首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Non-Hodgkin Lymphoma (NHL) is a type of hematological malignancy that affects two percent of the overall population in the United States. Tetraspanin CD9 is a cell surface protein that has been thoroughly demonstrated to be a molecular facilitator of cellular phenotype. CD9 expression varies in two human lymphoma cell lines, Raji and BJAB. In this report, we investigated the functional relationship between CD9 and cell proliferation regulated by histone deacetylase (HDAC) activity in these two cell lines. Introduction of CD9 expression in Raji cells resulted in significantly increased cell proliferation and HDAC activity compared to Mock transfected Raji cells. The increase in CD9–Raji cell proliferation was significantly inhibited by HDAC inhibitor (HDACi) treatment. Pretreatment of BJAB cells with HDAC inhibitors resulted in a significant decrease in endogenous CD9 mRNA and cell surface expression. BJAB cells also displayed decreased cell proliferation after HDACi treatment. These results suggest a significant relationship between CD9 expression and cell proliferation in human lymphoma cells that may be modulated by HDAC activity.  相似文献   

2.
Histone deacetylase inhibitors (HDACi) pleiotropy is largely due to their nonselective inhibition of various cellular HDAC isoforms. Connecting inhibition of a specific isoform to biological responses and/or phenotypes is essential toward deconvoluting HDACi pleiotropy. The contribution of classes I and II HDACs to the antileishmanial activity of HDACi was investigated using the amastigote and promastigote forms of Leishmania donovani. We observed that the antileishmanial activities of HDACi are largely due to the inhibition of HDAC6-like activity. This observation could facilitate the development of HDACi as antileishmanial agents.  相似文献   

3.
The abnormal accumulation of Cu2+ is closely correlated with the incidence of different diseases, such as Alzheimer's disease and Wilson disease. To study in vivo functions of Cu2+ will lead to a better understanding of the nature of these diseases. In the present study, effect of Cu2+ on histone acetylation was investigated in human hepatoma cells. Exposure of cells to Cu2+ resulted in a significant decrease of histone acetylation, as indicated by the decrease of the overall histone acetylation and the decrease of histone H3 and H4 acetylation. Since histone acetyltransferase (HAT) and histone deacetylase (HDAC) are the enzymes controlled the state of histone acetylation in vivo, we tested their contribution to the inhibition of Cu2+ on histone acetylation. One hundred nanomolar trichostatin A, the specific inhibitor of HDAC, did not attenuate the inhibitory effect of Cu2+ on histone acetylation. Combined with that Cu2+ showed no effect on the in vitro activity of HDAC, these results led to the conclusion that it is HAT, but not HDAC that is involved in Cu2+ -induced histone hypoacetylation. This conclusion was confirmed by the facts that (1) Cu2+ significantly inhibited the in vitro activity of HAT, (2) Cu2+ -treated cells possessed a lower HAT activity than control cells, and (3) 50 or 100 microM bathocuproine disulfonate, a chelator of Cu2+, significantly attenuated the inhibition of Cu2+ on HAT activity and histone acetylation in the similar pattern. Combined with that Cu2+ showed no or obvious cytotoxicity at 100 or 200 microM in human hepatoma cells, and the previous study that Cu2+ inhibits the histone H4 acetylation of yeast cells at nontoxic or toxic levels, the data presented here suggest that inhibiting histone acetylation is probably one general in vivo function of Cu2+, where HAT is its molecular target.  相似文献   

4.
The clinical validation of histone deacetylase inhibition as a cancer therapeutic modality has stimulated interest in the development of new generation of potent and tumor selective histone deacetylase inhibitors (HDACi). With the goal of selective delivery of the HDACi to melanoma cells, we incorporated the benzamide, a high affinity melanin-binding template, into the design of HDACi to generate a new series of compounds 10a-b and 11a-b which display high potency towards HDAC1 and HDAC6. However, these compounds have attenuated antiproliferative activities relative to the untargeted HDACi. An alternative strategy furnished compound 14, a prodrug bearing the benzamide template linked via a labile bond to a hydroxamate-based HDACi. This pro-drug compound showed promising antiproliferative activity and warrant further study.  相似文献   

5.
To clarify the role of HDACs in erythropoiesis, expression, activity and function of class I (HDAC1, HDAC2, HDAC3) and class IIa (HDAC4, HDAC5) HDACs during in vitro maturation of human erythroblasts were compared. During erythroid maturation, expression of HDAC1, HDAC2 and HDAC3 remained constant and activity and GATA1 association (its partner of the NuRD complex), of HDAC1 increased. By contrast, HDAC4 content drastically decreased and HDAC5 remained constant in content but decreased in activity. In erythroid cells, pull down experiments identified the presence of a novel complex formed by HDAC5, GATA1, EKLF and pERK which was instead undetectable in cells of the megakaryocytic lineage. With erythroid maturation, association among HDAC5, GATA1 and EKLF persisted but levels of pERK sharply decreased. Treatment of erythroleukemic cells with inhibitors of ERK phosphorylation reduced by >90% the total and nuclear content of HDAC5, GATA1 and EKLF, suggesting that ERK phosphorylation is required for the formation of this complex. Based on the function of class IIa HDACs as chaperones of other proteins to the nucleus and the erythroid-specificity of HDAC5 localization, this novel HDAC complex was named nuclear remodeling shuttle erythroid (NuRSERY). Exposure of erythroid cells to the class II-selective HDAC inhibitor (HDACi) APHA9 increased γ/(γ+β) globin expression ratios (Mai et al., 2007), suggesting that NuRSERY may regulate globin gene expression. In agreement with this hypothesis, exposure of erythroid cells to APHA9 greatly reduced the association among HDAC5, GATA1 and EKLF. Since exposure to APHA9 did not affect survival rates or p21 activation, NuRSERY may represent a novel, possibly less toxic, target for epigenetic therapies of hemoglobinopaties and other disorders.  相似文献   

6.
核小体是真核生物染色质的基本单位,通过对组蛋白核心的N-端的乙酰化、甲基化、磷酸化、遍在蛋白化的修饰作用而影响细胞的功能。组蛋白乙酰化酶(histone acetylase HAT)及组蛋白去乙酰化酶(Histone Deacetylases HDAC)之间的动态平衡控制着染色质的结构和基因表达。当组蛋白去乙酰化水平增加,乙酰化水平相对降低,即会导致正常的细胞周期与代谢行为的改变而诱发肿瘤,及神经退行性变。组蛋白去乙酰化酶抑制剂(Histone Deacetylases-inhibitor HDACi)目前是国内外研究的热点。其中,曲古霉素A(Trichostatin A TSA),是最早发现的天然组蛋白去乙酰化酶抑制剂;伏立诺他(Suberoylanilide Hydroxamic Acid SAHA)已经美国FDA批准用于治疗皮肤T细胞淋巴瘤。本文就HDACi分类及其功能出发综述HDACi的作用机制及研究进展。  相似文献   

7.
8.
9.
10.
11.
12.
Recently, histone deacetylase inhibitors (HDACi) have become widely used in anti-cancer treatment; however, due to acquired drug resistance and their relatively low specificity, they are largely ineffective against late-stage cancer. Thus, it is critical to elucidate the molecular mechanisms underlying these issues, so as to identify novel therapeutic targets to prevent late-stage cancer progression and resistance acquisition. The present study investigated the Aryl hydrocarbon receptor (AHR), that has been shown to mediate histone acetylation by regulating histone deacetylase (HDAC) activity during HDACi treatment in human gastric-cancer cell lines (i.e. AGS and NCI-N87 cells). The potent HDACi, Aza-PBHA, was thus shown to upregulate AHR expression in both AGS and NCI-N87 cell lines, and to increase histone acetylation levels by facilitating AHR/HDAC interactions. Conversely, AHR knockdown increased HDAC activity. Aza-PBHA also increased PKCα phosphorylation and membrane translocation; however, interestingly, PKCα inhibition reduced the Aza-PBHA-increased AHR and histone acetylation levels, and inhibited the formation of the AHR/HDAC complex, likely upregulating Aza-PBHA-inhibited cell migration. Thus, our results suggest that Aza-PBHA treatment increased AHR levels to suppress HDAC activity, and inhibited cell migration by activating PKCα activation. These findings support the use of drugs to control AHR-related epigenetic regulation as a promising potential method to prevent acquired resistance to cancer treatments.  相似文献   

13.
Glutamate carboxypeptidase II (GCPII) is known to be implicated in brain diseases such as schizophrenia and bipolar disorder, and dramatically increases in prostate cancer. Here, we investigated the regulation of GCPII expression in astrocytes and examined whether GCPII is epigenetically regulated through histone modification. In this study, valproic acid (VPA), a drug used for bipolar disorder and epilepsy and a known histone deacetylase (HDAC) inhibitor was used. We found that acute exposure of VPA for 4–6 h increased the GCPII protein level in human astrocyte U87MG cells but did not have a similar effect after 12–24 h exposure. Real-time polymerase chain reaction analysis revealed that VPA did not affect the GCPII mRNA expression. In contrast, decrease in GCPII protein level by cycloheximide treatment was blocked by VPA, indicating that VPA increases GCPII protein stability. Treatment with MG132, a proteasome inhibitor, suggested that the VPA-induced increase of GCPII protein level is dependent on the ubiquitin/proteasome pathway. In addition, immunoprecipitation analysis revealed that VPA increased the acetylation of GCPII protein at the lysine residues and facilitated a decrease of the poly-ubiquitinated GCPII level. Similarly, M344, a specific HDAC 1/6 inhibitor, also increased the GCPII protein level. In contrast, treatment with C646, a histone acetyltransferase inhibitor of p300/CBP, significantly reduced the level of GCPII protein. Taken together, this study demonstrated that the increase in GCPII induced by VPA is not due to the classical epigenetic mechanism, but via enhanced acetylation of lysine residues in GCPII.  相似文献   

14.
Pyrrolidine dithiocarbamate (PDTC) has been considered as a potential anticancer drug due to its powerful apoptogenic effect towards cancer cells, where Cu(2+) plays a distinct yet undefined role. Here we report that Cu(2+) is critically needed for PDTC to inhibit histone acetylation in both human leukemia HL-60 cells and human hepatoma Hep3B cells. The inhibition of histone acetylation mainly resulted from the increase of intracellular Cu(2+), but was not due to the inhibition of NF-kappaB activity by PDTC-Cu(2+) since the combinations of Cu(2+) with SN50, MG132 (two known NF-kappaB inhibitors), or bathocuproine disulfonate (BCS, a specific Cu(2+) chelator that does not cross the plasma membrane), did not lead to obvious inhibition of histone acetylation. Histone acetyltransferase (HAT) and histone deacetylase (HDAC) are the enzymes controlling the state of histone acetylation in vivo. Cells exposed to PDTC-Cu(2+) showed a comparable decrease in histone acetylation levels in HL-60 cells in the absence or presence of the HDAC inhibitors, trichostatin A (TSA) or sodium butyrate (NaBu); the inhibition rates were about 45, 44 and 43%, respectively. PDTC-Cu(2+) had no effect on the activity of HDAC in vitro, but significantly inhibited the HAT activity both in HL-60 cells and in a cell-free in vitro system. PDTC-Cu(2+) also induced HL-60 cell apoptosis, and treating cells with TSA, NaBu or BCS significantly attenuated the apoptosis induced by PDTC-Cu(2+). Collectively, these results showed that inhibition of histone acetylation represents a distinct mechanism for the cytotoxicity of PDTC in the presence of Cu(2+), where HAT is its possible molecular target.  相似文献   

15.
16.
In our search for novel small molecules targeting histone deacetylases, we have designed and synthesized several series of novel N-hydroxybenzamides/N-hydroxypropenamides incorporating quinazolin-4(3H)-ones (4a-h, 8a-d, 10a-d). Biological evaluation showed that these hydroxamic acids were generally cytotoxic against three human cancer cell lines (SW620, colon; PC-3, prostate; NCI-H23, lung cancer). It was found that the N-hydroxypropenamides (10a-d) were the most potent, both in term of HDAC inhibition and cytotoxicity. Several compounds, e.g. 4e, 8b-c, and 10a-c, displayed up to 4-fold more potent than SAHA (suberoylanilide hydroxamic acid, vorinostat) in term of cytotoxicity. These compounds also comparably inhibited HDACs with IC50 values in sub-micromolar range. Docking experiments on HDAC2 isozyme revealed some important features contributing to the inhibitory activity of synthesized compounds, especially for propenamide analogues. Importantly, the free binding energy computed was found to have high quantitative correlation (R2 ∼ 95%) with experimental results.  相似文献   

17.
A series of novel 5,6,7,8-Tetrahydro[1]benzothieno[2,3-d]pyrimidin-4(3H)-one derivatives bearing a hydroxamic acid, 2-aminoanilide and hydrazide moieties as zinc-binding group (ZBG) were designed, synthesized and evaluated for the HDAC inhibition activity and antiproliferative activity. Most of the tested compounds displayed strong to moderate HDAC inhibitory activity. Some of these compounds showed potent anti-proliferative activity against human HepG2, MCF-7 and HCT-116 cell lines. In particular, compounds IVa, IVb, IXa and IXb exhibited significant anti-proliferative activity against the three cell lines tested compared to SAHA as a reference. Compound IVb is equipotent inhibitor for HDAC1 and HDAC2 as SAHA. It is evident that the presence of free hydroxamic acid group is essential for Zn binding affinity with maximal activity with a linker of aliphatic 6 carbons. Docking study results revealed that compound IVb could occupy the HDAC2 binding site and had the potential to exhibit antitumor activity through HDAC inhibition, which merits further investigation.  相似文献   

18.
Fluorescent tagging of bioactive molecules is a powerful tool to study cellular uptake kinetics and is considered as an attractive alternative to radioligands. In this study, we developed fluorescent histone deacetylase (HDAC) inhibitors and investigated their biological activity and cellular uptake kinetics. Our approach was to introduce a dansyl group as a fluorophore in the solvent-exposed cap region of the HDAC inhibitor pharmacophore model. Three novel fluorescent HDAC inhibitors were synthesized utilizing efficient submonomer protocols followed by the introduction of a hydroxamic acid or 2-aminoanilide moiety as zinc-binding group. All compounds were tested for their inhibition of selected HDAC isoforms, and docking studies were subsequently performed to rationalize the observed selectivity profiles. All HDAC inhibitors were further screened in proliferation assays in the esophageal adenocarcinoma cell lines OE33 and OE19. Compound 2, 6-((N-(2-(benzylamino)-2-oxoethyl)-5-(dimethylamino)naphthalene)-1-sulfonamido)-N-hydroxyhexanamide, displayed the highest HDAC inhibitory capacity as well as the strongest anti-proliferative activity. Fluorescence microscopy studies revealed that compound 2 showed the fastest uptake kinetic and reached the highest absolute fluorescence intensity of all compounds. Hence, the rapid and increased cellular uptake of 2 might contribute to its potent anti-proliferative properties.  相似文献   

19.
20.
Class IIa histone deacetylases (HDACs) -4, -5, -7 and -9 undergo signal-dependent nuclear export upon phosphorylation of conserved serine residues that are targets for 14-3-3 binding. Little is known of other mechanisms for regulating the subcellular distribution of class IIa HDACs. Using a biochemical purification strategy, we identified protein kinase C-related kinase-2 (PRK2) as an HDAC5-interacting protein. PRK2 and the related kinase, PRK1, phosphorylate HDAC5 at a threonine residue (Thr-292) positioned within the nuclear localization signal (NLS) of the protein. HDAC7 and HDAC9 contain analogous sites that are phosphorylated by PRK, while HDAC4 harbors a non-phosphorylatable alanine residue at this position. We provide evidence to suggest that the unique phospho-acceptor cooperates with the 14-3-3 target sites to impair HDAC nuclear import.

Structured summary

MINT-7710106:HDAC5 (uniprotkb:Q9UQL6) physically interacts (MI:0915) with PRK2 (uniprotkb:Q16513) by pull down (MI:0096)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号