首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
To elucidate the direct role and mechanism of FGFR1 signaling in the differentiation and activation of osteoclasts, we conditionally inactivated FGFR1 in bone marrow monocytes and mature osteoclasts of mice. Mice deficient in FGFR1 (Fgfr1−/−) exhibited misregulated bone remodeling with reduced osteoclast number and impaired osteoclast function. In vitro assay demonstrated that the number of tartrate-resistant acid phosphatase (TRAP) positive osteoclasts derived from bone marrow monocytes of Fgfr1−/− mice was significantly diminished. The bone resorption activity of mature osteoclasts derived from Fgfr1−/− mice was also suppressed. Further analysis showed that the osteoclasts with FGFR1 deficiency exhibited downregulated expression of genes related to osteoclastic activity including TRAP and MMP-9. The phosphorylation of Erk1/2 mitogen-activated protein (MAP) kinase was also decreased. Our results suggest that FGFR1 is indispensable for complete differentiation and activation of osteoclasts in mice.  相似文献   

2.
During long bone development and post-natal growth, the cartilaginous model of the skeleton is progressively replaced by bone, a process known as endochondral ossification. In the primary spongiosa, osteoclasts degrade the mineralized cartilage produced by hypertrophic chondrocytes to generate cartilage trabeculae that osteoblasts embed in bone matrix. This leads to the formation of the trabecular bone network of the secondary spongiosa that will undergo continuous remodeling. Osteoclasts are specialized in mineralized tissue degradation, with the combined ability to solubilize hydroxyapatite and to degrade extracellular matrix proteins. We reported previously that osteoclasts lacking Dock5 could not degrade bone due to abnormal podosome organization and absence of sealing zone formation. Consequently, adult Dock5/ mice have increased trabecular bone mass. We used Dock5/ mice to further investigate the different functions of osteoclast during endochondral bone formation. We show that long bones are overall morphologically normal in developing and growing Dock5/ mice. We demonstrate that Dock5/ mice also have normal hypertrophic cartilage and cartilage trabecular network. Conversely, trabecular bone volume increased progressively in the secondary spongiosa of Dock5/ growing mice as compared to Dock5+/+ animals, even though their osteoclast numbers were the same. In vitro, we show that Dock5/ osteoclasts do present acidic compartments at the ventral plasma membrane and produce normal amounts of active MMP9, TRAP and CtsK for matrix protein degradation but they are unable to solubilize minerals. These observations reveal that contrarily to bone resorption, the ability of osteoclasts to dissolve minerals is dispensable for the degradation of mineralized hypertrophic cartilage during endochondral bone formation.  相似文献   

3.
To study the physiological control of osteoclasts, the bone resorbing cells, we generated transgenic mice carrying the Cre recombinase gene driven by either the tartrate-resistant acid phosphatase (TRAP) or cathepsin K (Ctsk) promoters. TRAP-Cre and Ctsk-Cre transgenic mouse lines were characterized by breeding with LacZ ROSA 26 (R26R) reporter mice and immunohistochemistry for Cre recombinase. The Cre transgene was functional in all lines, with Cre-mediated recombination occurring primarily in the long bones, vertebrae, ribs, and calvaria. Histological analyses of the bones demonstrated that functional Cre protein was present in 1) osteoclasts (Ctsk-Cre); 2) osteoclasts, columnar proliferating, and hypertrophic chondrocytes (TRAP-Cre line 4); and 3) round proliferating chondrocytes (TRAP-Cre line 3). In conclusion, we generated transgenic mouse lines that will enable the deletion of floxed target genes in osteoclasts, which will be valuable tools for studying the regulation of osteoclast function.  相似文献   

4.
Data in the literature suggest that site-specific differences exist in the skeleton with respect to digestion of bone by osteoclasts. Therefore, we investigated whether bone resorption by calvarial osteoclasts (intramembranous bone) differs from resorption by long bone osteoclasts (endochondral bone). The involvement of two major classes of proteolytic enzymes, the cysteine proteinases (CPs) and matrix metalloproteinases (MMPs), was studied by analyzing the effects of selective low molecular weight inhibitors of these enzymes on bone resorption. Mouse tissue explants (calvariae and long bones) as well as rabbit osteoclasts, which had been isolated from both skeletal sites and subsequently seeded on bone slices, were cultured in the presence of inhibitors and resorption was analyzed. The activity of the CP cathepsins B and K and of MMPs was determined biochemically (CPs and MMPs) and enzyme histochemically (CPs) in explants and isolated osteoclasts. We show that osteoclastic resorption of calvarial bone depends on activity of both CPs and MMPs, whereas long bone resorption depends on CPs, but not on the activity of MMPs. Furthermore, significantly higher levels of cathepsin B and cathepsin K activities were expressed by long bone osteoclasts than by calvarial osteoclasts. Resorption of slices of bovine skull or cortical bone by osteoclasts isolated from long bones was not affected by MMP inhibitors, whereas resorption by calvarial osteoclasts was inhibited. Inhibition of CP activity affected the resorption by the two populations of osteoclasts in a similar way. We conclude that this is the first report to show that significant differences exist between osteoclasts of calvariae and long bones with respect to their bone resorbing activities. Resorption by calvarial osteoclasts depends on the activity of CPs and MMPs, whereas resorption by long bone osteoclasts depends primarily on the activity of CPs. We hypothesize that functionally different subpopulations of osteoclasts, such as those described here, originate from different sets of progenitors.  相似文献   

5.
Pellets of mineralized and demineralized bone and a composite mixture of mineralized and demineralized, devitalized bone particles were implanted subcutaneously on the dorsal body wall of young adult rats. Two weeks post-implantation, the pellets were removed and processed for histochemical and morphological analyses. Rat proximal tibia was also processed for evaluation. The levels of tartrate-resistant acid phosphatase (TRAP) activity in the multinucleated giant cells (MNGCs) from each of the three implants and from osteoclasts were assessed using an image analyzer. The osteoclasts from the proximal tibia and the majority of MNGCs from the demineralized implants demonstrated high levels of TRAP activity. MNGCs from the mineralized implants showed either a low level or absence of TRAP activity. Most MNGCs from the composite implants exhibited a low level of TRAP activity; however, there was a population of cells that demonstrated a high level of reaction product, similar to that seen in the tibia and demineralized implant. Morphologically, osteoclasts from the proximal tibia and from the osteogenic demineralized implant exhibited ruffled borders. A small population of MNGCs from the composite implant also revealed osteoclastic features. In summary, MNGCs from the mineralized implant did not exhibit a level of TRAP reaction product or morphology similar to osteoclasts, while the majority of cells from the demineralized implant and a subpopulation of the MNGCs elicited by the composite implant did demonstrate TRAP expression and morphology similar to osteoclasts. The expression of osteoclastic characteristics in cells at an ectopic site may be dependent on accessory signals from the skeletal microenvironment; such signals appear to be absent from or incomplete in the mineralized implants but appear to be present when demineralized bone particles are implanted.  相似文献   

6.
Tartrate-resistant acid phosphatase (TRAP) is a characteristic constituent of osteoclasts and some mononuclear preosteoclasts and, therefore, used as a histochemical and biochemical marker for osteoclasts and bone resorption. We now report the isolation of a 1397-base pair (bp) full-length TRAP/tartrate-resistant acid ATPase (TrATPase) cDNA clone from a neonatal rat calvaria lambda gt11 cDNA library. The cDNA clone consists of a 92-bp untranslated 5'-flank, an open reading frame of 981 bp and a 324-bp untranslated 3'-poly(A)-containing region. The deduced protein sequence of 327 amino acids contains a putative cleavable signal sequence of 21 amino acids. The mature polypeptide of 306 amino acids has a calculated Mr of 34,350 Da and a pI of 9.18, and it contains two potential N-glycosylation sites and the lysosomal targeting sequence DKRFQ. At the protein level, the sequence displays 89-94% homology to TRAP enzymes from human placenta, beef spleen, and uteroferrin and identity to the N terminus of purified rat bone TRAP/TrATPase. An N-terminal amino acid segment is strikingly homologous to the corresponding region in lysosomal and prostatic acid phosphatases. The cDNA recognized a 1.5-kilobase mRNA in long bones and calvaria, and in vitro translation using, as template, mRNA transcribed from the full-length insert yielded an immunoprecipitated product of 34 kDa. In neonatal rats, TRAP/TrATPase mRNA was highly expressed in skeletal tissues, with much lower (less than 10%) levels detected in spleen, thymus, liver, skin, brain, kidney, brain, lung, and heart. In situ hybridization demonstrated specific labeling of osteoclasts at endostal surfaces and bone trabeculae of long bones. Thus, despite the apparent similarity of this osteoclastic TRAP/TrATPase with type 5, tartrate-resistant and purple, acid phosphatases expressed in other mammalian tissues, this gene appears to be preferentially expressed at skeletal sites.  相似文献   

7.
8.
Here, we aim at exploring the effect of CST5 on bone resorption and activation of osteoclasts in osteoporosis (OP) rats through the NF‐κB pathway. Microarray analysis was used to screen the OP‐related differentially expressed genes. Osteoporosis was induced in rats by intragastric retinoic acid administration. The serum levels of tartrate‐resistant acid phosphatase (TRAP), bone alkaline phosphatase (BALP) and osteocalcin (OC) and the expression of CD61 on the surface of osteoclasts were examined. The number of osteoclasts and the number and area of resorption pits were detected. Besides, the pathological changes and bone mineral density in bone tissues of rats were assessed. Also, the relationship between CST5 and the NF‐κB pathway was identified through determining the expression of CST5, RANKL, RANK, OPG, p65 and IKB. Poorly expressed CST5 was indicated to affect the OP. CST5 elevation and inhibition of the NF‐κB pathway decreased serum levels of TRAP, BALP and OC and expression of CD61 in vivo and in vitro. In OP rats, CST5 overexpression increased trabecular bones and bone mineral density of bone tissues, but decreased trabecular separation, fat within the bone marrow cavities and the number of osteoclasts through inhibiting the NF‐κB pathway. In vivo experiments showed that CST5 elevation inhibited growth in number and area of osteoclastic resorption pits and restrained osteoclastic bone absorption by inhibiting the NF‐κB pathway. In summary, overexpression of CST5 suppresses the activation and bone resorption of osteoclasts by inhibiting the activation of the NF‐κB pathway.  相似文献   

9.
Prothrombin is converted to thrombin by factor Xa in the cell-associated prothrombinase complex. Prothrombin is present in calcified bone matrix and thrombin exerts effects on osteoblasts as well as on bone resorption by osteoclasts.We investigated whether (1) osteoclasts display factor Xa-dependent prothrombinase activity and (2) osteoclasts express critical regulatory components upstream of the prothrombinase complex.The osteoclast differentiation factor RANKL induced formation of multinucleated TRAP positive cells concomitant with induction of prothrombinase activity in cultures of RAW 264.7 cells and bone marrow osteoclast progenitors.Expression analysis of extrinsic coagulation factors revealed that RANKL enhanced protein levels of factor Xa as well as of coagulation factor III (tissue factor). Inhibition assays indicated that factor Xa and tissue factor were involved in the control of prothrombinase activity in RANKL-differentiated osteoclasts, presumably at two stages (1) conversion of prothrombin to thrombin and (2) conversion of factor X to factor Xa, respectively.Activation of the extrinsic coagulation pathway during osteoclast differentiation through induction of tissue factor and factor Xa by a RANKL-dependent pathway indicates a novel role for osteoclasts in converting prothrombin to thrombin.  相似文献   

10.
We have shown that, when mouse parietal bones were incubated in culture medium containing indomethacin, the number of tartrate-resistant acid phosphatase-positive osteoclasts (TRAP + OCs) on the bone surface was drastically reduced (down-regulation), and the number on the periosteal membrane adjacent to the resorbing surface was increased. Subsequent incubation of bones with prostaglandin E2 (PGE2) rapidly reversed these changes (up-regulation). In the work reported here, the osteoclast-associated integrin subunit β3 was stained by immunohistochemistry. The β3-positive osteoclast (β3 + OC) population on freshly isolated bone was comprised of about 67% TRAP + OCs and 33% TRAP − OCs. Like TRAP + OCs, β3 + OCs were reduced in number on the surface of bones incubated with indomethacin, but, in contrast to the TRAP + OCs, β3 + OCs were not seen on the periosteal membrane. Following up-regulation of TRAP + OCs with PGE2, large numbers of β3 + OCs appeared on the bone surface and, again, were not seen on the periosteal membrane. Echistatin, a peptide that binds to the αvβ3 integrin on osteoclasts, was found to inhibit the up-regulation of TRAP + OCs in a dose-dependent manner but had no effect on the down-regulation of TRAP + OCs. Similarly, echistatin inhibited the up-regulation of β3 + OCs on the bone surface, and, under these conditions, β3 + OCs were observed on the periosteal membrane. The addition of anti-β3 antibody also inhibited the up-regulation of TRAP + OCs in response to PGE2. The association of β3 protein expression with the up-regulated osteoclast and the inhibition of up-regulation by echistatin and by anti-β3 antibody provide strong evidence that β3 plays an essential role in the movement of osteoclasts from the membrane to the bone. J. Cell. Physiol. 175:1–9, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

11.
12.
Licochalcone A on the formation and bone resorptive activity of osteoclasts up to 5muM significantly inhibited the receptor activator of nuclear factor kappaB (NF-kappaB) ligand (RANKL)-induced activity of tartrate-resistant acid phosphatase (TRAP) activity and formation of osteoclasts without any effect on cell viability. Interestingly, licochalcone A was shown to inhibit the RANKL-induced activation of extracellular signal-regulated kinase, translocation of NF-kappaB into nucleus and mRNA expression of Fra-2. Licochalcone A also inhibited the bone resorptive activity of mature osteoclasts and the expression of bone resorption-related genes. Inhibitory effects of licochalcone A on the formation and bone resorptive activity of mouse bone marrow macrophage-derived osteoclasts were also observed. In conclusion, licochalcone A has the potential to inhibit the formation of osteoclasts as well as the bone resorptive activity of mature osteoclasts.  相似文献   

13.
An in vitro bone triple culture involving human primary osteoblasts, osteocytes and osteoclasts enables the investigation of bone healing factors, drugs or biomaterials in a model system for native bone tissue. The present study analyses the impact of Sr2+ as well as hypoxic cultivation (5% O2 content or chemically induced by Co2+) on bone cells. The three cell types were cultivated together in the presence of 100 µM Sr2+, hypoxic conditions or in the presence of 75 µM Co2+. After cultivation the cell types were separated and analysed on mRNA and protein level individually. In response to Sr2+ osteoblasts showed a downregulation of IBSP expression and a stimulation of ALP activity. Osteocyte gene marker expression of PDPN, MEPE, RANKL, OPG, osteocalcin and likewise the amount of secreted osteocalcin was reduced in the presence of Sr2+. Activity of osteoclast-specific enzymes TRAP and CAII was enhanced compared to the Sr2+ free control. Hypoxic conditions induced by both 5% O2 or a Co2+ treatment led to decreased DNA content of all bone cells and downregulated expression of osteoblast markers ALPL and IBSP as well as osteocyte markers PDPN, RANKL and OPG. In addition, Co2+ induced hypoxia decreased gene and protein expression of osteocalcin in osteocytes. In response to the Co2+ treatment, the TRAP gene expression and activity was increased. This study is the first to analyse the effects of Sr2+ or hypoxia on triple cultures with primary human bone cells. The investigated in vitro bone model might be suitable to reduce animal experiments in early stages of biomaterial and drug development.  相似文献   

14.
Osteoclasts are macrophage-derived polykaryons that degrade bone in an acidic extracellular space. This differentiation includes expression of proteinases and acid transport proteins, cell fusion, and bone attachment, but the sequence of events is unclear. We studied two proteins expressed at high levels only in the osteoclast, cathepsin K, a thiol proteinase, and tartrate-resistant acid phosphatase (TRAP), and compared this expression with acid transport and bone degradation. Osteoclastic differentiation was studied using human apheresis macrophages cocultured with MG63 osteosarcoma cells, which produce cytokines including RANKL and CSF-1 that mediate efficient osteoclast formation. Immunoreactive cathepsin K appeared at 3-5 days. Cathepsin K activity was seen on bone substrate but not within cells, and cathepsin K increased severalfold during further differentiation and multinucleation from 7 to 14 days. TRAP also appeared at 3-5 d, independently of cell fusion or bone attachment, and TRAP activity reached much higher levels in osteoclasts attached to bone fragments. Two proteinases that occur in the precursor macrophages, cathepsin B, a thiol proteinase related to cathepsin K, and an unrelated lysosomal aspartate proteinase, cathepsin D, were also studied to determine the specificity of the differentiation events. Cathepsin B occurred at all times, but increased two- to threefold in parallel with cathepsin K. Cathepsin D activity did not change with differentiation, and secreted activity was not significant. In situ acid transport measurements showed increased acid accumulation after 7 days either in cells on osteosarcoma matrix or attached to bone, but bone pit activity and maximal acid uptake required 10-14 days. We conclude that TRAP and thiol proteinase expression begin at essentially the same time, and precede cell fusion and bone attachment. However, major increases in acid secretion and proteinases expression continue during cell fusion and bone attachment from 7 to 14 days.  相似文献   

15.
16.
Enzymatic activity of type 5 tartrate-resistant acid phosphatase (TRAP) has been regarded as one of the reliable markers for osteoclasts and their precursors. The presence of TRAP activity in osteocytes near the bone resorbing surface has also been pointed out in some reports. However, the significance of TRAP reactions in osteocytes remains controversial and, in fact, there is no agreement as to whether the histochemical enzyme reactions in osteocytes represent the TRAP enzyme generated by the respective osteocytes or is a mere diffusion artifact of the reaction products derived from the nearby osteoclasts. Current histochemical, immunohistochemical, and in situ hybridization studies of rat and canine bones confirmed TRAP enzyme activity, TRAP immunoreactivity, and the expression of Trap mRNA signals in osteocytes located close to the bone-resorbing surface. TRAP/Trap- positive osteocytes thus identified were confined to the areas no further than 200 microm from the bone-resorbing surface and showed apparent upregulation of TRAP/Trap expression toward the active osteoclasts. Spatial and temporal patterns of TRAP/Trap expression in the osteocytes should serve as a valuable parameter for further analyses of biological interactions between the osteocytes and the osteoclasts associated with bone remodeling.  相似文献   

17.
18.
Physical interaction between the cell surface receptors CD47 and signal regulatory protein alpha (SIRPalpha) was reported to regulate cell migration, phagocytosis, cytokine production, and macrophage fusion. However, it is unclear if the CD47/SIRPalpha-interaction can also regulate macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor (NF)-kappaB ligand (RANKL)-stimulated formation of osteoclasts. Here, we show that functional blocking antibodies to either CD47 or SIRPalpha strongly reduced formation of multinucleated tartrate-resistant acid phosphatase (TRAP)+ osteoclasts in cultures of murine hematopoietic cells, stimulated in vitro by M-CSF and RANKL. In addition, the numbers of osteoclasts formed in M-CSF/RANKL-stimulated bone marrow macrophage cultures from CD47-/- mice were strongly reduced, and bones of CD47-/- mice exhibited significantly reduced osteoclast numbers, as compared with wild-type controls. We conclude that the CD47/SIRPalpha interaction is important for M-CSF/RANKL-stimulated osteoclast formation both in vivo and in vitro, and that absence of CD47 results in decreased numbers of osteoclasts in CD47-/- mice.  相似文献   

19.
Tartrate-resistant acid phosphatase (TRAP) is a metallophosphoesterase participating in osteoclast-mediated bone turnover. Activation of TRAP is associated with the redox state of the di-iron metal center as well as with limited proteolytic cleavage in an exposed loop domain. The cysteine proteinases cathepsin B, L, K, and S as well as the matrix metalloproteinase-2, -9, -13, and -14 are expressed by osteoclasts and/or other bone cells and have been implicated in the turnover of bone and cartilage. To identify proteases that could act as activators of TRAP in bone, we report here that cathepsins K and L, in contrast to the matrix metalloproteinases, efficiently cleaved and activated recombinant TRAP in vitro. Activation of TRAP by cathepsin K/L was because of increases in catalytic activity, substrate affinity, and sensitivity to reductants. Processing by cathepsin K occurred sequentially by an initial excision of the loop peptide Gly(143)-Gly(160) followed by the removal of a Val(161)-Ala(162) dipeptide at the N terminus of the C-terminal 16-kDa TRAP subunit. Cathepsin L initially released a shorter Gln(151)-Gly(160) peptide and completed processing at Ser(145) or Gly(143) at the C terminus of the N-terminal 23-kDa TRAP subunit and at Arg(163) at the N terminus of the C-terminal 16-kDa TRAP subunit. Mutation of Ser(145) to Ala partly mimicked the effect of proteolysis on catalytic activity, identifying Ser(145) as well as Asp(146) (Funhoff, E. G., Ljusberg, J., Wang, Y., Andersson, G., and Averill, B. A. (2001) Biochemistry 40, 11614-11622) as repressive amino acids of the loop region to maintain the TRAP enzyme in a catalytically latent state. The C-terminal sequence of TRAP isolated from rat bone was consistent with cathepsin K-mediated processing in vivo. Moreover, cathepsin K, but not cathepsin L, co-localized with TRAP in osteoclast-resorptive compartments, supporting a role for cathepsin K in the extracellular processing of monomeric TRAP in the resorption lacuna.  相似文献   

20.
Identification of osteopontin in isolated rabbit osteoclasts.   总被引:11,自引:0,他引:11  
Bone remodeling is a complex process coupling bone formation and resorption. Osteoblasts, the bone-forming cells, are known to produce various bone matrix proteins and cytokines; however, little is known about protein factors produced by osteoclasts or bone-resorbing cells. A method utilizing the high affinity of osteoclasts for tissue culture dishes was developed to isolate a large number of pure osteoclasts from rabbit long bones. A cDNA library was then constructed from these isolated osteoclasts, and differential cDNA screening was performed between osteoclasts and spleen cells. Two clones representing osteoclast-specific clones, named OC-1 and OC-2, were isolated. By Northern blot analysis, OC-1 was expressed in osteoclasts and in kidneys, whereas OC-2 was specific for osteoclasts. OC-1 was found to encode osteopontin from its nucleotide sequence, and therefore, osteopontin may have other functions for osteoclastic bone resorption besides osteoclast attachment to bone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号