共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Kamanga-Sollo E Pampusch MS White ME Hathaway MR Dayton WR 《Experimental cell research》2005,311(1):167-176
We have previously shown that cultured porcine embryonic myogenic cells (PEMC) produce both insulin-like growth factor binding protein (IGFBP)-3 and IGFBP-5 and secrete these proteins into their media. Exogenously added recombinant porcine (rp) IGFBP-3 and rpIGFBP-5 act via IGF-dependent and IGF-independent mechanisms to suppress proliferation of PEMC cultures. Furthermore, immunoneutralization of endogenous IGFBP-3 and IGFBP-5 in the PEMC culture medium results in increased DNA synthesis rate suggesting that endogenous IGFBP-3 and IGFBP-5 suppress PEMC proliferation. TGF-beta superfamily members myostatin and TGF-beta1 have also been shown to suppress proliferation of myogenic cells, and treatment of cultured PEMC with either TGF-beta1 or myostatin significantly (P < 0.01) increases levels of IGFBP-3 and -5 mRNA. We have previously shown that immunoneutralization of IGFBP-3 decreases the proliferation-suppressing activity of TGF-beta1 and myostatin. Here, we show that immunoneutralization of IGFBP-5 also significantly (P < 0.05) decreases the DNA synthesis-suppressing activity of these molecules. Simultaneous immunoneutralization of both IGFBP-3 and IGFBP-5 in TGF-beta1 or myostatin-treated PEMC cultures restores Long-R3-IGF-I-stimulated DNA synthesis rates to 90% of the levels observed in control cultures receiving no TGF-beta1 or myostatin treatment (P < 0.05). Even though immunoneutralization of IGFBP-3 and -5 increased DNA synthesis rates in TGF-beta1 or myostatin-treated PEMC cultures, phosphosmad2 levels in these cultures were not affected. These findings strongly suggest that IGFBP-3 and IGFBP-5 affect processes downstream from receptor-mediated Smad phosphorylation that facilitate the ability of TGF-beta and myostatin to suppress proliferation of PEMC. 相似文献
3.
4.
Han Wang Qian Zhang BinBin Wang WangJun Wu Julong Wei Pinghua Li Ruihua Huang 《European journal of cell biology》2018,97(4):257-268
Recently, miR-22 was found to be differentially expressed in different skeletal muscle growth period, indicated that it might have function in skeletal muscle myogenesis. In this study, we found that the expression of miR-22 was the most in skeletal muscle and was gradually up-regulated during mouse myoblast cell (C2C12 myoblast cell line) differentiation. Overexpression of miR-22 repressed C2C12 myoblast proliferation and promoted myoblast differentiation into myotubes, whereas inhibition of miR-22 showed the opposite results. During myogenesis, we predicted and verified transforming growth factor beta receptor 1 (TGFBR1), a key receptor of the TGF-β/Smad signaling pathway, was a target gene of miR-22. Then, we found miR-22 could regulate the expression of TGFBR1 and down-regulate the Smad3 signaling pathway. Knockdown of TGFBR1 by siRNA suppressed the proliferation of C2C12 cells but induced its differentiation. Conversely, overexpression of TGFBR1 significantly promoted proliferation but inhibited differentiation of the myoblast. Additionally, when C2C12 cells were treated with different concentrations of transforming growth factor beta 1 (TGF-β1), the level of miR-22 in C2C12 cells was reduced. The TGFBR1 protein level was significantly elevated in C2C12 cells treated with TGF-β1. Moreover, miR-22 was able to inhibit TGF-β1-induced TGFBR1 expression in C2C12 cells. Altogether, we demonstrated that TGF-β1 inhibited miR-22 expression in C2C12 cells and miR-22 regulated C2C12 cell myogenesis by targeting TGFBR1. 相似文献
5.
Claudine Weil Nathalie Sabin Jrme Bugeon Gilles Paboeuf Florence Lefvre 《Comparative biochemistry and physiology. Part D, Genomics & proteomics》2009,4(3):235-241
In rainbow trout, subcutaneous (in dorsal and ventral positions) and visceral fat deposits are known to influence the yield of edible flesh, whilst their respective roles in metabolism, storage and release of fatty acids have not, so far, been directly studied. The present work aimed to identify, by using 2D electrophoresis, proteins differentially expressed in isolated mature adipocytes originating from these various localizations in prepubescent females. A total of nine proteins were estimated to be differentially expressed according to the localisation of the adipocytes. Seven protein spots were considered to be present in the three fat deposits at differing abundances, and among them only six were estimated as being specific to fat tissues. Among these, five were more abundant in subcutaneous adipocytes of both sites compared to perivisceral adipocytes. Four were identified: three as H-FABP, ATP synthase, serum deprivation-response protein, indicating higher metabolic activity in subcutaneous adipocytes, while the latter, annexin, indicative of a higher proportion of less mature adipocytes, as also suggested by their smaller mean diameter. The more abundant protein in visceral isolated adipocytes is actin, known to be involved in cytoskeleton structure and to increase during adipogenesis. This allows us to suggest their more mature stage of development, in relation with their higher mean diameter. 相似文献
6.
Regulation of smooth muscle actin expression and contraction in adult human mesenchymal stem cells 总被引:19,自引:0,他引:19
Prior studies have demonstrated the expression of a contractile actin isoform, alpha-smooth muscle actin, in bone marrow stromal cells. One objective of the current study was to correlate contractility with alpha-smooth muscle actin expression in human bone marrow stroma-derived mesenchymal stem cells. A second objective was to determine the effects of transforming growth factor-beta1, platelet derived growth factor-BB, and a microfilament-modifying agent on alpha-smooth muscle actin expression and alpha-smooth muscle actin-enabled contraction. Adult human bone marrow stromal cells were passaged in monolayer and their inducibility to chondrocytic, osteoblastic, and adipogenic phenotypes was demonstrated. Western blot analysis was employed along with densitometry to quantify the alpha-smooth muscle actin content of the cells and their contractility was evaluated by their contraction of a type I collagen-glycosaminoglycan sponge-like matrix into which they were seeded. Transforming growth factor-beta1 (1 ng/ml) significantly increased and platelet-derived growth factor-BB (10 ng/ml) decreased alpha-smooth muscle actin expression and the contractility of the cells. Cytochalasin D also blocked cell contraction. There was a notably high correlation of cell-mediated contraction normalized to the DNA content of the matrices with alpha-smooth muscle actin content of the cells by linear regression analysis (R(2) = 0.88). These findings lay the groundwork for considering the role of alpha-smooth muscle actin-enabled contraction in mesenchymal stem cells and in their connective tissue cell progeny. 相似文献
7.
8.
Expressions of inhibitory Smads, Smad6 and Smad7, are differentially regulated by TPA in human lung fibroblast cells 总被引:2,自引:0,他引:2
Tsunobuchi H Ishisaki A Imamura T 《Biochemical and biophysical research communications》2004,316(3):712-719
Smad6 and Smad7 are inhibitory Smads (I-Smads) with differential inhibitory effects on the regulation of the cellular signalings induced by TGF-beta superfamily. Here, we show that phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) down-regulates Smad6 mRNA expression and up-regulates Smad7 mRNA expression in IMR-90, a human lung fibroblast cell line. These regulations of I-Smads by TPA were suppressed by one PKC inhibitor (G?6983), but not by another (G?6976). TPA treatment had little effect on the phosphorylation of novel PKCs (PKCdelta and PKCepsilon), but specifically induced PKCmu phosphorylation, and this effect was inhibited by G?6983, but not by G?6976. Additionally, G?6983 but not G?6976 inhibited ERK- and JNK-phosphorylation as well as Smad7 promoter activity induced by TPA. MEK inhibitor U0126 inhibited the down-regulation of Smad6 mRNA expression but not the up-regulation of Smad7 mRNA expression. In contrast, JNK inhibitor SP600125 had no such effects. Luciferase reporter analysis revealed that TPA did not induce NF-kappaB activation. In addition, TPA up-regulated Smad7 expression in the presence of NF-kappaB inhibitor TLCK. These findings indicate that TPA down-regulates Smad6 expression presumably via PKCmu-ERK-dependent pathway and up-regulates Smad7 expression via PKCmu-dependent mechanism(s) which need no MAPK and NF-kappaB activation. 相似文献
9.
10.
Pal L. Vaghy Janet S. Russell Laura E. Lantry Ralph E. Stephens Patrick E. Ward 《Peptides》1995,16(8):1367-1373
Angiotensin (ANG) and kinin metabolizing enzymes, angiotensin-converting enzyme (ACE; EC 3.4.15.1), neutral endopeptidase-24.11 (NEP-24.11; EC 3.4.24.11), and aminopeptidase M (AmM; EC 3.4.11.2), have recently been identified in a purified skeletal muscle glycoprotein fraction. We have analyzed the cellular localization of these enzymes. In cultured human skeletal muscle adult myoblasts, myotubes, and fibroblasts, kinins and angiotensins were metabolized by NEP-24.11 and AmM but not by ACE. NEP-24.11 degraded ANG II, ANG III, and bradykinin (BK) and converted ANG I to the active metabolite ANG(1–7). ANG III was converted to the novel ANG IV metabolite [des-Arg1]ANG III by AmM. These data suggest that, due to their abundance in the body, skeletal muscle myocytes and fibroblasts may play a major role in modulation of the systemic and local effects of angiotensins and kinins. This role could be particularly important in individuals receiving treatment with ACE inhibitors. 相似文献
11.
12.
Miyake M Hayashi S Sato T Taketa Y Watanabe K Hayashi S Tanaka S Ohwada S Aso H Yamaguchi T 《Cell biology international》2007,31(10):1274-1279
Insulin-like growth factor-1 (IGF-1) is a positive regulator in proliferation and differentiation of skeletal muscle cells, while myostatin (MSTN) is a member of transforming growth factor beta superfamily that acts as a negative regulator of skeletal muscle mass. The present study was performed to detail whether a correlation exists between MSTN and IGF-1 in skeletal muscle of IGF-1 knockout mice (IGF-1(-/-)) and their wild type (WT; i.e., IGF-1(+/+)) littermates. The body weight of IGF-1(-/-) animals was 32% that of WT littermates. The fiber cross-sectional areas (CSA) and number of fibers in M. rectus femoris of IGF-1(-/-) animals were 49 and 59% those of WT animals, respectively. Thus, muscle hypoplasia of IGF-1(-/-) undoubtedly was confirmed. Myostatin mRNA levels and protein levels were similar between M. gastrocnemius of IGF-1(-/-) and WT animals. Myostatin immunoreactivity was similarly localized in muscle fibers of both IGF-1(-/-) and WT M. rectus femoris. The mRNA levels of MyoD family (Myf5, MyoD, MRF4, myogenin) were differentially expressed in IGF-1(-/-)M. gastrocnemius, in which the mRNA expression of MRF4 and myogenin was significantly lower, whereas there were no changes in the mRNA expression of Myf5 and MyoD. These findings first describe that myostatin expression is not influenced by intrinsic failure of IGF-1, although MRF4 and myogenin are downregulated. 相似文献
13.
14.
目的:探讨SD大鼠肝纤维化后肝组织及血清中转化生长因子-β1(Transforming Growth Factor-β1,TGF-β1)及Smad3的表达和变化,以及三七皂苷R1对肝纤维化的保护作用。方法:72只健康雄性SD大鼠分为对照组、二甲基亚硝胺(NDMA)组和三七皂苷R1组,再按不同时间点分为1、2、4周,3个亚组,每个亚组8只动物。NDMA组采用NDMA 2 m L/kg腹腔注射,三七皂苷R1组同时静脉注射三七皂苷R1,剂量为100 mg/kg体重,对照组注射等量的生理盐水。在各组的不同时间点采用RT-PCR及ELISA技术检测肝组织及血清中TGF-β1、Smad3的表达及变化。结果:1、TGF-β1、Smad3 m RNA及蛋白在各组中均有表达。2、对照组各时间点比较均无统计学意义(P>0.05)。NDMA组中,随着损伤时间的延长,TGF-β1、Smad3 m RNA及蛋白的表达逐渐上调,且各时间点与对照组比较有统计学意义(P<0.05)。而三七皂苷R1组TGF-β1、Smad3 m RNA及蛋白在各时间点均较NDMA组表达下调,有统计学意义(P<0.05)。结论:1、TGF-β1/Smad3信号参与了肝纤维化的发生和发展过程,且随损伤的逐渐加重,表达越高。2、三七皂苷R1可降低肝组织中TGF-β1/Smad3信号的表达,减轻肝细胞的纤维化,发挥保护肝组织损伤的作用。 相似文献
15.
Restoration of TGF-beta regulation of plasminogen activator inhibitor-1 in Smad3-restituted human choriocarcinoma cells 总被引:6,自引:0,他引:6
Xu G Chakraborty C Lala PK 《Biochemical and biophysical research communications》2002,294(5):1079-1086
Proliferation, migration, and invasiveness of the normal placental extravillous trophoblast (EVT) cells are negatively regulated by transforming growth factor-beta (TGF-beta), whereas malignant EVT (JAR and JEG-3 choriocarcinoma) cells are resistant to TGF-beta. These malignant cells were found to have lost the expression of Smad3. Present study examined whether Smad3 restitution in JAR cells could restore TGF-beta response. We produced a stable Smad3 cDNA-transfected clone (JAR-smad3/c) which exhibited further upregulation of Smad3 in the presence of TGF-beta1. Since anti-invasive effects of TGF-beta in the normal EVT cells were shown to be mediated in part by plasminogen activator inhibitor-1 (PAI-1) and urokinase-type plasminogen activator (uPA), we compared the expression of PAI-1 and uPA in the normal EVT, JAR, and JAR-smad3/c cells in the presence or absence of TGF-beta1. The basal levels of PAI-1 mRNA and secreted PAI-1 and uPA proteins were found to be very low in JAR and JAR-smad3/c cells, as compared to the normal EVT cells. However, TGF-beta1 upregulated PAI-1 and downregulated uPA in JAR-smad3/c cells, but not in JAR cells. Thus, resistance of choriocarcinoma cells to anti-invasive effects of TGF-beta may, at least in part, be due to loss of Smad3 expression. 相似文献
16.
17.
Differences in mRNA expression of the proteins secreted by the adipocytes in human subcutaneous and visceral adipose tissues 总被引:8,自引:0,他引:8
We have investigated the difference in gene expression of six proteins secreted by adipocytes in paired biopsies from visceral and abdominal subcutaneous adipose tissue in nine individuals with various degrees of obesity. The mRNAs levels of leptin, TNFalpha, angiotensinogen, acylation stimulating protein (ASP), cholesterol ester transfer protein (CETP) and phospholipid transfer protein (PLTP) were quantified by RT-competitive PCR. ASP and angiotensinogen mRNA levels were higher in the visceral fat, whereas the mRNA levels of leptin and CETP were higher in the subcutaneous depot. TNFalpha mRNA expression was similar in the two sites. For angiotensinogen, the difference was more pronounced in the subjects with body mass index (BMI) lower than 30 kg/m(2) whereas for ASP, CETP and leptin, the difference was observed regardless the BMI of the subjects. PLTP mRNA levels in subcutaneous, but not in the visceral, adipose tissue were positively related to the BMI of the subjects. These results strongly suggest that visceral and subcutaneous adipocytes may have different properties in the production of bioactive molecules. 相似文献
18.
Yue Pu Yuan-qi Liu Yan Zhou Yi-fan Qi Shi-ping Liao Shi-kun Miao Li-ming Zhou Li-hong Wan 《Journal of cellular and molecular medicine》2020,24(6):3656-3668
Airway epithelial apoptosis and epithelial mesenchymal transition (EMT) are two crucial components of asthma pathogenesis, concomitantly mediated by TGF-β1. RACK1 is the downstream target gene of TGF-β1 shown to enhancement in asthma mice in our previous study. Balb/c mice were sensitized twice and challenged with OVA every day for 7 days. Transformed human bronchial epithelial cells, BEAS-2B cells were cultured and exposed to recombinant soluble human TGF-β1 to induced apoptosis (30 ng/mL, 72 hours) and EMT (10 ng/mL, 48 hours) in vitro, respectively. siRNA and pharmacological inhibitors were used to evaluate the regulation of RACK1 protein in apoptosis and EMT. Western blotting analysis and immunostaining were used to detect the protein expressions in vivo and in vitro. Our data showed that RACK1 protein levels were significantly increased in OVA-challenged mice, as well as TGF-β1-induced apoptosis and EMT of BEAS-2B cells. Knockdown of RACK1 (siRACK1) significantly inhibited apoptosis and decreased TGF-β1 up-regulated EMT related protein levels (N-cadherin and Snail) in vitro via suppression of JNK and Smad3 activation. Moreover, siSmad3 or siJNK impaired TGF-β1-induced N-cadherin and Snail up-regulation in vitro. Importantly, JNK gene silencing (siERK) also impaired the regulatory effect of TGF-β1 on Smad3 activation. Our present data demonstrate that RACK1 is a concomitant regulator of TGF-β1 induces airway apoptosis and EMT via JNK/Smad/Snail signalling axis. Our findings may provide a new insight into understanding the regulation mechanism of RACK1 in asthma pathogenesis. 相似文献
19.
20.
本研究目的是为了证实地塞米松对结肠癌LoVo细胞增殖的抑制作用,并阐明其中的分子机制。LoVo细胞经不同浓度梯度地塞米松干预,再加入TGF-β1受体抑制剂SB431542阻断TGF-β1信号传导途径,通过MTS分析各组细胞增殖情况,借助Hoechst 33342和Annexin V/PI染色法检测细胞凋亡率;结合Western blotting对TGF-β1、Smad2和caspase-3蛋白表达情况的检测结果,分析地塞米松诱导结肠癌LoVo细胞凋亡的作用机理。LoVo细胞在1.0 mmol/L和10.0 mmol/L地塞米松干预48 h后,细胞增殖率与对照组相比分别降低32%(p<0.01)和47%(p<0.001),2组细胞凋亡率分别为28%和36%(p<0.001)。Western blotting结果显示,与对照组相比,地塞米松以浓度依赖性方式显著上调LoVo细胞TGF-β1、Smad2和Cleavedcaspase-3蛋白水平(p<0.01),而TGF-β1受体抑制剂SB431542明显下调TGF-β1、Smad2和Cleaved-capase-3蛋白表达(p<0.05)。流式细胞术检测结果表明,SB431542+地塞米松干预组与地塞米松处理组LoVo细胞凋亡率分别为8%和23%(p<0.001)。地塞米松可显著诱导LoVo细胞凋亡,而SB431542能够挽救这一过程,这表明,地塞米松通过TGF-β1/Smad2通路诱导LoVo细胞凋亡。 相似文献