首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cytokine lymphotoxin-α (LTα) is a promising anticancer agent; however, its instability currently limits its therapeutic potential. Modification of proteins with polyethylene glycol (PEGylation) can improve their in vivo stability, but PEGylation occurs randomly at lysine residues and the N-terminus. Therefore, PEGylated proteins are generally heterogeneous and have lower bioactivity than their non-PEGylated counterparts. Previously, we created phage libraries expressing mutant LTαs in which the lysine residues of wild-type LTα (wtLTα) were substituted for other amino acids. Here, we attempted to create a lysine-deficient mutant LTα with about the same bioactivity as wtLTα by using these libraries and site-specific PEGylation of the N-terminus. We isolated a lysine-deficient mutant LTα, LT-K0, with almost identical bioactivity to that of wtLTα against mouse LM cells. The bioactivity of wtLTα decreased to 10% following random PEGylation, whereas that of LT-K0 decreased to 50% following site-specific PEGylation; PEGylated LT-K0 retained five times the bioactivity of randomly PEGylated wtLTα. These results suggest that site-specific PEGylated LT-K0 may be useful in cancer therapy.  相似文献   

2.
Addition of polyethylene glycol to protein (PEGylation) to improve stability and other characteristics is mostly nonspecific and may occur at all lysine residues, some of which may be within or near an active site. Resultant PEGylated proteins are heterogeneous and can show markedly lower bioactivity. We attempted to develop a strategy for site-specific mono-PEGylation using tumor necrosis factor-alpha (TNF-alpha). We prepared phage libraries expressing TNF-alpha mutants in which all the lysine residues were replaced with other amino acids. A fully bioactive lysine-deficient mutant TNF-alpha (mTNF-alpha-Lys(-)) was isolated by panning against TNF-alpha-neutralizing antibody despite reports that some lysine residues were essential for its bioactivity. mTNF-alpha-Lys(-) was site-specifically mono-PEGylated at its N terminus. This mono-PEGylated mTNF-alpha-Lys(-), with superior molecular uniformity, showed higher bioactivity in vitro and greater antitumor therapeutic potency than randomly mono-PEGylated wild-type TNF-alpha. These results suggest the usefulness of the phage display system for creating functional mutant proteins and of our site-specific PEGylation approach.  相似文献   

3.
Excessive proteolytic degradation of fibronectin (FN) has been implicated in impaired tissue repair in chronic wounds. We previously reported two strategies for stabilizing FN against proteolytic degradation; the first conjugated polyethylene glycol (PEG) through cysteine residues and the second conjugated PEG chains of varying molecular weight on lysine residues. PEGylation of FN via lysine residues resulted in increased resistance to proteolysis with increasing PEG size, but an overall decrease in biological activity, as characterized by cell and gelatin binding. Our latest method to stabilize FN against proteolysis masks functional regions in the protein during lysine PEGylation. FN is PEGylated while it is bound to gelatin Sepharose beads with 2, 5, and 10 kDa PEG precursors. This results in partially PEGylated FN that is more stable than native FN and whose proteolytic stability increases with PEG molecular weight. Unlike completely PEGylated FN, partially PEGylated FN has cell adhesion, gelatin binding, and matrix assembly responses that are comparable to native FN. This is new evidence of how PEGylation variables can be used to stabilize FN while retaining its activity. The conjugates developed herein can be used to dissect molecular mechanisms mediated by FN stability and functionality, and address the problem of FN degradation in chronic wounds. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:277–288, 2015  相似文献   

4.
PEGylation can improve the therapeutic efficacy of proteins by increasing serum half-life of proteins and reducing immunogenicity and antigenicity. However, PEGylation results in a substantial loss of the bioactivity of proteins due to the steric hindrance of polyethylene glycol (PEG). Dimerization of the proteins is an efficient approach to increase the bioactivity of the PEG-protein conjugates. Here, staphylokinase (SAK) was used due to its therapeutic potential for coronary thrombolysis. SAK dimers (dSAK) were prepared by engineering cysteine residue at the C-terminus of SAK and dimerization of the cysteine residue with 1,4-bismaleimidobutane. PEG aldehyde was used for site-specific PEGylation of dSAK at one of its two N-termini. Structural analysis indicated that dimerization of SAK can decrease the steric hindrance of PEG and increase the binding affinity of PEG-SAK to plasminogen. Dimerization of SAK increased the relative bioactivity of PEG-SAK from 39.0% to 62.0%. Therefore, site-specifically PEGylated dSAK at one of its two N-termini has higher bioactivity than the N-terminal PEGylated SAK.  相似文献   

5.
《Process Biochemistry》2014,49(7):1092-1096
PEGylation can effectively improve the therapeutic potential of staphylokinase (SAK), a thrombolysis agent for therapy of myocardial infarction. However, polyethylene glycol (PEG) can sterically shield SAK and drastically decrease its bioactivity. In the present study, N-terminally PEGylated SAKs (5 and 20 kDa PEG), C-terminally PEGylated SAKs with phenyl linker and the ones with amyl linker (5 and 20 kDa PEG) were prepared. The effects of the PEG length, the PEGylation site and linker chemistry on the bioactivity of the heat-treated PEGylated SAK were investigated. Heat treatment at 70 °C for 2 h can improve the bioactivity of the C-terminally PEGylated SAKs, where the one with amyl linker and 20 kDa PEG showed the highest increase extent (27%) in the bioactivity. Thus, our study can advance the development of long-acting pharmaceutical protein with high bioactivity.  相似文献   

6.
Arginine deiminase (ADI) is a therapeutic protein for cancer therapy of arginine-auxotrophic tumors. However, its application as anticancer drug is hampered by its poor stability under physiological conditions in the bloodstream. Commonly, random PEGylation is being used for increasing the stability of ADI and in turn the improved half-life. However, the traditional random PEGylation usually leads to poor PEGylation efficiency due to the limited number of Lys on the protein surface. To boost the PEGylation efficiency and enhance the stability of ADI further, surface engineering of PpADI (an ADI from Pseudomonas plecoglossicida) to increase the suitable PEGylation sites was carried out. A new in silico approach for increasing the PEGylation sites was developed. The validation of this approach was performed on previously identified PpADI variant M31 to increase potential PEGylation sites. Four Arg residues on the surface of PpADI M31 were selected through three criteria and subsequently substituted to Lys, aiming for providing primary amines for PEGylation. Two out of the four substitutions (R299K and R382K) enhanced the stability of PEGylated PpADI in human serum. The average numbers of PEGylation sites were increased from ~12 (tetrameric PpADI M31, starting point) to ~20 (tetrameric PpADI M36, final variant). Importantly, the PEGylated PpADI M36 after PEGylation exhibited significantly improved Tm values (M31: 40°C; M36: 40°C; polyethylene glycol [PEG]-M31: 54°C; PEG-M36: 64°C) and half-life in human serum (M31: 1.9 days; M36: 2.0 days; PEG-M31: 3.2 days; PEG-M36: 4.8 days). These proved that surface engineering is an effective approach to increase the PEGylation efficiency which therefore enhances the stability of therapeutic enzymes. Furthermore, the PEGylated PpADI M36 represents a highly attractive candidate for the treatment of arginine-auxotrophic tumors.  相似文献   

7.
To improve the therapy efficacy of recombinant hirudin variant-2 (HV2), its PEGylation was investigated using linear mPEG-succinimidyl carbonate (mPEG-SC) and branched mPEG2-N-hydroxysuccinimide (mPEG2-NHS). The reaction mixtures of PEGylation were analyzed by RP-HPLC and the mono-PEG-HV2 products were purified by anion exchange chromatography (IEC). Effects of linear and branched PEG on the hydrolysis kinetics of the PEG reagent, the PEGylation kinetics of HV2 and the in vitro and in vivo bioactivity of mono-PEG-HV2 were investigated. The RP-HPLC and IEC analyses showed that linear and branched PEG-HV2 with identical molecular weight had different chromatographic behaviors. The reaction kinetics showed that branched mPEG2-NHS displayed higher hydrolysis rate but lower PEGylation rates than linear mPEG-SC. Consequently, HV2 conjugated with mPEG2-NHS required a greater molar ratio of PEG to HV2 than that of mPEG-SC to achieve the identically desired yield of mono-PEG-HV2. The in vitro and in vivo bioactivities of mono-PEG-HV2 showed that branched PEG-HV2 had higher therapeutic efficacy than linear PEG-HV2 with identical molecular weight. The in vivo bioactivity of mono-B-PEG40k-HV2 (mono-PEG-HV2 derived from 40 kDa branched mPEG2-NHS) had a markedly longer duration in rabbits than did unmodified HV2, which showed its potential to be developed as a candidate antithrombotic drug.  相似文献   

8.
In this study, an integrated process was developed for successive solid-phase PEGylation of recombinant hirudin variant-2 (HV2) and separation of PEGylated HV2 species on an anion exchange chromatography column (so-called in situ PEGylation). The effects of different PEG sizes, ion exchange resins and reaction conditions on in situ PEGylation were investigated. The results showed that in situ PEGylation efficiently integrates the reaction, separation and purification into a single-unit operation using the same column. In situ PEGylation could improve the selectivity of PEGylation reactions by significantly reducing the formation of multi-PEG-HV2. The pore sizes and internal surface structures of different resins had a significant impact on the yield of mono-PEG-HV2. In contrast to liquid-phase PEGylation, the yield of mono-PEG-HV2 decreased as PEG size increased during the in situ PEGylation process, indicating that in situ PEGylation is a pore diffusion-controlled process. The in vitro and in vivo anticoagulant activities of mono-PEG-HV2 derived from in situ PEGylation were higher than those from liquid-phase PEGylation, indicating that in situ PEGylation could enhance the bioactivity retention of mono-PEG-HV2. The results of this study demonstrated that in situ PEGylation can be used as an effective approach for the development of PEGylated protein drugs.  相似文献   

9.
The cytokine lymphotoxin-α (LTα) is a promising candidate for use in cancer therapy. However, the instability of LTα in vivo and the insufficient levels of tumor necrosis factor receptor 1 (TNFR1)-mediated bioactivity of LTα limit its therapeutic potential. Here, we created LTα mutants with increased TNFR1-mediated bioactivity by using a phage display technique. We constructed a phage library displaying lysine-deficient structural variants of LTα with randomized amino acid residues. After affinity panning, we screened three clones of lysine-deficient LTα mutant, and identified a LTα mutant with TNFR1-mediated bioactivity that was 32 times that of the wild-type LTα (wtLTα). When compared with wtLTα, the selected clone showed augmented affinity to TNFR1 due to slow dissociation rather than rapid association. In contrast, the mutant showed only 4 times the TNFR2-mediated activity of wtLTα. In addition, the LTα mutant strongly and rapidly activated caspases that induce TNFR1-mediated cell death, whereas the mutant and wtLTα activated nuclear factor-kappa B to a similar extent. Our data suggest that the kinetics of LTα binding to TNFR1 play an important role in signal transduction patterns, and a TNFR1-selective LTα mutant with augmented bioactivity would be a superior candidate for cancer therapy.  相似文献   

10.
The circumsporozoite protein (CSP) is the major surface protein of the sporozoite stage of malaria parasites and has multiple functions as the parasite develops and then migrates from the mosquito midgut to the mammalian liver. The overall structure of CSP is conserved among Plasmodium species, consisting of a species-specific central tandem repeat region flanked by two conserved domains: the NH2-terminus and the thrombospondin repeat (TSR) at the COOH-terminus. Although the central repeat region is an immunodominant B-cell epitope and the basis of the only candidate malaria vaccine in Phase III clinical trials, little is known about its functional role(s). We used the rodent malaria model Plasmodium berghei to investigate the role of the CSP tandem repeat region during sporozoite development. Here we describe two mutant parasite lines, one lacking the tandem repeat region (ΔRep) and the other lacking the NH2-terminus as well as the repeat region (ΔNΔRep). We show that in both mutant lines oocyst formation is unaffected but sporozoite development is defective.  相似文献   

11.
Uricase from Bacillus fastidiosus was site-specifically PEGylated using methoxypolyethyleneglycol-maleimide (mPEG-mal) of different molecular weights (750 Da, 5 kDa, 10 kDa) via Thiol PEGylation strategy. The obtained monoPEGylated uricase conjugates were characterized using sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and the molecular weight of single subunit of the conjugate was found to be 42.6, 48.1 and 56.3 kDa with respect to different molecular weights of m-PEG-mal. The influence of PEGylation on the quantification of uricase using protein quantification techniques like Bradford assay, RP-HPLC detection and Dumbroff method has been evaluated. A gradual decline in the absorbance value was observed with the advancement of the PEGylation reaction, indicating an interferences in the protein quantification due to PEGylation. The extent of interference highly dependence on mPEG-mal concentration and its chain length. The present study indicates that the quantification of PEGylation induced interferences caused in protein measured ought to be prudently measured at every discrete step of the PEGylation process.  相似文献   

12.
Recently, we created a lysine-deficient mutant tumor necrosis factor-alpha [mTNF-alpha-Lys(-)] with full bioactivity in vitro compared with wild-type TNF-alpha (wTNF-alpha), and site-specific PEGylation of mTNF-alpha-Lys(-) was found to selectively enhance its in vivo antitumor activity. In this study, we attempted to optimize this PEGylation of mTNF-alpha-Lys(-) to further improve its therapeutic potency. mTNF-alpha-Lys(-) was site-specifically modified at its N-terminus with linear polyethylene glycol (LPEG) or branched PEG (BPEG). While randomly mono-PEGylated wTNF-alpha (ran-LPEG5K-wTNF-alpha) with 5 kDa of LPEG (LPEG5K) had about only 4% in vitro bioactivity of wTNF-alpha, mono-PEGylated mTNF-alpha-Lys(-) [sp-PEG-mTNF-alpha-Lys(-)] with LPEG5K, LPEG20K, BPEG10K, and BPEG40K had 82%, 58%, 93%, and 65% bioactivities of mTNF-alpha-Lys(-), respectively. sp-LPEG-mTNF-alpha-Lys(-) and sp-BPEG10K-mTNF-alpha-Lys(-) had much superior antitumor activity to those of both unmodified TNF-alphas and ran-LPEG5K-wTNF-alpha, though sp-BPEG40K-mTNF-alpha-Lys(-) did not show in vivo antitumor activity. Thus, the molecular shape and weight of PEG may strongly influence the in vivo antitumor activity of sp-PEG-mTNF-alpha-Lys(-).  相似文献   

13.
This study assesses the growth and morphological responses, nitrogen uptake and nutrient allocation in four aquatic macrophytes when supplied with different inorganic nitrogen treatments (1) NH4+, (2) NO3, or (3) both NH4+ and NO3. Two free-floating species (Salvinia cucullata Roxb. ex Bory and Ipomoea aquatica Forssk.) and two emergent species (Cyperus involucratus Rottb. and Vetiveria zizanioides (L.) Nash ex Small) were grown with these N treatments at equimolar concentrations (500 μM). Overall, the plants responded well to NH4+. Growth as RGR was highest in S. cucullata (0.12 ± 0.003 d−1) followed by I. aquatica (0.035 ± 0.002 d−1), C. involucratus (0.03 ± 0.002 d−1) and V. zizanioides (0.02 ± 0.003 d−1). The NH4+ uptake rate was significantly higher than the NO3 uptake rate. The free-floating species had higher nitrogen uptake rates than the emergent species. The N-uptake rate differed between plant species and seemed to be correlated to growth rate. All species had a high NO3 uptake rate when supplied with only NO3. It seems that the NO3 transporters in the plasma membrane of the root cells and nitrate reductase activity were induced by external NO3. Tissue mineral contents varied with species and tissue, but differences between treatments were generally small. We conclude, that the free-floating S. cucullata and I. aquatica are good candidate species for use in constructed wetland systems to remove N from polluted water. The rooted emergent plants can be used in subsurface flow constructed wetland systems as they grow well on any form of nitrogen and as they can develop a deep and dense root system.  相似文献   

14.
The effects of inorganic nitrogen (N) source (NH4+, NO3 or both) on growth, biomass allocation, photosynthesis, N uptake rate, nitrate reductase activity and mineral composition of Canna indica were studied in hydroponic culture. The relative growth rates (0.05-0.06 g g−1 d−1), biomass allocation and plant morphology of C. indica were indifferent to N nutrition. However, NH4+ fed plants had higher concentrations of N in the tissues, lower concentrations of mineral cations and higher contents of chlorophylls in the leaves compared to NO3 fed plants suggesting a slight advantage of NH4+ nutrition. The NO3 fed plants had lower light-saturated rates of photosynthesis (22.5 μmol m−2 s−1) than NH4+ and NH4+/NO3 fed plants (24.4-25.6 μmol m−2 s−1) when expressed per unit leaf area, but similar rates when expressed on a chlorophyll basis. Maximum uptake rates (Vmax) of NO3 did not differ between treatments (24-35 μmol N g−1 root DW h−1), but Vmax for NH4+ was highest in NH4+ fed plants (81 μmol N g−1 root DW h−1), intermediate in the NH4NO3 fed plants (52 μmol N g−1 root DW h−1), and lowest in the NO3 fed plants (28 μmol N g−1 root DW h−1). Nitrate reductase activity (NRA) was highest in leaves and was induced by NO3 in the culture solutions corresponding to the pattern seen in fast growing terrestrial species. Plants fed with only NO3 had high NRA (22 and 8 μmol NO2 g−1 DW h−1 in leaves and roots, respectively) whereas NRA in NH4+ fed plants was close to zero. Plants supplied with both forms of N had intermediate NRA suggesting that C. indica takes up and assimilate NO3 in the presence of NH4+. Our results show that C. indica is relatively indifferent to inorganic N source, which together with its high growth rate contributes to explain the occurrence of this species in flooded wetland soils as well as on terrestrial soils. Furthermore, it is concluded that C. indica is suitable for use in different types of constructed wetlands.  相似文献   

15.
Sweet flag (Acorus calamus L.) and yellow flag (Iris pseudacorus L.) have been used increasingly in constructed wetlands (CWs) for treatment of eutrophic wastewater. In order to properly match plant species with the type of wastewater being treated, it is important to know the performance of plant species under different NO3/NH4+ ratios. We investigated dry matter (DW) production and N content of A. calamus and I. pseudacorus under five NO3/NH4+ ratios (100/0, 75/25, 50/50, 25/75, and 0/100) in a hydroponic system. Results showed that the two species exhibited different preferences for NO3 and NH4+. Total DW, shoot DW, and N content were greater with NO3/NH4+ ratios of 50/50 and 75/25 than otherwise for A. calamus, but these parameters were only higher under the sole NO3 treatment in I. pseudacorus. We conclude that A. calamus could be best used for treating wastewater in constructed wetlands with NO3/NH4+ ratios between 50/50 and 75/25, while I. pseudacorus for treating wastewater with NO3 only to achieve the highest biomass production and efficiency in the removal of N.  相似文献   

16.
PEGylation induced changes in molecular volume and solution properties of HbA have been implicated as potential modulators of its vasoconstrictive activity. However, our recent studies with PEGylated Hbs carrying two PEG chains/Hb, have demonstrated that the modulation of the vasoconstrictive activity of Hb is not a direct correlate of the molecular volume and solution properties of the PEGylated Hb and implicated a role for the surface charge and/or the pattern of surface decoration of Hb with PEG. HbA has now been modified by thiolation mediated maleimide chemistry based PEGylation that does not alter its surface charge and conjugates multiple copies of PEG5K chains. This protocol has been optimized to generate a PEGylated Hb, (SP-PEG5K)6-Hb, that carries ~six PEG5K chains/Hb – HexaPEGylated Hb. PEGylation increased the O2 affinity of Hb and desensitized the molecule for the influence of ionic strength, pH, and allosteric effectors, presumably a consequence of the hydrated PEG-shell generated around the protein. The total PEG mass in (SP-PEG5K)6-Hb, its molecular volume, O2 affinity and solution properties are similar to that of another PEGylated Hb, (SP-PEG20K)2-Hb, that carries two PEG20K chains/Hb. However, (SP-PEG5K)6-Hb exhibited significantly reduced vasoconstriction mediated response than (SP-PEG20K)2-Hb. These results demonstrate that the enhanced molecular size and solution properties achieved through the conjugation of multiple copies of small PEG chains to Hb is more effective in decreasing its vasoconstrictive activity than that achieved through the conjugation of a comparable PEG mass using a small number of large PEG chains.  相似文献   

17.
A critical challenge of PEGylation is the production of the desired PEGylated protein form at a high yield. In this study, a kinetic model was constructed successfully to describe the PEGylation reaction of recombinant hirudin variant-2 (HV2) with monomethoxy-PEG-succinimidyl carbonate (mPEG-SC) by fitting the experimental data. Moreover, PEGylation reaction conditions were investigated using the established model and the corresponding experiments to determine the optimal condition to achieve the mono-PEG-HV2 at the desired yield. The model predictions agreed well with the experimental data. Several important process parameters (maximum theoretical yield of mono-PEG-HV2 (ymax), critical PEG/HV2 molar ratio (mcrit) and reaction time to achieve ymax (tmax)) and their mathematical equations were obtained to determine the optimum reaction conditions. Among reaction conditions affecting the PEGylation rates, pH and temperature displayed little effect on ymax, but ymax increased as PEG size increased. Optimal reaction condition to produce mono-PEG-HV2 was as follows: pH and temperature could vary in a certain range; whereas PEG/HV2 molar ratio should be slightly greater than mcrit and the reaction should be stopped at tmax. The results of this study indicate that the proposed reaction kinetic model can provide a possible mechanism interpretation for real PEGylation reactions and optimize efficiently the PEGylation step.  相似文献   

18.
Efficacy of proteins can be enhanced by using polyethylene glycol (PEG) conjugation (PEGylation) to the protein molecules. Mobile non-toxic PEG chains conjugated to bio-therapeutics increase their hydrodynamic volume and in turn can prolong their plasma retention time and increase their solubility. An important aspect of PEGylation is the selection of PEG molecule with suitable structure and molecular weight. In this study, conceiving the idea that branched PEG-conjugates show superior efficacy over the linear PEG-conjugates, a tri-branched PEG-interferon (mPEG3L2-IFN) was synthesized by reacting a 30 KDa tri-branched mPEG3L2-NHS reagent with IFN to improve its pharmacokinetic properties and reduce the loss of in vitro bioactivity (which is generally exhibited by PEGylation) of the conjugated protein to some extent. The PEGylation procedure was optimized in terms of concentration and molar ratios of reactants, reaction time, temperature and pH conditions of the reaction mix. The conjugate was purified by cation exchange chromatography and characterized by SDS-PAGE and SE-HPLC. Trypsin digestion of mPEG3L2-IFN indicated a single site specificity of PEGylation. Anti viral bioactivity of mPEG3L2-IFN was found to be 2.38 × 107 IU/mg which is approximately 9.52% of native IFNα2 (2.5 × 108 IU/mg) and better than PEGasys from Roche Pharma. Therefore, it is reported that the tri-branched mPEG3L2-NHS reagent has the potential to be used to conjugate proteins for the promising therapeutic results.  相似文献   

19.
The first examples of Pt complexes of the well known anti-epilepsy drug and histone deacetylase inhibitor, valproic acid (VPA), are reported. Reaction of the Pt(II) am(m)ine precursors trans-[PtCl2(NH3)(py)] and trans-[PtCl2(py)2] with silver nitrate and subsequently sodium valproate gave trans-[Pt(VPA−1H)2(NH3)(py)] and trans-[Pt(VPA−1H)2(py)2], respectively. The valproato ligands in both complexes are bound to the Pt(II) centres via the carboxylato functionality and in a monodentate manner. The X-ray crystal structure of trans-[Pt(VPA−1H)2(NH3)(py)] is described. Replacement of the dichlorido ligands in trans-[PtCl2(py)2] and trans-[PtCl2(NH3)(py)] by valproato ligands (VPA−1H) to yield trans-[Pt(VPA−1H)2(py)2] and trans-[Pt(VPA−1H)2(NH3)(py)] respectively, significantly enhanced cytotoxicity against A2780 (parental) and A2780 cisR (cisplatin resistant) ovarian cancer cells. The mutagenicity of trans-[Pt(VPA−1H)2(NH3)(py)] and trans-[Pt(VPA−1H)2(py)2] was determined using the Ames test and is also reported.  相似文献   

20.
In this study we assessed the growth, morphological responses, and N uptake kinetics of Salvinia natans when supplied with nitrogen as NO3, NH4+, or both at equimolar concentrations (500 μM). Plants supplied with only NO3 had lower growth rates (0.17 ± 0.01 g g−1 d−1), shorter roots, smaller leaves with less chlorophyll than plants supplied with NH4+ alone or in combination with NO3 (RGR = 0.28 ± 0.01 g g−1 d−1). Ammonium was the preferred form of N taken up. The maximal rate of NH4+ uptake (Vmax) was 6–14 times higher than the maximal uptake rate of NO3 and the minimum concentration for uptake (Cmin) was lower for NH4+ than for NO3. Plants supplied with NO3 had elevated nitrate reductase activity (NRA) particularly in the roots showing that NO3 was primarily reduced in the roots, but NRA levels were generally low (<4 μmol NO2 g−1 DW h−1). Under natural growth conditions NH4+ is probably the main N source for S. natans, but plants probably also exploit NO3 when NH4+ concentrations are low. This is suggested based on the observation that the plants maintain high NRA in the roots at relatively high NH4+ levels in the water, even though the uptake capacity for NO3 is reduced under these conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号