首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nox(phagocyte-like NADPH oxidase)是吞噬细胞NADPH氧化酶催化亚基 gp91phox的一系列同源物,广泛分布于体内多种非吞噬细胞.与NADPH氧化酶类似, Nox激活后可产生ROS,Nox产生的ROS是线粒体外ROS的主要来源.Nox产生的ROS,在控制新陈代谢,调节葡萄糖刺激的胰岛素分泌(glucose-stimulated insulin secretion,GSIS),促使胰岛β细胞凋亡、胰岛功能障碍和糖尿病及其并发症的发 生、发展中,发挥着重要作用.调节Nox的活性,改善机体内氧化应激水平,有望成为治疗糖尿病及其并发症的有效新途径.  相似文献   

2.
Reactive oxygen species (ROS) and pro-inflammatory cytokines are crucial in ventricular remodelling, such as inflammation-associated myocarditis. We previously reported that tumour necrosis factor-α (TNF-α)-induced ROS in human aortic smooth muscle cells is mediated by NADPH oxidase subunit Nox4. In this study, we investigated whether TNF-α-induced ventricular remodelling was mediated by Nox2 and/or Nox4. An intravenous injection of murine TNF-α was administered to a group of mice and saline injection was administered to controls. Echocardiography was performed on days 1, 7 and 28 post-injection. Ventricular tissue was used to determine gene and protein expression of Nox2, Nox4, ANP, interleukin (IL)-1β, IL-2, IL-6, TNF-α and to measure ROS. Nox2 and Nox4 siRNA were used to determine whether or not Nox2 and Nox4 mediated TNF-α-induced ROS and upregulation of IL-1β and IL-6 in adult human cardiomyocytes. Echocardiography showed a significant increase in left ventricular end-diastolic and left ventricular end-systolic diameters, and a significant decrease in the ejection fraction and fractional shortening in mice 7 and 28 days after TNF-α injection. These two groups of mice showed a significant increase in ventricular ROS, ANP, IL-1β, IL-2, IL-6 and TNF-α proteins. Nox2 and Nox4 mRNA and protein levels were also sequentially increased. ROS was significantly decreased by inhibitors of NADPH oxidase, but not by inhibitors of other ROS production systems. Nox2 and Nox4 siRNA significantly attenuated TNF-α-induced ROS and upregulation of IL-1β and IL-6 in cardiomyocytes. Our study highlights a novel TNF-α-induced chronic ventricular remodelling mechanism mediated by sequential regulation of Nox2 and Nox4 subunits.  相似文献   

3.
Reactive oxygen species (ROS) are generated as a result of normal cellular metabolism, mainly through the mitochondria and peroxisomes, but their release is enhanced by the activation of oxidant enzymes such as NADPH oxidases or downregulation of endogenous antioxidant enzymes such as manganese-superoxide dismutase (MnSOD) and catalase. Transforming growth factor-β (TGF-β), found to be overexpressed in airway smooth muscle (ASM) from asthmatic and chronic obstructive pulmonary disease patients, may be a pivotal regulator of abnormal ASM cell (ASMC) function in these diseases. An important effect of TGF-β on ASMC inflammatory responses is the induction of IL-6 release. TGF-β also triggers intracellular ROS release in ASMCs by upregulation of NADPH oxidase 4 (Nox4). However, the effect of TGF-β on the expression of key antioxidant enzymes and subsequently on oxidant/antioxidant balance is unknown. Moreover, the role of redox-dependent pathways in the mediation of the proinflammatory effects of TGF-β in ASMCs is unclear. In this study, we show that TGF-β induced the expression of Nox4 while at the same time inhibiting the expression of MnSOD and catalase. This change in oxidant/antioxidant enzymes was accompanied by elevated ROS levels and IL-6 release. Further studies revealed a role for Smad3 and phosphatidyl-inositol kinase-mediated pathways in the induction of oxidant/antioxidant imbalance and IL-6 release. The changes in oxidant/antioxidant enzymes and IL-6 release were reversed by the antioxidants N-acetyl-cysteine (NAC) and ebselen through inhibition of Smad3 phosphorylation, indicating redox-dependent activation of Smad3 by TGF-β. Moreover, these findings suggest a potential role for NAC in preventing TGF-β-mediated pro-oxidant and proinflammatory responses in ASMCs. Knockdown of Nox4 using small interfering RNA partially prevented the inhibition of MnSOD but had no effect on catalase and IL-6 expression. These findings provide novel insights into redox regulation of ASM function by TGF-β.  相似文献   

4.
We investigated the role of reactive oxygen species (ROS) in promoting cell survival during oxidative stress induced by the inflammatory mediator tumor necrosis factor-α (TNF-α) in cerebral microvascular endothelial cells (CMVEC) from newborn piglets. Nox4 is the major isoform of NADPH oxidase responsible for TNF-α-induced oxidative stress and apoptosis in CMVEC. We present novel data that Nox4 NADPH oxidase-derived ROS also initiate a cell survival mechanism by increasing production of a gaseous antioxidant mediator carbon monoxide (CO) by constitutive heme oxygenase-2 (HO-2). TNF-α rapidly enhanced endogenous CO production in a superoxide- and NADPH oxidase-dependent manner in CMVEC with innate, but not with small interfering RNA (siRNA)-downregulated Nox4 activity. CORM-A1, a CO-releasing compound, inhibited Nox4-mediated ROS production and enhanced cell survival in TNF-α-challenged CMVEC. The ROS-induced CO-mediated survival mechanism requires functional interactions between the protein kinase B/Akt and extracellular signal-related kinase (ERK)/p38 MAPK signaling pathways activated by TNF-α. In Akt siRNA-transfected CMVEC and in cells with pharmacologically inhibited Akt, Erk1/2, and p38 mitogen-activated protein kinase (MAPK) activities, CORM-A1 was no longer capable of blocking Nox4 activation and apoptosis caused by TNF-α. Overall, Nox4 NADPH oxidase-derived ROS initiate both death and survival pathways in TNF-α-challenged CMVEC. The ROS-dependent cell survival pathway is mediated by an endogenous antioxidant CO, which inhibits Nox4 activation via a mechanism that includes Akt, ERK1/2, and p38 MAPK signaling pathways. The ability of CO to inhibit TNF-α-induced ERK1/2 and p38 MAPK activities in an Akt-dependent manner appears to be the key element in ROS-dependent survival of endothelial cells during TNF-α-mediated brain inflammatory disease.  相似文献   

5.
6.
Vascular complications, a major cause of morbidity and mortality in diabetic patients, are related to hyperglycemia-induced oxidative stress. Previously, we reported that rosiglitazone (RSG) attenuated vascular expression and activity of NADPH oxidases in diabetic mice. The mechanisms underlying these effects remain to be elucidated. We hypothesized that RSG acts directly on endothelial cells to modulate vascular responses in diabetes. To test this hypothesis, human aortic endothelial cells (HAECs) were exposed to normal glucose (NG; 5.6 mmol/l) or high glucose (HG; 30 mmol/l) concentrations. Select HAEC monolayers were treated with RSG, caffeic acid phenethyl ester (CAPE), diphenyleneiodonium (DPI), small interfering (si)RNA (to NF-κB/p65 or Nox4), or Tempol. HG increased the expression and activity of the NADPH oxidase catalytic subunit Nox4 but not Nox1 or Nox2. RSG attenuated HG-induced NF-κB/p65 phosphorylation, nuclear translocation, and binding to the Nox4 promoter. Inhibiting NF-κB with CAPE or siNF-κB/p65 also reduced HG-induced Nox4 expression and activity. HG-induced H(2)O(2) production was attenuated by siRNA-mediated knockdown of Nox4, and HG-induced HAEC monocyte adhesion was attenuated by treatment with RSG, DPI, CAPE, or Tempol. These results indicate that HG exposure stimulates HAEC NF-κB activation, Nox4 expression, and H(2)O(2) production and that RSG attenuates HG-induced oxidative stress and subsequent monocyte-endothelial interactions by attenuating NF-κB/p65 activation and Nox4 expression. This study provides novel insights into mechanisms by which the thiazolidinedione peroxisome proliferator-activated receptor-γ ligand RSG favorably modulates endothelial responses in the diabetic vasculature.  相似文献   

7.
Cytosolic phospholipase A(2) (cPLA(2)) plays a pivotal role in mediating agonist-induced arachidonic acid (AA) release for prostaglandin (PG) synthesis during inflammation triggered by tumor necrosis factor-α (TNF-α). However, the mechanisms underlying TNF-α-induced cPLA(2) expression and PGE(2) synthesis in human tracheal smooth muscle cells (HTSMCs) remain unknown. Here, we report that TNF-α-induced cPLA(2) protein and mRNA expression, PGE(2) production, and phosphorylation of p42/p44 MAPK, p38 MAPK, and JNK1/2, which were attenuated by pretreatment with a ROS scavenger [N-acetyl-L-cysteine, (NAC)] and the inhibitors of NADPH oxidase [apocynin (APO) and diphenyleneiodonium chloride (DPI)], MEK1/2 (U0126), p38 MAPK (SB202190), and JNK1/2 (SP600125) or transfection with siRNA of Nox2, p47(phox) , MEK1, p42, p38, or JNK2. TNF-α-induced cPLA(2) expression was also inhibited by pretreatment with a selective NF-κB inhibitor [helenalin (HLN)] or transfection with dominant negative mutants of NF-κB inducing kinase (NIK) or IκB kinase (IKK)α/β. TNF-α-induced NF-κB translocation was blocked by pretreatment with NAC, DPI, APO, or HLN, but not by U0126, SB202190, or SP600125. In addition, pretreatment with curcumin (a p300 inhibitor) or transfection with p300 siRNA blocked cPLA(2) expression and PGE(2) synthesis induced by TNF-α. We further confirmed that p300 was associated with the cPLA(2) promoter which was dynamically linked to histone H4 acetylation stimulated by TNF-α, determined by chromatin immunoprecipitation assay. Association of p300 and histone H4 to cPLA(2) promoter was inhibited by U0126, SB202190, and SP600125. These results suggested that in HTSMCs, activation of p47(phox) , MAPKs, NF-κB, and p300 is essential for TNF-α-induced cPLA(2) expression and PGE(2) release.  相似文献   

8.
Rac is an activating factor for Nox1, an O2-generating NADPH oxidase, expressed in the colon and other tissues. Rac requires a GDP-GTP exchange factor for activation. Nox1 activation by βPix has been demonstrated in cell lines. We examined the effects of βPix and its phosphomimetic mutant on endogenous Nox1 in Caco-2 cells transfected with Noxo1 and Noxa1. βPix expression enhanced O2 production in resting cells and cells stimulated with EGF or phorbol ester. βPix(S340E) further enhanced O2 production, while βPix(S340A) eliminated the βPix effect. βPix(S340E), but not βPix(S340A), had higher affinity and GEF activity for Rac than wild-type βPix. These results suggest that βPix phosphorylation at Ser-340 upregulates Nox1 through Rac activation, confirming Rac as a trigger for acute Nox1-dependent ROS production.  相似文献   

9.
Transforming growth factor-β (TGF-β) triggers apoptosis in endothelial cells, while the mechanisms underlying this action are not entirely understood. Using genetic and pharmacological tools, we demonstrated that TGF-β induced a moderate apoptotic response in human cultured endothelial cells, which was dependent upon upregulation of the Nox4 NADPH oxidase and production of reactive oxygen species (ROS). In contrast, we showed that ectopic expression of Nox4 via viral vectors (vNox4) produced an antiapoptotic effect. TGF-β caused ROS-dependent p38 activation, whereas inhibition of p38 blunted TGF-β-induced apoptosis. However, vNox4, but not TGF-β, activated Akt, and inhibition of Akt attenuated the antiapoptotic effect of vNox4. Akt activation induced by vNox4 was accompanied by inactivation of the protein tyrosine phosphatase-1B (PTP1B) function and enhanced vascular endothelial growth factor receptor (VEGFR)-2 phosphorylation. Moreover, we showed that TGF-β enhanced Notch signaling and increased expression of the arterial marker EphrinB2 in a redox-dependent manner. In summary, our results suggest that Nox4 and ROS have pivotal roles in mediating TGF-β-induced endothelial apoptosis and phenotype specification. Redox mechanisms may influence endothelial cell functions by modulating p38, PTP1B/VEGFR/Akt and Notch signaling pathways.  相似文献   

10.
目的:探讨高糖通过Nox4型NADPH氧化酶影响施旺细胞凋亡的机制。方法:提取Wistar大鼠新生鼠的施旺细胞体外培养。分为对照组、高糖组、NOX4 siRNA组及对照siRNA组(n=10)。采用WST-1法检测细胞活力,DCFH-DA法检测细胞内活性氧自由基(ROS)含量,荧光实时定量RT-PCR检测Nox4和Caspase3 mRNA表达,蛋白印迹法检测Nox4和Caspase3蛋白表达。结果:高糖培养上调施旺细胞Nox4 mRNA及蛋白表达,降低施旺细胞活性,增加细胞内ROS含量,通过增加Caspase3 mRNA及蛋白表达促进细胞凋亡。NOX4 siRNA通过抑制Nox4基因表达,阻止高糖培养的施旺细胞内ROS蓄积,降低高糖对施旺细胞的活性损害,通过下调Caspase3 mRNA及蛋白表达减少细胞凋亡。结论:Nox4参与高糖引起的施旺细胞凋亡,针对Nox4表达或功能的调控方式可能成为治疗糖尿病周围神经病变的新途径。  相似文献   

11.
目的:克隆Nox4基因入pLenti6.3慢病毒表达载体,为探索Nox4基因在ROS产生中的作用提供实验基础。方法:根据NCBI人Nox4 mRNA序列设计引物,再利用酶切连接反应将Nox4插入到入门载体pENTR3C中,成功构建pENTR3C-Nox4后,通过LR反应,将Nox4和EGFP tag插入到慢病毒表达载体pLenti6.3中,经酶切和测序验证正确后,将重组表达质粒转染入人Hela细胞,通过Western-Blot验证Nox4的表达情况,免疫荧光验证Nox4在细胞内的定位情况。结果:入门载体及表达质粒测序比对完全正确,转染Hela细胞后可见明显的表达条带,并且主要定位于细胞器内质网中。结论:成功构建了带有EGFP tag的Nox4基因慢病毒重组表达载体,转染Hela细胞后,其能正确表达并定位于内质网中,为研究Nox4在调节ROS产生中的作用奠定了基础。  相似文献   

12.
Activation of thromboxane receptors (TPr) may promote atherosclerosis by enhancing oxidative stress and inflammation. This study examined the role of Nox1, an NADPH-oxidase subunit, in the enhancement of interleukin (IL)-1β-induced monocyte adhesion by TPr. In cultured rat aortic vascular smooth muscle cells (VSMCs), U46619, a stable thromboxane A(2) mimetic, together with interleukin-1β significantly enhanced Nox1 mRNA expression, as well as adhesion of THP-1 monocytes. Activation of TPr also enhanced IL-1β-induced vascular cell adhesion molecule (VCAM)-1 expression, but inhibited inducible nitric oxide synthase (iNOS) expression. Silencing Nox1 expression by siRNA prevented the U46619 enhancement of IL-1β-induced monocyte adhesion, but had no significant effect on VCAM-1 or iNOS expression. Furthermore, monocyte adhesion was inhibited by superoxide dismutase, enhanced by a specific iNOS inhibitor, l-N(6)-(1-iminoethyl)-lysine, but not influenced by catalase. U46619 inhibited IL-1β-induced cyclic GMP production, and the inhibition was partially prevented by superoxide dismutase. In conclusion, activation of TPr enhances IL-1β-induced Nox1 expression in VSMCs, which is responsible for the up-regulation of monocyte adhesion. The effect of Nox1 is independent of the changes in VCAM-1 and iNOS expression, but depends on the inactivation of nitric oxide via generation of superoxide anion.  相似文献   

13.
Reactive oxygen species (ROS) play important roles in peroxisome proliferator-activated receptor γ (PPARγ) signaling and cell-cycle regulation. However, the PPARγ redox-signaling pathways in lung alveolar epithelial cells remain unclear. In this study, we investigated the in vivo and in vitro effects of PPARγ activation on the levels of lung ROS production and cell-cycle progression using C57BL/6J wild-type and Nox2 knockout mice (n = 10) after intraperitoneal injection of a selective PPARγ agonist (GW1929, 5 mg/kg body wt, daily) for 14 days. Compared to vehicle-treated mice, GW1929 increased significantly the levels of ROS production in wild-type lungs, and this was accompanied by significant up-regulation of PPARγ, Nox2, PCNA, and cyclin D1 and phosphorylation of ERK1/2 and p38MAPK. These effects were absent in Nox2 knockout mice. In cultured alveolar epithelial cells, GW1929 (5 μM for 24 h) increased ROS production and promoted cell-cycle progression from G0/G1 into S and G2/M phases, and these effects were abolished by (1) adding a PPARγ antagonist (BADGE, 1 μM), (2) knockdown of PPARγ using siRNA, or (3) knockout of Nox2. In conclusion, PPARγ activation through Nox2-derived ROS promotes cell-cycle progression in normal mouse lungs and in cultured normal alveolar epithelial cells.  相似文献   

14.
The synthesis of extracellular matrix including collagen during wound healing responses involves signaling via reactive oxygen species (ROS). We hypothesized that NADPH oxidase isoform Nox4 facilitates the stimulatory effects of the profibrotic cytokine transforming growth factor (TGF) β1 on collagen production in vitro and in vivo. TGFβ1 stimulated collagen synthesis and hydrogen peroxide generation in mouse cardiac fibroblasts, and both responses were attenuated by a scavenger of superoxide and hydrogen peroxide (EUK-134). Furthermore, by expressing a dominant negative form of Nox4 (Adv-Nox4ΔNADPH) in fibroblasts, TGFβ1-induced hydrogen peroxide production and collagen production were abrogated, suggesting that Nox4-dependent ROS are important for TGFβ1 signaling in collagen production. This was confirmed by the inhibitory effect of an adenovirus carrying siRNA targeting Nox4 (Adv-Nox4i) on TGFβ1-induced collagen synthesis and expression of activated myofibroblasts marker smooth muscle alpha actin. Finally we used a mouse model of subcutaneous sponge implant to examine the role of Nox4 in the local stimulatory effects of TGFβ1 on collagen accumulation in vivo. TGFβ1-induced collagen accumulation was significantly reduced when the sponges were instilled with Adv-Nox4ΔNADPH. In conclusion, Nox4 acts as an intermediary in the signaling of TGFβ1 to facilitate collagen synthesis.  相似文献   

15.
Hyperglycemia is a primary factor that disturbs podocyte function in the glomerular filtration process; this disturbance leads to the development of diabetic nephropathy, and ultimately, renal failure. Podocyte function may also be altered by biological agents that modify protein kinase activity, including the cGMP-activated protein kinase type Iα (PKGIα). We hypothesized that hyperglycemia-induced podocyte protein hyperpermeability was dependent on PKGIα activation, and that PKGIα was activated via dimerization induced by reactive oxygen species. This hypothesis was investigated in rat podocytes cultured in high glucose (HG, 30 mM). Protein expression was measured with Western blot and immunofluorescence. Podocyte permeability was measured with a transmembrane albumin flux assay. We found that HG increased podocyte permeability in long-term incubations (1, 3, and 5 days); permeability was increased by 66% on day 5. This effect was abolished with apocynin, a NAD(P)H inhibitor, and Rp-8-Br-cGMPS, a PKG inhibitor. It was also abolished by introducing small interfering RNAs (siRNAs) against Nox4 and PKGIα into cultured podocytes. Furthermore, HG increased PKGIα dimerization by 138% (0.23±0.04 vs. 0.54±0.09; P<0.05); this effect was abolished with a siRNA against Nox4. Our observations suggested that HG could increase albumin permeability across the podocyte filtration barrier via Nox4-dependent PKGIα dimerization.  相似文献   

16.
Human immunodeficiency virus (HIV) regulatory protein Tat has pro-oxidant property, which might contribute to Tat-induced long terminal repeat region (LTR) transactivation. However, the intracellular mechanisms whereby Tat triggers ROS production, and the relationship between Tat-induced ROS production and LTR transactivation, are still subject to debate. The present study was undertaken to evaluate the specific effects of Tat on nicotinamide adenine denucleotide phosphate (NADPH) oxidase in MAGI cells, and to determine the specific role of NADPH oxidase in Tat-induced LTR transactivation. Application of Tat to MAGI cells caused increases in ROS formation that were prevented by both pharmacologic NADPH oxidase inhibitors and by siRNA Nox2, but not by other inhibitors of pro-oxidant enzymes or siRNA Nox4. Furthermore, inhibition of NADPH oxidase by both pharmacologic NADPH oxidase inhibitors and by siRNA Nox2 attenuated Tat-induced p65 phosphorylation and IKK phosphorylation. Phosphatidylinositol 3-kinase/Akt signaling pathway was involved in Tat-induced NADPH oxidase stimulation. Finally, NADPH oxidase inhibitors or Nox2 siRNA, but not control siRNA, inhibited Tat-induced LTR transactivation. Tat-induced HIV-1 LTR transactivation was inhibited in wortmannin or LY294002 treated cells compared to control cells. Together, these data describe a specific and biologically significant signaling component of the MAGI cells response to Tat, and suggest the PI3K/Akt signaling pathway might originate in part with Tat-induced activation of NADPH oxidase and LTR transactivation.  相似文献   

17.
18.
19.
When an autophagosome or an amphisome fuse with a lysosome, the resulting compartment is referred to as an autolysosome. Some people writing papers on the topic of autophagy use the terms “autolysosome” and “autophagolysosome” interchangeably. We contend that these words should be used to denote 2 different compartments, and that it is worthwhile maintaining this distinction—the autophagolysosome has a particular origin in the process of xenophagy that makes it distinct from an autolysosome.  相似文献   

20.
《Autophagy》2013,9(4):549-551
When an autophagosome or an amphisome fuse with a lysosome, the resulting compartment is referred to as an autolysosome. Some people writing papers on the topic of autophagy use the terms “autolysosome” and “autophagolysosome” interchangeably. We contend that these words should be used to denote 2 different compartments, and that it is worthwhile maintaining this distinction—the autophagolysosome has a particular origin in the process of xenophagy that makes it distinct from an autolysosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号