor of host–pathogen interactions.  相似文献   

8.
Vps74p, a member of the GOLPH3 protein family, binds directly to coatomer and the cytoplasmic tails of a subset of Golgi‐resident glycosyltransferases to mediate their Golgi retention. We identify a cluster of arginine residues at the N‐terminal end of GOLPH3 proteins that are necessary and sufficient to mediate coatomer binding. While loss of coatomer binding renders Vps74p non‐functional for glycosyltransferase retention, the Golgi membrane‐binding capabilities of the mutant protein are not significantly reduced. We establish that the oligomerization status and phosphatidylinositol‐4‐phosphate‐binding properties of Vps74p largely account for the membrane‐binding capacity of the protein and identify an Arf1p–Vps74p interaction as a potential contributing factor in Vps74p Golgi membrane association .  相似文献   

9.
The mammalian target of rapamycin complex 1 (mTORC1) integrates nutrients, growth factors, stress, and energy status to regulate cell growth and metabolism. Amino acids promote mTORC1 lysosomal localization and subsequent activation. However, the subcellular location or interacting proteins of mTORC1 under amino acid‐deficient conditions is not completely understood. Here, we identify ADP‐ribosylation factor GTPase‐activating protein 1 (ArfGAP1) as a crucial regulator of mTORC1. ArfGAP1 interacts with mTORC1 in the absence of amino acids and inhibits mTORC1 lysosomal localization and activation. Mechanistically, the membrane curvature‐sensing amphipathic lipid packing sensor (ALPS) motifs that bind to vesicle membranes are crucial for ArfGAP1 to interact with and regulate mTORC1 activity. Importantly, ArfGAP1 represses cell growth through mTORC1 and is an independent prognostic factor for the overall survival of pancreatic cancer patients. Our study identifies ArfGAP1 as a critical regulator of mTORC1 that functions by preventing the lysosomal transport and activation of mTORC1, with potential for cancer therapeutics.  相似文献   

10.
The role of GTPase-activating protein (GAP) that deactivates ADP-ribosylation factor 1 (ARF1) during the formation of coat protein I (COPI) vesicles has been unclear. GAP is originally thought to antagonize vesicle formation by triggering uncoating, but later studies suggest that GAP promotes cargo sorting, a process that occurs during vesicle formation. Recent models have attempted to reconcile these seemingly contradictory roles by suggesting that cargo proteins suppress GAP activity during vesicle formation, but whether GAP truly antagonizes coat recruitment in this process has not been assessed directly. We have reconstituted the formation of COPI vesicles by incubating Golgi membrane with purified soluble components, and find that ARFGAP1 in the presence of GTP promotes vesicle formation and cargo sorting. Moreover, the presence of GTPgammaS not only blocks vesicle uncoating but also vesicle formation by preventing the proper recruitment of GAP to nascent vesicles. Elucidating how GAP functions in vesicle formation, we find that the level of GAP on the reconstituted vesicles is at least as abundant as COPI and that GAP binds directly to the dilysine motif of cargo proteins. Collectively, these findings suggest that ARFGAP1 promotes vesicle formation by functioning as a component of the COPI coat.  相似文献   

11.
The COPI system: Molecular mechanisms and function   总被引:1,自引:0,他引:1  
R. Beck  M. Ravet  F.T. Wieland  D. Cassel 《FEBS letters》2009,583(17):2701-529
Transport of membranes and proteins in eukaryotic cells is mediated by vesicular carriers. Here we review the biogenesis and functions of COPI vesicles, carriers that operate in the early secretory pathway. We focus on mechanisms mediating coat recruitment, uptake of cargo, vesicle budding and fission, and finally dissociation of the coat. In this context, recent findings on the interplay between machinery and auxiliary proteins in COPI vesicle formation and function will be discussed. Specifically, we will weigh the pros and cons of recent data on roles of the small GTP binding protein Arf1, of Arf1GAPs, and lipids during COPI carrier formation.  相似文献   

12.
Many intracellular vesicle transport pathways involve GTP hydrolysis by the ADP-ribosylation factor (ARF) type of monomeric G proteins, under the control of ArfGAP proteins. Here we show that the structurally related yeast proteins Gcs1 and Age2 form an essential ArfGAP pair that provides overlapping function for TGN transport. Mutant cells lacking the Age2 and Gcs1 proteins cease proliferation, accumulate membranous structures resembling Berkeley bodies, and are unable to properly process and localize the vacuolar hydrolase carboxypeptidase (CPY) and the vacuolar membrane protein alkaline phosphatase (ALP), which are transported from the TGN to the vacuole by distinct transport routes. Immunofluorescence studies localizing the proteins ALP, Kex2 (a TGN resident protein), and Vps10 (the CPY receptor for transport from the TGN to the vacuole) suggest that inadequate function of this ArfGAP pair leads to a fragmentation of TGN, with effects on secretion and endosomal transport. Our results demonstrate that the Gcs1 + Age2 ArfGAP pair provides overlapping function for transport from the TGN, and also indicate that multiple activities at the TGN can be maintained with the aid of a single ArfGAP.  相似文献   

13.
COPI (coat protein I)-coated vesicles are implicated in various transport steps within the early secretory pathway. The major structural component of the COPI coat is the heptameric complex coatomer (CM). Recently, four isoforms of CM were discovered that may help explain various transport steps in which the complex has been reported to be involved. Biochemical studies of COPI vesicles currently use CM purified from animal tissue or cultured cells, a mixture of the isoforms, impeding functional and structural studies of individual complexes. Here we report the cloning into single baculoviruses of all CM subunits including their isoforms and their combination for expression of heptameric CM isoforms in insect cells. We show that all four isoforms of recombinant CM are fully functional in an in vitro COPI vesicle biogenesis assay. These novel tools enable functional and structural studies on CM isoforms and their subcomplexes and allow studying mutants of CM.  相似文献   

14.
The Arf GEF GBF1 is required for GGA recruitment to Golgi membranes   总被引:2,自引:0,他引:2  
The lysosomal trafficking of the mannose 6-phosphate receptor and sortilin require that the Golgi-localized, gamma-ear-containing, ADP ribosylation factor (Arf)-binding proteins (GGAs) be recruited to Golgi membranes where they bind a signal in the cytosolic tail of the receptors and recruit clathrin to form trafficking vesicles. GGA recruitment to membranes requires Arf1, a protein that cycles between a GDP-bound inactive state and GTP-bound active state. The guanine nucleotide exchange factors (GEFs) promote the formation of Arf-GTP, while the GTPase activating proteins induce hydrolysis of GTP to GDP. We provide evidence that the GEF, GBF1, colocalizes with the GGAs and interacts with the GGAs. Depletion of GBF1 or expression of an inactive mutant prevents recruitment of the GGAs to Golgi membranes and results in the improper sorting of cargo. In summary, we show that GBF1 is required for GGA recruitment to Golgi membranes and plays a role in the proper processing and sorting of lysosomal cargo.  相似文献   

15.
Arf family proteins are ≈21‐kDa GTP‐binding proteins that are critical regulators of membrane traffic and the actin cytoskeleton. Studies examining the complex signaling pathways underlying Arf action have relied on recombinant proteins comprised of Arf fused to epitope tags or proteins, such as glutathione S‐transferase or green fluorescent protein, for both cell‐based mammalian cell studies and bacterially expressed recombinant proteins for biochemical assays. However, the effects of such protein fusions on the biochemical properties relevant to the cellular function have been only incompletely studied at best. Here, we have characterized the effect of C‐terminal tagging of Arf1 on (i) function in Saccharomyces cerevisiae, (ii) in vitro nucleotide exchange and (iii) interaction with guanine nucleotide exchange factors and GTPase‐activating proteins. We found that the tagged Arfs were substantially impaired or altered in each assay, compared with the wild‐type protein, and these changes are certain to alter actions in cells. We discuss the results related to the interpretation of experiments using these reagents and we propose that authors and editors consistently adopt a few simple rules for describing and discussing results obtained with Arf family members that can be readily applied to other proteins.  相似文献   

16.
Heterotetrameric clathrin adaptor protein complexes (APs) orchestrate the formation of coated vesicles for transport among organelles of the cell periphery. AP1 binds membranes enriched for phosphatidylinositol 4‐phosphate, such as the trans Golgi network, while AP2 associates with phosphatidylinositol 4,5‐bisphosphate of the plasma membrane. At their respective membranes, AP1 and AP2 bind the cytoplasmic tails of transmembrane protein cargo and clathrin triskelions, thereby coupling cargo recruitment to coat polymerization. Structural, biochemical and genetic studies have revealed that APs undergo conformational rearrangements and reversible phosphorylation to cycle between different activity states. While membrane, cargo and clathrin have been demonstrated to promote AP activation, growing evidence supports that membrane‐associated proteins such as Arf1 and FCHo also stimulate this transition. APs may be returned to the inactive state via a regulated process involving phosphorylation and a protein called NECAP. Finally, because antiviral mechanisms often rely on appropriate trafficking of membrane proteins, viruses have evolved novel strategies to evade host defenses by influencing the conformation of APs. This review will cover recent advances in our understanding of the molecular inputs that stimulate AP1 and AP2 to adopt structurally and functionally distinct configurations.  相似文献   

17.
Formation of coated carrier vesicles, such as COPI-coated vesicles from the cis -Golgi, is triggered by membrane binding of the GTP-bound form of ADP-ribosylation factors. This process is blocked by brefeldin A, which is an inhibitor of guanine nucleotide exchange factors for ADP-ribosylation factor. GBF1 is one of the guanine nucleotide-exchange factors for ADP-ribosylation factor and is localized in the Golgi region. In the present study, we have determined the detailed subcellular localization of GBF1. Immunofluorescence microscopy of cells treated with nocodazole or incubated at 15 °C has suggested that GBF1 behaves similarly to proteins recycling between the cis -Golgi and the endoplasmic reticulum. Immunoelectron microscopy has revealed that GBF1 localizes primarily to vesicular and tubular structures apposed to the cis -face of Golgi stacks and minor fractions to the Golgi stacks. GBF1 overexpressed in cells causes recruitment of class I and class II ADP-ribosylation factors onto Golgi membranes. Furthermore, overexpressed GBF1 antagonizes various effects of brefeldin A, such as inhibition of membrane recruitment of ADP-ribosylation factors and the COPI coat, and redistribution of Golgi-resident and itinerant proteins. These observations indicate that GBF1 is involved in the formation of COPI-coated vesicles from the cis -Golgi or the pre-Golgi intermediate compartment through activating ADP-ribosylation factors.  相似文献   

18.
Filamentous fungi undergo polarized hyphal growth throughout the majority of their life cycle. The Spitzenk?rper is a structure unique to filamentous fungi that participates in hyphal growth and is composed largely of vesicles. An important class of proteins involved in vesicle assembly and trafficking are the ADP-ribosylation factors (Arfs). In Saccharomyces cerevisiae, Arf1p and Arf2p are involved in secretion. Aspergillus nidulans ArfA is a homolog of ScArf1p and ScArf2p with 75% of amino acid sequence similarity to each. ArfA::GFP localizes to cellular compartments consistent with Golgi equivalents. An N-terminal myristoylation motif is critical for localization of ArfA. Treatment with Brefeldin A, an inhibitor of Golgi transport, leads to ArfA::GFP diffusing through the cytosol and accumulating into a subcellular compartment further suggesting the ArfA localizes to and functions in the Golgi network. Costaining with FM4-64 revealed that ArfA::GFP likely localized to subcellular compartments participating in exocytosis. We were unable to recover arfA gene disruption strains indicating that the gene is essential in A. nidulans. The overexpression of ArfA protein partially suppresses the polarity defect phenotype of an N-myristoyltransferase mutant. Taken together, these results suggest that ArfA participates in hyphal growth through the secretory system.  相似文献   

19.
Arsenic inhibits DNA repair and enhances the genotoxicity of DNA-damaging agents such as benzo[a]pyrene and ultraviolet radiation. Arsenic interaction with DNA repair proteins containing functional zinc finger motifs is one proposed mechanism to account for these observations. Here, we report that arsenite binds to both CCHC DNA-binding zinc fingers of the DNA repair protein PARP-1 (poly(ADP-ribose) polymerase-1). Furthermore, trivalent arsenite coordinated with all three cysteine residues as demonstrated by MS/MS. MALDI-TOF-MS analysis of peptides harboring site-directed substitutions of cysteine with histidine residues within the PARP-1 zinc finger revealed that arsenite bound to peptides containing three or four cysteine residues, but not to peptides with two cysteines, demonstrating arsenite binding selectivity. This finding was not unique to PARP-1; arsenite did not bind to a peptide representing the CCHH zinc finger of the DNA repair protein aprataxin, but did bind to an aprataxin peptide mutated to a CCHC zinc finger. To investigate the impact of arsenite on PARP-1 zinc finger function, we measured the zinc content and DNA-binding capacity of PARP-1 immunoprecipitated from arsenite-exposed cells. PARP-1 zinc content and DNA binding were decreased by 76 and 80%, respectively, compared with protein isolated from untreated cells. We observed comparable decreases in zinc content for XPA (xeroderma pigmentosum group A) protein (CCCC zinc finger), but not SP-1 (specificity protein-1) or aprataxin (CCHH zinc finger). These findings demonstrate that PARP-1 is a direct molecular target of arsenite and that arsenite interacts selectively with zinc finger motifs containing three or more cysteine residues.  相似文献   

20.
Brefeldin A‐mediated inhibition of ADP ribosylation factor (Arf) GTPases and their guanine nucleotide exchange factors, Arf‐GEFs, has been a cornerstone of membrane trafficking research for many years. Brefeldin A (BFA) is relatively non‐selective inhibiting at least three targets in human cells, Golgi brefeldin A resistance factor 1 (GBF1), brefeldin A inhibited guanine nucleotide exchange factor 1 (BIG1) and brefeldin A inhibited guanine nucleotide exchange factor 2 (BIG2). Here, we show that the previously described compound Exo2 acts through inhibition of Arf‐GEF function, but causes other phenotypic changes that are not GBF1 related. We describe the engineering of Exo2 to produce LG186, a more selective, reversible inhibitor of Arf‐GEF function. Using multiple‐cell‐based assays and GBF1 mutants, our data are most consistent with LG186 acting by selective inhibition of GBF1. Unlike other Arf‐GEF and reported GBF1 inhibitors including BFA, Exo2 and Golgicide A, LG186 induces disassembly of the Golgi stack in both human and canine cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号