首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Leptin has been implicated in tumorigenesis and tumor progression, particularly in obese patients. As a multifunctional adaptor protein, APPL1 (containing pleckstrin homology domain, phosphotyrosine binding domain, and a leucine zipper motif 1) plays a critical role in regulating adiponectin and insulin signaling pathways. Currently, high APPL1 level has been suggested to be related to metastases and progression of some types of cancer. However, the intercourse between leptin signaling pathway and APPL1 remains poorly understood. Here, we show that the protein levels and phosphorylation statues of APPL1were highly expressed in tissues from human hepatocellular carcinoma and triple-positive breast cancer. Leptin stimulated APPL1 phosphorylation in a time-dependent manner in both human hepatocellular carcinoma HepG2 cell and breast cancer MCF-7 cell. Overexpression or suppression of APPL1 promoted or attenuated, respectively, leptin-induced phosphorylation of STAT3, ERK1/2, and Akt in the cancer cells, accompanied with enhanced or mitigated cell proliferation and migration. In addition, we identified that APPL1 directly bound to both leptin receptor and STAT3. This interaction was significantly enhanced by leptin stimulation. Our results suggested that APPL1 positively mediated leptin signaling and promoted leptin-induced proliferation and migration of cancer cells. This finding reveals a novel mechanism by which leptin promotes the motility and growth of cancer cells.  相似文献   

9.
Although leptin is known to induce proliferative response in gastric cancer cells, the mechanism(s) underlying this action remains poorly understood. Here, we provide evidence that leptin-induced gastric cancer cell proliferation involves activation of STAT and ERK2 signaling pathways. Leptin-induced STAT3 phosphorylation is independent of ERK2 activation. Leptin increases SHP2 phosphorylation and enhances binding of Grb2 to SHP2. Inhibition of SHP2 expression with siRNA but not SHP2 phosphatase activity abolished leptin-induced ERK2 activation. While JAK inhibition with AG490 significantly reduced leptin-induced ERK2, STAT3 phosphorylation, and cell proliferation, SHP2 inhibition only partially reduced cancer cell proliferation. Immunostaining of gastric cancer tissues displayed local overexpression of leptin and its receptor indicating that leptin might be produced and act locally in a paracrine or autocrine manner. These findings indicate that leptin promotes cancer growth by activating multiple signaling pathways and therefore blocking its action at the receptor level could be a rational therapeutic strategy.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号