首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enamel matrix derivative (EMD) containing a variety of protein fractions has been used for periodontal tissue regeneration. It is suggested that the proteins contained in EMD positively influence gingival fibroblasts migration and proliferation. Effects of EMD as well as of porcine recombinated 21.3-kDa amelogenin (prAMEL) and 5.3-kDa tyrosine-rich amelogenin peptide (prTRAP) on human gingival fibroblast (HGF-1, ATCC; USA) cell line were investigated. Real-time cell analysis (xCELLigence system; Roche Applied Science) was performed to determine the effects of EMD, prAMEL and prTRAP (12.5–50 μg/mL) on HGF-1 cell proliferation and migration. The effect of treatment on cell cycle was determined using flow cytometry. EMD significantly increased HGF-1 cell proliferation after 24- and 48-h incubation. Individually, prAMEL and prTRAP also increased HGF-1 cell proliferation; however, the difference was significant only for prAMEL 50 µg/mL. prAMEL and TRAP significantly increased HGF-1 cell migration after 60- and 72-h incubation. Cell cycle analysis showed significant decrease of the percentage of cells in the G0/G1 phase and a buildup of cells in the S and M phase observed after EMD and prAMEL stimulation. This process was ligand and concentration-dependent. The various molecular components in the enamel matrix derivative might contribute to the reported effects on gingival tissue regeneration; however, biologic effects of prAMEL and prTRAP individually were different from that of EMD.  相似文献   

2.
Emdogain, a formulation of enamel matrix derivative (EMD), is used clinically for regeneration of the periodontium (tooth supporting tissues), but the molecular mechanisms of its action have not been elucidated. Several clinical studies suggested that EMD may also improve gingival healing after periodontal surgery and thus affect the fate of gingival fibroblasts (GFs). Since these cells are targets for local inflammatory mediators such as TNF, a pro-apoptotic cytokine, during the course of periodontal disease, we tested whether EMD protects human GFs (hGFs) from TNF-induced cytotoxicity. Quiescent primary hGFs were challenged with TNF (10-100 ng/ml) with or without EMD (100 microg/ml) pretreatment. Cell viability was assessed by neutral red staining, cell death by LDH release and apoptosis by caspase activity. Signaling pathways were evaluated by Western blotting and pharmacological inhibitors. TNF induced classical signs of apoptosis in hGFs, including typical cellular morphology and increased caspase activity. TNF-induced cytotoxicity was entirely caspase-dependent. Pretreatment (4-24 h) with EMD dramatically inhibited the activation of initiator and executioner caspases and enhanced hGF survival. Although TNF induced the activation of p38 MAPK, JNK, ERK and PI-3K signaling, these pathways were not crucial for EMD protection of hGFs. However, EMD increased the levels of c-FLIP(L), an anti-apoptotic protein located upstream of caspase activation. These data demonstrate, for the first time, that EMD protects hGFs from inflammatory cytokines and, together with our recent reports that EMD stimulates rat and human GF proliferation, could help explain the mechanisms whereby in vivo use of EMD promotes gingival healing.  相似文献   

3.
The in vitro life-span of human periodontal ligament fibroblasts   总被引:2,自引:0,他引:2  
The in vitro life-span of human periodontal ligament fibroblasts (PDLF) was studied on clones from periodontium of teeth extracted due to periodontitis and dental caries (69 clones/192 individuals, aged 20-80 years) and from periodontium of teeth extracted for orthodontic reasons (23 clones/26 individuals, aged 15-19 years). In the primary cultures the ratio of the number of cells expressing senescence-associated beta-galactosidase (SA-beta-Gal) to the total number of cells is significantly larger in PDLF (92 clones; 11.1+/-4.9%) than in human gingival fibroblasts (GF) (10 clones; 0.5+/-0.1 %). The finite population doubling numbers (PD) of PDLF are not age-matched and the mean PD of PDLF (7.1+/-2.9) is significantly smaller than GF (28.5+/-3.2), IMR-90 (human lung fibroblasts, 5 clones; 44.3 +/- 2.2), and human osteoblasts (5 clones; 19.7+/-1.4). Comparing the ratio of the number of SA-beta-Gal positive cells to the total number of cells in primary culture, and the finite PD in PDLF cultures: 1) the ratio of 15-19 years old donor group is significantly smaller than in the other donor groups (20-29, 30-39, 40-49, 50-59 and 60-80 years old), and 2) there were no statistically significant differences among the 20-29, 30-39, 40-49 and 50-59 year old donor groups, and the 30-39, 40-49, 50-59 and 60-80 year old donor groups. These findings suggest that the in vitro life-span of PDLF is shorter than other fibroblasts in the connective tissues and that PDLF may undergo senescence in adult clones without relation to donor's age. There may be more aged fibroblasts in periodontium than in other tissues, such as gingiva and lung.  相似文献   

4.
Emdogain (enamel matrix derivative, EMD) is well recognized in periodontology. It is used in periodontal surgery to regenerate cementum, periodontal ligament, and alveolar bone. However, the precise molecular mechanisms underlying periodontal regeneration are still unclear. In this study, we investigated the proteins bound to amelogenin, which are suggested to play a pivotal role in promoting periodontal tissue regeneration. To identify new molecules that interact with amelogenin and are involved in osteoblast activation, we employed coupling affinity chromatography with proteomic analysis in fractionated SaOS-2 osteoblastic cell lysate. In SaOS-2 cells, many of the amelogenin-interacting proteins in the cytoplasm were mainly cytoskeletal proteins and several chaperone molecules of heat shock protein 70 (HSP70) family. On the other hand, the proteomic profiles of amelogenin-interacting proteins in the membrane fraction of the cell extracts were quite different from those of the cytosolic-fraction. They were mainly endoplasmic reticulum (ER)-associated proteins, with lesser quantities of mitochondrial proteins and nucleoprotein. Among the identified amelogenin-interacting proteins, we validated the biological interaction of amelogenin with glucose-regulated protein 78 (Grp78/Bip), which was identified in both cytosolic and membrane-enriched fractions. Confocal co-localization experiment strongly suggested that Grp78/Bip could be an amelogenin receptor candidate. Further biological evaluations were examined by Grp78/Bip knockdown analysis with and without amelogenin. Within the limits of the present study, the interaction of amelogenin with Grp78/Bip contributed to cell proliferation, rather than correlate with the osteogenic differentiation in SaOS-2 cells. Although the biological significance of other interactions are not yet explored, these findings suggest that the differential effects of amelogenin-derived osteoblast activation could be of potential clinical significance for understanding the cellular and molecular bases of amelogenin-induced periodontal tissue regeneration.  相似文献   

5.
Cell adhesion, shape, and directed migration are some of the fundamental processes underlying tissue development and organization. The setting of geometric limits on cellular behavior has led to the hypothesis that a continuous edge is required to elongate a cell and guide its direction of movement. The aim of this study was to examine the validity of this hypothesis by examining the response of human gingival fibroblasts and periodontal ligament epithelial cells, to microfabricated surfaces that incorporate discontinuous edges. Cell response was assessed through spreading, morphology, cytoskeletal organization, and time-lapse microscopy, on substrata with a pattern of repeated open boxes with gaps at the corners. Fibroblasts attached and spread within 6 h, adopting either a square, triangular, or diagonally elongated morphology. Epithelial cells took longer to adhere, but were observed to adopt morphologies similar to those of the fibroblasts. Addition of colcemid or cytochalasin-D attenuated the orientation and alignment of both fibroblasts and epithelial cells. Fibroblasts and epithelial cell migration was guided diagonally in their movement through gaps in the square pattern, demonstrating that a continuous edge is not a prerequisite for guided cell migration.  相似文献   

6.
Enamel matrix derivative (EMD), a porcine extract harvested from developing porcine teeth, has been shown to promote formation of new cementum, periodontal ligament and alveolar bone. Despite its widespread use, an incredibly large variability among in vitro studies has been observed. The aim of the present study was to determine the influence of EMD on cells at different maturation stages of osteoblast differentiation by testing 6 cell types to determine if cell phenotype plays a role in cell behaviour following treatment with EMD. Six cell types including MC3T3-E1 pre-osteoblasts, rat calvarial osteoblasts, human periodontal ligament (PDL) cells, ROS cells, MG63 cells and human alveolar osteoblasts were cultured in the presence or absence of EMD and proliferation rates were quantified by an MTS assay. Gene expression of collagen1(COL1), alkaline phosphate(ALP) and osteocalcin(OC) were investigated by real-time PCR. While EMD significantly increased cell proliferation of all cell types, its effect on osteoblast differentiation was more variable. EMD significantly up-regulated gene expression of COL1, ALP and OC in cells early in their differentiation process when compared to osteoblasts at later stages of maturation. Furthermore, the effect of cell passaging of primary human PDL cells (passage 2 to 15) was tested in response to treatment with EMD. EMD significantly increased cell proliferation and differentiation of cells at passages 2–5 however had completely lost their ability to respond to EMD by passages 10+. The results from the present study suggest that cell stimulation with EMD has a more pronounced effect on cells earlier in their differentiation process and may partially explain why treatment with EMD primarily favors regeneration of periodontal defects (where the periodontal ligament contains a higher number of undifferentiated progenitor cells) over regeneration of pure alveolar bone defects containing no periodontal ligament and a more limited number of osteoprogenitor cells.  相似文献   

7.
Regeneration therapy for oral disease   总被引:1,自引:0,他引:1  
Kamoi K  Iino M  Ishiguro H 《Human cell》2006,19(2):76-82
The aim of this paper is to provide a review of the current understanding of the mechanisms, cell and factors required for regeneration and restoration of periodontal tissue around natural teeth. Periodontal regeneration is a complex multifactorial process involving cell populations: periodontal ligament cells, bone cells, gingival fibroblasts and epithelial cells. This paper describes bone graft, guided tissue regeneration and enamel matrix derivative with the application of growth factors.  相似文献   

8.
9.
10.
During periodontal regeneration, multiple cell types can invade the wound site, thereby leading to repair. Cell motility requires interactions mediated by integrin receptors for the extracellular matrix (ECM), which might be useful in guiding specific cell populations into the periodontal defect. Our data demonstrate that fibroblasts exhibit differential motility when grown on ECM proteins. Specifically, gingival fibroblasts are twice as motile as periodontal ligament fibroblasts, whereas osteoblasts are essentially non-motile. Collagens promote the greatest motility of gingival fibroblasts in the following order: collagen III>collagen V>collagen I. Differences in motility do not correlate with cell proliferation or integrin expression. Osteoblasts display greater attachment to collagens than does either fibroblast population, but lower motility. Gingival fibroblast motility on collagen I is generally mediated by α2 integrins, whereas motility on collagen III involves α1 integrins. Other integrins (α10 or α11) may also contribute to gingival fibroblast motility. Thus, ECM proteins do indeed differentially promote the cell motility of periodontal cells. Because of their greater motility, gingival fibroblasts have more of a potential to invade periodontal wound sites and to contribute to regeneration. This finding may explain the formation of disorganized connective tissue masses rather than the occurrence of the true regeneration of the periodontium. This research was supported by the Louisiana Board of Regents through the Millennium Trust Health Excellence Fund, HEF-(2000-05)-04.  相似文献   

11.
Background/PurposeLysine-specific gingipain (Kgp) is a virulence factor secreted from Porphyromonas gingivalis (P. gingivalis), a major etiological bacterium of periodontal disease. Keratin intermediate filaments maintain the structural integrity of gingival epithelial cells, but are targeted by Kgp to produce a novel cytokeratin 6 fragment (K6F). We investigated the release of K6F and its induction of cytokine secretion.MethodsK6F present in the gingival crevicular fluid of periodontal disease patients and in gingipain-treated rat gingival epithelial cell culture supernatants was measured by matrix-assisted laser desorption/ionization time-of-flight mass spectrometer-based rapid quantitative peptide analysis using BLOTCHIP. K6F in gingival tissues was immunostained, and cytokeratin 6 protein was analyzed by immunofluorescence staining and flow cytometry. Activation of MAPK in gingival epithelial cells was evaluated by immunoblotting. ELISA was used to measure K6F and the cytokines release induced by K6F. Human gingival fibroblast migration was assessed using a Matrigel invasion chamber assay.ResultsWe identified K6F, corresponding to the C-terminus region of human cytokeratin 6 (amino acids 359–378), in the gingival crevicular fluid of periodontal disease patients and in the supernatant from gingival epithelial cells cultured with Kgp. K6F antigen was distributed from the basal to the spinous epithelial layers in gingivae from periodontal disease patients. Cytokeratin 6 on gingival epithelial cells was degraded by Kgp, but not by Arg-gingipain, P. gingivalis lipopolysaccharide or Actinobacillus actinomycetemcomitans lipopolysaccharide. K6F, but not a scrambled K6F peptide, induced human gingival fibroblast migration and secretion of interleukin (IL)-6, IL-8 and monocyte chemoattractant protein-1. These effects of K6F were mediated by activation of p38 MAPK and Jun N-terminal kinase, but not p42/44 MAPK or p-Akt.ConclusionKgp degrades gingival epithelial cell cytokeratin 6 to K6F that, on release, induces invasion and cytokine secretion by human gingival fibroblasts. Thus, Kgp may contribute to the development of periodontal disease.  相似文献   

12.
Regeneration of mineralized tissues affected by chronic diseases comprises a major scientific and clinical challenge. Periodontitis, one such prevalent disease, involves destruction of the tooth-supporting tissues, alveolar bone, periodontal-ligament and cementum, often leading to tooth loss. In 1997, it became clear that, in addition to their function in enamel formation, the hydrophobic ectodermal enamel matrix proteins (EMPs) play a role in the regeneration of these periodontal tissues. The epithelial EMPs are a heterogeneous mixture of polypeptides encoded by several genes. It was not clear, however, which of these many EMPs induces the regeneration and what mechanisms are involved. Here we show that a single recombinant human amelogenin protein (rHAM+), induced in vivo regeneration of all tooth-supporting tissues after creation of experimental periodontitis in a dog model. To further understand the regeneration process, amelogenin expression was detected in normal and regenerating cells of the alveolar bone (osteocytes, osteoblasts and osteoclasts), periodontal ligament, cementum and in bone marrow stromal cells. Amelogenin expression was highest in areas of high bone turnover and activity. Further studies showed that during the first 2 weeks after application, rHAM+ induced, directly or indirectly, significant recruitment of mesenchymal progenitor cells, which later differentiated to form the regenerated periodontal tissues. The ability of a single protein to bring about regeneration of all periodontal tissues, in the correct spatio-temporal order, through recruitment of mesenchymal progenitor cells, could pave the way for development of new therapeutic devices for treatment of periodontal, bone and ligament diseases based on rHAM+.  相似文献   

13.
The amelogenins are secreted by the ameloblast cells of developing teeth; they constitute about 90% of the enamel matrix proteins and play an important role in enamel biomineralization. Recent evidence suggests that amelogenin may also be involved in the regeneration of the periodontal tissues and that different isoforms may have cell-signalling effects. During enamel development and mineralization, the amelogenins are lost from the tissue due to sequential degradation by specific proteases, making isolation of substantial purified quantities of full-length amelogenin challenging. The aim of the present study was to express and characterize a recombinant human amelogenin protein in the eukaryotic baculovirus system in quantities sufficient for structural and functional studies. Human cDNA coding for a 175 amino acid amelogenin protein was subcloned into the pFastBac HTb vector (Invitrogen), this system adds a hexa-histidine tag and an rTEV protease cleavage site to the amino terminus of the expressed protein, enabling effective one-step purification by Ni2+-NTA affinity chromatography. The recombinant protein was expressed in Spodoptera frugiperda (Sf9) insect cells and the yield of purified his-tagged human amelogenin (rHAM+) was up to 10 mg/L culture. Recombinant human amelogenin (rHAM+) was characterized by SDS-PAGE, Western blot, ESI-TOF spectrometry, peptide mapping, and MS/MS sequencing. Production of significant amounts of pure, full-length amelogenin opened up the possibility to investigate novel functions of amelogenin. Our recent in vivo regeneration studies reveal that the rHAM+ alone could bring about regeneration of the periodontal tissues; cementum, periodontal ligament, and bone.  相似文献   

14.
In order to understand the relationship between specific growth factors and matrix synthesis by periodontal cells, we have investigated the effects of platelet-derived growth factor BB (PDGF-BB), insulin-like growth factor-I (IGF-1), and growth hormone on DNA and proteoglycan synthesis by cultured human gingival and periodontal ligament fibroblasts in vitro. PDGF-BB and IGF-1, but not growth hormone, were mitogenic for both periodontal ligament fibroblasts and gingival fibroblasts, although the periodontal ligament cells responded more strongly. The mitogenic response was accompanied by alterations in expression of matrix proteoglycan mRNA. For both the gingival and periodontal ligament cells, there was a decrease in mRNA for decorin and an increase in mRNA for versican following exposure to IGF-1 and PDGF-BB. Although no change was seen in response to PDGF, biglycan mRNA level was increased by IGF-1 in periodontal ligament fibroblasts. With the gingival fibroblats, biglycan mRNA levels were unaffected by IGF-1, PDGF-BB, or growth hormone. These findings suggest variable responses of fibroblasts to growth factors depending upon anatomical site within the periodontium. Moreover, there appears to be a correlation between cell proliferation and the types of proteoglycan synthesised with decorin expression being suppressed, and versican being increased during fibroblast proliferation. J. Cell. Physiol. 174:353–361, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
Fibroblast growth factor-2 (FGF-2) stimulates periodontal regeneration by a broad spectrum of effects on periodontal ligament (PDL) cells, such as proliferation, migration, and production of extracellular matrix. A critical factor in the success of periodontal regeneration is the rapid resolution of inflammatory responses in the tissue. We explored an anti-inflammatory effect of FGF-2 during periodontal regeneration and healing. We found that FGF-2 on mouse periodontal ligament cells (MPDL22) markedly downregulated CD40 expression, a key player of inflammation. In addition, FGF-2 inhibited CD40 signaling by the non-canonical nuclear factor-kappa B2 (NFκB2) pathway, resulting in decreased production of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), which have the potential to recruit immune cells to inflamed sites. Furthermore, in vivo treatment of FGF-2 enhanced healing of skin wounds by counteracting the CD40-mediated inflammation. These results reveal that FGF-2 has an important function as a negative regulator of inflammation during periodontal regeneration and healing.  相似文献   

16.
人牙龈成纤维细胞与牙周膜细胞的生物活性   总被引:1,自引:0,他引:1  
采用组织块法分离培养牙周膜细胞和牙龈成纤维细胞,测定二者的增殖特性和ALP活性,利用免疫组化和FCM方法比较Ⅰ、Ⅲ型胶原、BMP的表达情况,以观察对比两种细胞的生物学特性的异同。找出牙龈成纤维细胞和牙周膜细胞在胶原基质合成方面存在差异,发现Ⅰ、Ⅲ型胶原可作为鉴别两种细胞的标志物,ALP与BMP可作为鉴别两种细胞的标志,牙周膜细胞比牙龈成纤维细胞具有较强的成骨能力。从而为今后改良两种细胞成为牙周组织工程的种子细胞奠定基础。  相似文献   

17.
Periodontal ligament stem cells (PDLSCs) have mesenchymal-stem-cells-like qualities, and are considered as one of the candidates of future clinical application in periodontal regeneration therapy. Enamel matrix derivative (EMD) is widely used in promoting periodontal regeneration. However, the effects of EMD on the proliferation and osteogenic differentiation of human PDLSCs grown on the Ti implant surface are still no clear. Therefore, this study examined the effects of EMD on human PDLSCs in vitro. Human PDLSCs were isolated from healthy participants, and seeded on the surface of Ti implant disks and stimulated with various concentrations of EMD. Cell proliferation was determined with Cell Counting Kit-8 (CCK-8). The osteogenic differentiation of PDLSCs was evaluated by the measurement of alkaline phosphatase (ALP) activity, Alizarin red staining, and real-time polymerase chain reaction (qRT-PCR) and Western blotting, respectively. The results indicated that EMD at concentrations (5–60 µg/ml) increased the viability and proliferation of PDLSCs. The treatment with 30 and 60 µg/ml of EMD significantly elevated ALP activity, augmented mineralized nodule formation and calcium deposition, and upregulated the mRNA and protein levels of Runx-2 and osteocalcin (OCN) in the PDLSCs grown on the Ti surface. Further investigation found that EMD treatment did not change the protein levels of phosphatidylinositol-3-kinase (PI3K), p-PI3K, Akt and mTOR, but significantly upregulated the phosphorylated levels of Akt and mTOR. Collectively, these results suggest that EMD stimulation can promote the proliferation and osteogenic differentiation of PDLSCs grown on Ti surface, which is possibly associated with the activation of Akt/mTOR signaling pathway.  相似文献   

18.
Tissue engineering provides a new paradigm for periodontal tissue regeneration in which proper stem cells and effective cellular factors are very important. The objective of this study was, for the first time, to investigate the capabilities and advantages of periodontal tissue regeneration using induced pluripotent stem (iPS) cells and enamel matrix derivatives (EMD). In this study the effect of EMD gel on iPS cells in vitro was first determined, and then tissue engineering technique was performed to repair periodontal defects in three groups: silk scaffold only; silk scaffold + EMD; and silk scaffold + EMD + iPS cells. EMD greatly enhanced the mRNA expression of Runx2 but inhibited the mRNA expression of OC and mineralization nodule formation in vitro. Transplantation of iPS cells showed higher expression levels of OC, Osx, and Runx2 genes, both 12 and 24 days postsurgery. At 24 days postsurgery in the iPS cell group, histological analysis showed much more new alveolar bone and cementum formation with regenerated periodontal ligament between them. The results showed the commitment role that EMD contributes in mesenchymal progenitors to early cells in the osteogenic lineage. iPS cells combined with EMD provide a valuable tool for periodontal tissue engineering, by promoting the formation of new cementum, alveolar bone, and normal periodontal ligament. J. Cell. Physiol. 226: 150–157, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
Hyaluronic acid (HA) is the most abundant glycosaminoglycan of high molecular weight in the extracellular matrix of soft periodontal tissues. Our group recently demonstrated an HA-induced reduction in lymphoplasmocyte inflammatory infiltrate in periodontal disease. The objective of this study was to determine the effect of an HA gel of high molecular weight on cell proliferation, inflammation, and different periodontal lesion parameters. A double-blind clinical trial was conducted on the effect of an HA gel on cell proliferation in gingival biopsies from 28 patients with periodontal disease. A split-mouth design was used, randomly applying the gel to one quadrant and a placebo to the contralateral one. A gingival biopsy was taken for histopathological and immunohistochemical study, in order to determine the expression of cell proliferation antigen Ki-67 and to evaluate the inflammatory infiltrate. HA gel treatment induced a significant reduction in the proliferation index of the gingival epithelium, with 276 (range 234-317) Ki-67-positive cells per mm2 in treated samples versus 514 (range 158-876) per mm2 in controls (Mann-Whitney U test, p<0.003). In 13 patients, the number of Ki-67-positive fibroblastic cells was reduced by the treatment, whereas in 6 patients no differences were found (global difference, p=0.12). In 10 patients, Ki-67-positive cells were decreased in chronic inflammatory infiltrate present in the lamina propria, whereas in 6 patients no differences were found (global difference, p=0.054). We conclude that high molecular-weight HA gel reduces cell proliferation in epithelial cells such as fibroblasts and lymphocytes, abates the inflammatory process, and improves the periodontal lesion in patients with chronic periodontitis.  相似文献   

20.
Considered to be the "holy grail" of dentistry, regeneration of the periodontal ligament in humans remains a major clinical problem. Removal of bacterial biofilms is commonly achieved using EDTA gels or lasers. One side effect of these treatment regimens is the etching of nanotopographies on the surface of the tooth. However, the response of periodontal ligament fibroblasts to such features has received very little attention. Using laser interference lithography, we fabricated precisely defined topographies with continuous or discontinuous nanogrooves to assess the adhesion, spreading and migration of PDL fibroblasts. PDL fibroblasts adhered to and spread on all tested surfaces, with initial spreading and focal adhesion formation slower on discontinuous nanogrooves. Cells had a significantly smaller planar area on both continuous and discontinuous nanogrooves in comparison with cells on non-patterned controls. At 24 h post seeding, cells on both types of nanogrooves were highly elongated parallel to the groove long axis. Time-lapse video microscopy revealed that PDL fibroblast movement was guided on both types of grooves, but migration velocity was not significantly different from cells cultured on non-patterned controls. Analysis of filopodia formation using time-lapse video microscopy and labeling of vinculin and F-actin revealed that on nanogrooves, filopodia were highly aligned at both ends of the cell, but with increasing time filopodia and membrane protrusions developed at the side of the cell perpendicular to the cell long axis. We conclude that periodontal ligament fibroblasts are sensitive to nanotopographical depths of 85-100 μm, which could be utilized in regeneration of the periodontal ligament.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号