首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Adsorption of serum proteins to the liposomal surface plays a critical role in liposome clearance from the blood. The aim of this study was to investigate the role of liposome-adsorbed serum proteins in the interaction of liposomes with hepatocytes. We analyzed the serum proteins adsorbing to the surface of differently composed small unilamellar liposomes during incubation with human or rat serum, and found that one protein, with a molecular weight of around 55 kDa, adsorbed in a large amount to negatively charged liposomes containing phosphatidylserine (PS) or phosphatidylglycerol (PG). The binding was dependent on the liposomal charge density. The ∼55-kDa protein was identified as β2-glycoprotein I (β2GPI) by Western blotting. Despite the high affinity of β2GPI for strongly negatively charged liposomes, in vitro uptake and binding experiments with isolated rat hepatocytes, Kupffer cells or liver endothelial cells, and with HepG2 cells showed no enhancing effect of this protein on the association of negatively charged liposomes with any of these cells. On the contrary, an inhibitory effect was observed. We conclude that despite abundant adsorption to negatively charged liposomes, β2GP1 inhibits, rather than enhances, liposome uptake by liver cells.  相似文献   

2.
Abstract

The tissue distribution of 99mTc-labeled liposomes prepared from synthetic amphiphiles containing amino acid residues was investigated for application to radiopharmaceuticals. The amphiphiles used were N,N-didodecyl-N α-[6-(trimethylammoniohexanoyl]-L-ala-ninamide bromide (N+C5Ala2C12), N,N-didodecyl-Nα-{6-[dimethyl(2-carboxyethyl)ammonio]hexanoyl}-L-alaninamide bromide (CAC2N+C5Ala2C12) and S-{l-carboxy-2-([2,3-bis (he xadecyloxy)propoxy]carbony1)ethyl}homocy ste ine. These liposomes were stable in saline and 50% serum at 37° for at least 24h in comparison with the liposomes prepared from phosphatidylcholine and cholesterol (1:1). Most of the radioactivity of N+C5Ala2C12 and CAC2N+C5Ala2C12 liposomes was firmly bound to Ehrlich ascites tumor cells in vitro. But the accumulation of three liposomes into the tumor of Ehrlich solid tumor-bearing mice after intravenous injection was low and most of the liposomes was taken up highly in liver and spleen which belong to the reticuloendothelial system (RES). Some approaches were made to reduce the RES uptake of N+C5Ala2C12 liposomes as follows: (1) the pretreatment of dextran sulfate depressed the uptake of the liposomes in the liver accompanied by increasing uptake in tumor and other tissues except stomach, (2) the modification of the liposomes with n-dodecyl glucoside or n-dodecyl sucrose depressed the uptake in liver and spleen, resulting in an increase in blood and other tissues such as tumor, duodenum and kidney, (3) the modification of the liposomes with ganglioside GM3 or GM1 reduced the uptake in liver and spleen, but increased scarcely the uptake in blood and tumor because of the rapid excretion into urine, (4) the intraperitoneal injection reduced the uptake of the liposomes in liver and increased significantly the accumulation in pancreas.  相似文献   

3.
The treatment of glioma has become a great challenge because of the existence of brain barrier (BB). In order to develop an efficient brain targeting drug delivery system to greatly improve the brain permeability of anti-cancer drugs, a novel brain-targeted glucose-vitamin C (Glu-Vc) derivative was designed and synthesized as liposome ligand for preparing liposome to effectively deliver paclitaxel (PTX). The liposome was prepared and its particle size, zeta potential, encapsulation efficiency, release profile, stability, hemolysis and cytotoxicity were also characterized. What’s more, the cellular uptake of CFPE-labeled Glu-Vc-Lip on GLUT1- and SVCT2-overexpressed C6 cells was 4.79-, 1.95-, 4.00- and 1.53-fold higher than that of Lip, Glu-Lip, Vc-Lip and Glu?+?Vc-Lip. Also, the Glu-Vc modified liposomes showed superior targeting ability in vivo evaluation compared with naked paclitaxel, non-coated, singly-modified and co-modified by physical blending liposomes. The relative uptake efficiency was enhanced by 7.53 fold to that of naked paclitaxel, while the concentration efficiency was up to 7.89 times. What’s more, the Glu-Vc modified liposomes also displayed the maximum accumulation of DiD-loaded liposomes at tumor sites with the strongest fluorescence in the brain in vivo imaging. Our results suggest that chemical modification of liposomes with warheads of glucose and vitamin C represents a promising and efficient strategy for the development of brain-specific liposomes drug delivery system by utilizing the endogenous transportation mechanism of the warheads.  相似文献   

4.
Liposomes have been used to diagnose and treat cancer and, to a lesser extent, cardiovascular disease. We previously showed the uptake of anionic liposomes into the atheromas of Watanabe heritable hyperlipidemic rabbits within lipid pools. However, the cellular distribution of anionic liposomes in atherosclerotic plaque remains undescribed. In addition, how anionic liposomes are absorbed into atherosclerotic plaque is unclear. We investigated the uptake and distribution of anionic liposomes in atherosclerotic plaque in aortic tissues from apolipoprotein E-deficient (ApoE/) mice. To facilitate the tracking of liposomes, we used liposomes containing fluorescently labeled non-silencing small interfering RNA. Confocal microscopy analysis showed the uptake of anionic liposomes into atherosclerotic plaque and colocalization with macrophages. Transmission electron microscopy analysis revealed anionic liposomal accumulation in macrophages. To investigate how anionic liposomes cross the local endothelial barrier, we examined the role of clathrin-mediated endocytosis in human coronary artery endothelial cells (HCAECs) treated with or without the inflammatory cytokine tumor necrosis factor (TNF)-α. Pretreatment with amantadine, an inhibitor of clathrin-mediated endocytosis, significantly decreased liposomal uptake in HCAECs treated with or without TNF-α by 77% and 46%, respectively. Immunoblot analysis showed that endogenous clathrin expression was significantly increased in HCAECs stimulated with TNF-α but was inhibited by amantadine. These studies indicated that clathrin-mediated endocytosis is partly responsible for the uptake of liposomes by endothelial cells. Our results suggest that anionic liposomes target macrophage-rich areas of vulnerable plaque in ApoE/ mice; this finding may lead to the development of novel diagnostic and therapeutic strategies for treating vulnerable plaque in humans.  相似文献   

5.
Ischemia–reperfusion damage is a problem in organ transplantation. Reactive oxygen species are produced in cells by blood-mediated reactions at the time of blood reperfusion. In this study, we developed a method to immobilize and internalize antioxidants in endothelial cells, using vitamin E-loaded liposomes. The liposomes loaded with vitamin E and human umbilical vein endothelial cells (HUVECs) were modified with poly(ethylene glycol)–phospholipid conjugates carrying 20-mer of deoxyadenylic acid (oligo(dA)20) and 20-mer of complementary deoxythymidylic acid (oligo(dT)20), respectively. The liposomes were effectively immobilized on HUVECs through DNA hybridization between oligo(dA)20 and oligo(dT)20. The liposomes loaded with vitamin E were gradually internalized into HUVECs. Then, the cells were treated with antimycin A to induce oxidative stress. We found the amount of reactive oxygen species was greatly reduced in HUVECs carrying vitamin E-loaded liposomes.  相似文献   

6.
Immunotherapies are a promising strategy for the treatment of neurological diseases such as Alzheimer's disease (AD), however, transport of antibodies to the brain is severely restricted by the blood–brain barrier (BBB). Furthermore, molecular transport at the BBB is altered in disease, which may affect the mechanism and quantity of therapeutic antibody transport. To better understand the transport of immunotherapies at the BBB in disease, an in vitro BBB model derived from human induced pluripotent stem cells (iPSCs) was used to investigate the endocytic uptake route of immunoglobulin G (IgG). In this model, uptake of fluorescently labeled IgGs is a saturable process. Inhibition of clathrin-mediated endocytosis, caveolar endocytosis, and macropinocytosis demonstrated that macropinocytosis is a major transport route for IgGs at the BBB. IgG uptake and transport were increased after the addition of stimuli to mimic AD (Aβ1–40 and Aβ1–42) and neuroinflammation (tumor necrosis factor-α and interleukin-6). Lastly, caveolar endocytosis increased in the AD model, which may be responsible for the increase in IgG uptake in disease. This study presents an iPSC-derived BBB model that responds to disease stimuli with physiologically relevant changes to molecular transport and can be used to understand fundamental questions about transport mechanisms of immunotherapies in health and neurodegenerative disease.  相似文献   

7.
In fibrotic livers, collagen producing hepatic stellate cells (HSC) represent a major target for antifibrotic therapies. We designed liposomes with surface-coupled mannose 6-phosphate (M6P) modified human serum albumin (HSA) to target HSC via the M6P receptor. In this study we determined the pharmacokinetics and target specificity of M6P-HSA-liposomes in a rat model of liver fibrosis. Ten minutes after injection of [3H]-M6P-HSA-liposomes 90% of the dose has cleared the circulation. The blood elimination of these liposomes was counteracted by free M6P-HSA and polyinosinic acid, a competitive inhibitor of scavenger receptors. The M6P-HSA-liposomes accumulated in HSC. However, also Kupffer cells and endothelial cells contributed to the uptake of M6P-HSA-liposomes in the fibrotic livers. Polyinosinic acid inhibited the accumulation of the liposomes in Kupffer cells and liver endothelial cells, but not in HSC. PCR analysis revealed that cultured HSC express scavenger receptors. This was confirmed by Western blotting, although activation of HSC diminishes scavenger receptor protein expression. In conclusion, in a rat model for liver fibrosis M6P-HSA-liposomes can be efficiently targeted to non-parenchymal cells, including HSC. M6P receptors and scavenger receptors are involved in the cellular recognition of these liposomes, allowing multiple pharmacological interference in different pathways involved in the fibrosis.  相似文献   

8.

Background

Chlorotoxin (TM601), a scorpion venom- derived 36-AA peptide, is an experimental drug against recurrent glioma with tumor specificity but unknown route of intracellular distribution. The aim of this study was to evaluate the route of entry and cellular localization of TM601 in glioma cells.

Results

We have found that in human gliomas, lung carcinoma and normal vascular endothelial cells, TM601 localizes near trans-Golgi while in normal human dermal fibroblasts (NHDF) and astrocytes it is dispersed in the cytoplasm. The uptake of TM601 by U373 glioma cells is rapid, concentration and time dependent, not affected by inhibitors such as filipin (caveolae-dependent endocytosis) and amiloride (non-selective macropinocytosis), but significantly affected by chlorpromazine (clathrin-dependent intracellular transport of coated pits) resulting in intracellular build-up of the drug and clathrin near the Golgi. In contrast, TM601 uptake by NHDF cells was significantly affected by amiloride indicating that macropinocytosis is the dominant uptake route of TM601 in these cells.

Conclusions

In conclusion, we found a distinct cellular localization pattern and uptake of TM601 by glioma cells differing from that found in normal cells. Further insight into the cellular processing of TM601 should assist in the development of effective anti-glioma therapeutic modalities.  相似文献   

9.
Incorporation of 8 mol% lactosylceramide in small unilamellar vesicles consisting of cholesterol, dimyristoylphosphatidylcholine and phosphatidylserine in a molar ratio of 5:4:1 and containing [3H]inulin as an aqueous-space marker resulted in a 3-fold decreased half-life of the vesicles in blood and a corresponding increase in liver uptake after intracardial injection into rats. The increase in liver uptake was mostly accounted for by an enhanced uptake in the parenchymal cells, while the uptake by the non-parenchymal cells was only slightly increased. The uptake of both the control and the glycolipid-containing vesicles by the non-parenchymal cell fraction could be attributed completely to the Kupffer cells; no radioactivity was found in the endothelial cells. The effect of lactosylceramide on liver uptake and blood disappearance of the liposomes was effectively counteracted by desialylated fetuin, injected shortly before the liposome dose. This observation supports the notion that a galactose-specific receptor is involved in the liver uptake of lactosylceramide liposomes.  相似文献   

10.
To achieve effective active targeting in a drug delivery system, we previously developed dual-targeting (DT) liposomes decorated with both vascular endothelial growth factor receptor-1 (VEGFR-1)-targeted APRPG and CD13-targeted GNGRG peptide ligands for tumor neovessels, and observed the enhanced suppression of tumor growth in Colon26 NL-17 tumor-bearing mice by the treatment with the DT liposomes encapsulating doxorubicin. In this present study, we examined the binding characteristics of DT liposomes having a different couple of ligands, namely, APRPG and integrin αvβ3-targeted GRGDS peptides. These DT liposomes synergistically associated to stimulated human umbilical vein endothelial cells compared with single-targeting (ST) liposomes decorated with APRPG or GRGDS. The results of a surface plasmon resonance assay showed that ST liposomes modified with APRPG or GRGDS peptide selectively bound to immobilized VEGFR-1 or integrin αvβ3, respectively. DT liposomes showed a higher affinity for a mixture of VEGFR-1 and integrin αvβ3 compared with ST liposomes, suggesting the cooperative binding of these 2 kinds of ligand on the liposomal surface. In a biodistribution assay, the DT liposomes accumulated to a significantly greater extent in the tumors of Colon26 NL-17 tumor-bearing mice compared with other liposomes. Moreover, the intratumoral distribution of the liposomes examined by confocal microscopy suggested that the DT liposomes targeted not only angiogenic endothelial cells but also tumor cells due to GRGDS-decoration. These findings suggest that "dual-targeting" augmented the affinity of the liposomes for the target cells and would thus be useful for active-targeting drug delivery for cancer treatment.  相似文献   

11.
The mechanism of the arginine-rich peptide-mediated cellular uptake is currently a controversial issue. Several factors, including the type of peptide, the nature of the cargo, and the linker between them, appear to affect uptake. One of the less studied factors, which may affect the uptake mechanism, is the effect of peptide density on the surface of the cargo. Here, we examined the mechanism of cellular uptake and intracellular trafficking of liposomes modified with different densities of the octaarginine (R8) peptide. Liposomes modified with a low R8 density were taken up mainly through clathrin-mediated endocytosis, leading to extensive lysosomal degradation, whereas those modified with a high R8 density were taken up mainly through macropinocytosis and were less subject to lysosomal degradation. Furthermore, the high density R8-liposomes were able to stimulate the macropinocytosis-mediated uptake of other particles. When plasmid DNA was condensed and encapsulated in R8-liposomes, the levels of gene expression were three orders of magnitude higher for the high density liposomes. The enhanced gene expression by the high density R8-liposomes was highly impaired by blocking uptake through macropinocytosis. The different extents of gene expression from different densities of the R8 peptide on the liposomes could be explained principally by the existence of an intracellular trafficking route, but not by the uptake amount, of internalized liposomes. These results show that the density of the R8 peptide on liposomes determines the uptake mechanism and that this is directly linked to intracellular trafficking, resulting in different levels of gene expression.  相似文献   

12.
In eukaryotic chemotaxis, the mechanisms connecting external signals to the motile apparatus remain unclear. The role of the lipid phosphatidylinositol 3,4,5-trisphosphate (PIP3) has been particularly controversial. PIP3 has many cellular roles, notably in growth control and macropinocytosis as well as cell motility. Here we show that PIP3 is not only unnecessary for Dictyostelium discoideum to migrate toward folate, but actively inhibits chemotaxis. We find that macropinosomes, but not pseudopods, in growing cells are dependent on PIP3. PIP3 patches in these cells show no directional bias, and overall only PIP3-free pseudopods orient up-gradient. The pseudopod driver suppressor of cAR mutations (SCAR)/WASP and verprolin homologue (WAVE) is not recruited to the center of PIP3 patches, just the edges, where it causes macropinosome formation. Wild-type cells, unlike the widely used axenic mutants, show little macropinocytosis and few large PIP3 patches, but migrate more efficiently toward folate. Tellingly, folate chemotaxis in axenic cells is rescued by knocking out phosphatidylinositide 3-kinases (PI 3-kinases). Thus PIP3 promotes macropinocytosis and interferes with pseudopod orientation during chemotaxis of growing cells.  相似文献   

13.
We studied the kinetics of hepatic uptake of liposomes during serum-free recirculating perfusion of rat livers. Liposomes consisted of phosphatidylcholine, cholesterol and phosphatidylserine in a 6:4:0 or a 3:4:3 molar ratio and were radiolabelled with [3H]cholesteryl oleyl ether. The negatively charged liposomes were taken up to a 10-fold higher extent than the neutral ones. Hepatic uptake of fluorescently labelled liposomes was examined by fluorescence microscopy. The neutral liposomes displayed a typical Kupffer cell distribution pattern, in addition to weak diffuse staining of the parenchyma, while the negatively charged liposomes showed a characteristic sinusoidal lining pattern, consistent with an endothelial localization. In addition, scattered Kupffer cell staining was distinguished as well as diffuse parenchymal fluorescence. The mainly endothelial localisation of the negatively charged liposomes was confirmed by determining radioactivity in endothelial and Kupffer cells isolated following a 1-h perfusion. Perfusion in the presence of polyinosinic acid, an inhibitor of scavenger receptor activity, reduced the rate of uptake of the negatively charged liposomes twofold, indicating the involvement of this receptor in the elimination mechanism. These results are compatible with earlier in vitro studies on liposome uptake by isolated endothelial cells and Kupffer cells, which showed that in the absence of serum also endothelial cells in situ are able to take up massive amounts of negatively charged liposomes. The present results emphasize that the high in vitro endothelial cell uptake in the absence of serum from earlier observations was not an artifact induced by the cell isolation procedure.  相似文献   

14.
The entry of Kaposi''s sarcoma-associated herpesvirus (KSHV) into human dermal microvascular endothelial cells (HMVEC-d), natural in vivo target cells, via macropinocytosis is initiated through a multistep process involving the binding of KSHV envelope glycoproteins with cell surface α3β1, αVβ3, and αVβ5 integrin molecules and tyrosine kinase ephrin-A2 receptor, followed by the activation of preexisting integrin-associated signaling molecules such as focal adhesion kinase (FAK), Src, c-Cbl, phosphoinositide 3-kinase (PI-3K), and Rho-GTPases. Many viruses, including KSHV, utilize cellular reactive oxygen species (ROS) for viral genomic replication and survival within host cells; however, the role of ROS in early events of viral entry and the induction of signaling has not been elucidated. Here we show that KSHV induced ROS production very early during the infection of HMVEC-d cells and that ROS production was sustained over the observation period (24 h postinfection). ROS induction was dependent on the binding of KSHV to the target cells, since pretreatment of the virus with heparin abolished ROS induction. Pretreatment of HMVEC-d cells with the antioxidant N-acetylcysteine (NAC) significantly inhibited KSHV entry, and consequently gene expression, without affecting virus binding. In contrast, H2O2 treatment increased the levels of KSHV entry and infection. In addition, NAC inhibited KSHV infection-induced translocation of αVβ3 integrin into lipid rafts, actin-dependent membrane perturbations, such as blebs, observed during macropinocytosis, and activation of the signal molecules ephrin-A2 receptor, FAK, Src, and Rac1. In contrast, H2O2 treatment increased the activation of ephrin-A2, FAK, Src, and Rac1. These studies demonstrate that KSHV infection induces ROS very early during infection to amplify the signaling pathways necessary for its efficient entry into HMVEC-d cells via macropinocytosis.  相似文献   

15.
Interaction of liposomes with human leukocytes in whole blood   总被引:1,自引:0,他引:1  
The uptake of multilamellar liposomes into human leukocytes in whole blood in vitro was evaluated on the basis of the cellular association of liposomal markers (3H-labelled cholesterol, lipid phase; [14C]inulin, aqueous phase). The entry of liposomes into human blood leukocytes was linear for 60 min and was mediated by a saturable mechanism displaying affinity constants of 0.28 +/- 0.17 and 0.16 +/- 0.05 mM liposomal lipid (means +/- S.E.) for liposomal lipid and aqueous phase markers, respectively. Amicon filtration analysis of incubation mixtures containing blood and liposomes (phosphatidylcholine:dicetyl phosphate:cholesterol, 70:20:10) showed that 34% of [14C]inulin was lost (neither liposome-associated nor cell-associated) after 60 min. By preincorporating sphingomyelin (35 mol%) into multilamellar liposomes, the leakage of the model aqueous phase marker inulin was reduced to 8% after 60 min, thus enhancing the drug carrier potential of liposomes in blood. As a consequence of their interaction with liposomes, the polymorphonuclear leukocytes in whole blood decreased in apparent buoyant density, while maintaining their viability. These results indicate that blood leukocytes in their natural milieu of whole blood are capable of interacting with, and taking up multilamellar liposomes.  相似文献   

16.
Drug-in-CD-in-liposome (DCL) systems which encapsulate the drug/CD inclusion complexes into inner aqueous phase of liposomes have been applied as a novel strategy to improve efficacy of lipophilic antitumor drugs. The aim of this work was to assess the role of transferrin (Tf) modification and phosphatidylcholine (PC) composition on the properties of liposomes containing hydroxypropyl-β-cyclodextrin (HP-β-CD). Fluorescence dye, FITC, was conjugated with HP-β-CD to facilitate the analysis. The resulting FITC-HP-β-CD was further encapsulated into liposomes and then the liposomes were modified with Tf. The FITC-HP-β-CD-loaded liposomes with different PC compositions were compared in terms of particle size, zeta potential, FITC content, FITC-HP-β-CD leakage, phase transition temperature (Tm) and cellular uptake. The apparent partition coefficient values of different PCs were also determined. Compared to PEGylated liposomes, FITC-HP-β-CD-loaded liposomes modified with Tf had been proved to significantly increase vesicle stability and specific cellular uptake. Moreover, PC composition affected the properties of liposomes. Soybean phosphatidylcholine (SPC) liposomes modified with Tf were found to be more easily internalized into tumor cells than 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and hydrogenated soybean phosphatidylcholine (HSPC) while Tf density on the liposomal surface was similar. And the lipophilicity of SPC was found to be much higher than DPPC and HSPC. Collectively, by the optimization of PC composition, the development of DCL modified with Tf might represent a potential strategy for the antitumor application of lipophilic drugs.  相似文献   

17.
The anti-oxidant enzyme superoxide dismutase (SOD) has the potential for use as a therapeutic agent in the treatment of various diseases caused by reactive oxygen species. However, achieving this would be difficult without a suitable delivery system for SOD. We previously reported that PC-SOD, in which four molecules of a phosphatidylcholine (PC) derivative were covalently bound to each dimer of recombinant human CuZnSOD, was a high affinity for the cell membrane [14]. Here, we show that an octaarginine (R8) modified liposome equipped with PC-SOD (R8-LP (PC-SOD)) enhances its anti-oxidant effect. High-density R8-modified liposomes can stimulate macropinocytosis and are taken up efficiently by cells as demonstrated in a previous study [21]. Flow cytometry analyses showed that R8-LP (PC-SOD) was taken up by cells more efficiently than PC-SOD. Moreover, R8-LP (PC-SOD) liposomes were found to scavenge superoxide anions (O2) very efficiently. These results suggest that the efficient cytosolic delivery of PC-SOD by R8-modified liposomes would enhance the anti-oxidant effects of PC-SOD.  相似文献   

18.
We investigated the intrahepatic distribution of small unilamellar liposomes injected intravenously into rats at a dose of 0.10 mmol of lipid per kg body weight. Sonicated liposomes consisting of cholesterol/sphingomyelin (1:1), (A); cholesterol/egg phosphatidylcholine (1:1), (B); cholesterol/sphingomyelin/phosphatidylserine (5:4:1), (C) or cholesterol/egg-phosphatidylcholine/phosphatidylserine (5:4:1), (D) were labeled by encapsulation of [3H]inulin. The observed differences in rate of blood elimination and hepatic accumulation (A much less than B approximately equal to C less than D) confirmed earlier observations and reflected the rates of uptake of the four liposome formulations by isolated liver macrophages in monolayer culture. Fractionation of the liver into a parenchymal and a non-parenchymal cell fraction revealed that 80-90% of the slowly clearing type-A liposomes were taken up by the parenchymal cells while of the more rapidly eliminated type-B liposomes even more than 95% was associated with the parenchymal cells. Incorporation of phosphatidylserine into the sphingomyelin-based liposomes caused a significant increase in hepatocyte uptake but a much more substantial increase in non-parenchymal cell uptake, resulting in a major shift of the intrahepatic distribution towards the non-parenchymal cell fraction. For the phosphatidylcholine-based liposomes incorporation of phosphatidylserine did not increase the already high uptake by the parenchymal cells while uptake by the non-parenchymal cells was only moderately elevated; this resulted in only a small shift in distribution towards the non-parenchymal cells. The phosphatidylserine-induced increase in liposome uptake by non-parenchymal liver cells was paralleled by an increase in uptake by the spleen. Fractionation of the non-parenchymal liver cells in a Kupffer cell fraction and an endothelial cell fraction showed that even for the slowly eliminated liposomes of type A endothelial cells do not participate to a measurable extent in the elimination process, thus excluding involvement of fluid-phase pinocytosis in the uptake process.  相似文献   

19.
20.
Intravenously administered gadolinium chloride caused only a slight decrease in the rate of elimination of small unilamellar liposomes from the blood and had no influence on the total hepatic uptake of these vesicles, but did alter their intrahepatic distribution substantially. Uptake by the non-parenchymal cells was substantially decreased, whereas uptake by the parenchymal cells showed a concomitant increase. Our earlier observations (Roerdink et al. (1981) Biochim. Biophys. Acta 677, 79-89) on the effect of lanthanides on the in vivo distribution of multilamellar liposomes have been extended, in that we demonstrate, in addition to the drop in elimination rate from the blood and in the over-all hepatic uptake, a shift of liposome distribution within the Kupffer cell population. While the larger Kupffer cells, which normally take up a major fraction of an injected liposome dose, were strongly inhibited in liposome uptake, the more numerous small macrophages showed a 3-4-fold increase in uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号