首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apolipoprotein B (apoB) mRNA editing is a nuclear event that minimally requires the RNA substrate, APOBEC-1 and APOBEC-1 Complementation Factor (ACF). The co-localization of these macro-molecules within the nucleus and the modulation of hepatic apoB mRNA editing activity have been described following a variety of metabolic perturbations, but the mechanism that regulates editosome assembly is unknown. APOBEC-1 was effectively co-immunoprecipitated with ACF from nuclear, but not cytoplasmic extracts. Moreover, alkaline phosphatase treatment of nuclear extracts reduced the amount of APOBEC-1 co-immunoprecipitated with ACF and inhibited in vitro editing activity. Ethanol stimulated apoB mRNA editing was associated with a 2- to 3-fold increase in ACF phosphorylation relative to that in control primary hepatocytes. Significantly, phosphorylated ACF was restricted to nuclear extracts where it co-sedimented with 27S editing competent complexes. Two-dimensional phosphoamino acid analysis of ACF immunopurified from hepatocyte nuclear extracts demonstrated phosphorylation of serine residues that was increased by ethanol treatment. Inhibition of protein phosphatase I, but not PPIIA or IIB, stimulated apoB mRNA editing activity coincident with enhanced ACF phosphorylation in vivo. These data demonstrate that ACF is a metabolically regulated phosphoprotein and suggest that this post-translational modification increases hepatic apoB mRNA editing activity by enhancing ACF nuclear localization/retention, facilitating the interaction of ACF with APOBEC-1 and thereby increasing the probability of editosome assembly and activity.  相似文献   

2.
APOBEC-1 Complementation Factor (ACF) is an RNA-binding protein that interacts with apoB mRNA to support RNA editing. ACF traffics between the cytoplasm and nucleus. It is retained in the nucleus in response to elevated serum insulin levels where it supports enhanced apoB mRNA editing. In this report we tested whether ACF may have the ability to regulate nuclear export of apoB mRNA to the sites of translation in the cytoplasm. Using mouse models of obesity-induced insulin resistance and primary hepatocyte cultures we demonstrated that both nuclear retention of ACF and apoB mRNA editing were reduced in the livers of hyperinsulinemic obese mice relative to lean controls. Coincident with an increase in the recovery of ACF in the cytoplasm was an increase in the proportion of total cellular apoB mRNA recovered in cytoplasmic extracts. Cytoplasmic ACF from both lean controls and obese mouse livers was enriched in endosomal fractions associated with apoB mRNA translation and ApoB lipoprotein assembly. Inhibition of ACF export to the cytoplasm resulted in nuclear retention of apoB mRNA and reduced both intracellular and secreted ApoB protein in primary hepatocytes. The importance of ACF for modulating ApoB was supported by the finding that RNAi knockdown of ACF reduced ApoB secretion. An additional discovery from this study was the finding that leptin is a suppressor ACF expression. Dyslipidemia is a common pathology associated with insulin resistance that is in part due to the loss of insulin controlled secretion of lipid in ApoB-containing very low density lipoproteins. The data from animal models suggested that loss of insulin regulated ACF trafficking and leptin regulated ACF expression may make an early contribution to the overall pathology associated with very low density lipoprotein secretion from the liver in obese individuals.  相似文献   

3.
4.
5.
6.
7.
8.
9.
Cytidine to uridine editing of apolipoprotein B (apoB) mRNA requires the cytidine deaminase APOBEC-1 as well as a tripartite sequence motif flanking a target cytidine in apoB mRNA and an undefined number of auxiliary proteins that mediate RNA recognition and determine site-specific editing. Yeast engineered to express APOBEC-1 and apoB mRNA supported editing under conditions of late log phase growth and stationary phase. The cis-acting sequence requirements and the intracellular distribution of APOBEC-1 in yeast were similar to those described in mammalian cells. These findings suggest that auxiliary protein functions necessary for the assembly of editing complexes, or ‘editosomes’, are expressed in yeast and that the distribution of editing activity is to the cell nucleus.  相似文献   

10.
11.
Apobec-1 complementation factor (ACF) is the RNA binding subunit of a core complex that mediates C to U RNA editing of apolipoprotein B (apoB) mRNA. Targeted deletion of the murine Acf gene is early embryonic lethal and Acf−/− blastocysts fail to implant and proliferate, suggesting that ACF plays a key role in cell growth and differentiation. Here we demonstrate that heterozygous Acf+/− mice exhibit decreased proliferation and impaired liver mass restitution following partial hepatectomy (PH). To pursue the mechanism of impaired liver regeneration we examined activation of interleukin-6 (IL-6) a key cytokine required for induction of hepatocyte proliferation following PH. Peak induction of hepatic IL-6 mRNA abundance post PH was attenuated >80% in heterozygous Acf+/− mice, along with decreased serum IL-6 levels. IL-6 secretion from isolated Kupffer cells (KC) was 2-fold greater in wild-type compared with heterozygous Acf+/− mice. Recombinant ACF bound an AU-rich region in the IL-6 3′-untranslated region with high affinity and IL-6 mRNA half-life was significantly shorter in KC isolated from Acf+/− mice compared with wild-type controls. These findings suggest that ACF regulates liver regeneration following PH at least in part by controlling the stability of IL-6 mRNA. The results further suggest a new RNA target and an unanticipated physiological function for ACF beyond apoB RNA editing.  相似文献   

12.
陈朋 《生物信息学》2007,5(4):145-147
使用生物信息学软件从APOBEC-1编辑底物编码基因序列中筛选出B-Raf基因,在生物信息数据库中获得了B-Raf的一级结构、模体、三维结构信息,分析B-Raf蛋白功能。  相似文献   

13.
ApoB mRNA editing involves site-specific deamination of cytidine 6666 producing an in-frame translation stop codon. Editing minimally requires APOBEC-1 and APOBEC-1 complementation factor (ACF). Metabolic stimulation of apoB mRNA editing in hepatocytes is associated with serine phosphorylation of ACF localized to editing competent, nuclear 27S editosomes. We demonstrate that activation of protein kinase C (PKC) stimulated editing and enhanced ACF phosphorylation in rat primary hepatocytes. Conversely, activation of protein kinase A (PKA) had no effect on editing. Recombinant PKC efficiently phosphorylated purified ACF64 protein in vitro, whereas PKA did not. Mutagenesis of predicted PKC phosphorylation sites S154 and S368 to alanine inhibited ethanol-stimulated induction of editing suggesting that these sites function in the metabolic regulation of editing. Consistent with this interpretation, substitution of S154 and S368 with aspartic acid stimulated editing to levels comparable to ethanol treatment in control McArdle RH7777 cells. These data suggest that phosphorylation of ACF by PKC may be a key regulatory mechanism of apoB mRNA editing in rat hepatocytes.  相似文献   

14.
15.
16.
The C->U editing of RNA is widely found in plant and animal species. In mammals it is a discrete process confined to the editing of apolipoprotein B (apoB) mRNA in eutherians and the editing of the mitochondrial tRNA for glycine in marsupials. Here we have identified and characterised apoB mRNA editing in the American opossum Monodelphus domestica. The apoB mRNA editing site is highly conserved in the opossum and undergoes complete editing in the small intestine, but not in the liver or other tissues. Opossum APOBEC-1 cDNA was cloned, sequenced and expressed. The encoded protein is similar to APOBEC-1 of eutherians. Motifs previously identified as involved in zinc binding, RNA binding and catalysis, nuclear localisation and a C-terminal leucine-rich domain are all conserved. Opossum APOBEC-1 contains a seven amino acid C-terminal extension also found in humans and rabbits, but not present in rodents. The opossum APOBEC-1 gene has the same intron/exon organisation in the coding sequence as the eutherian gene. Northern blot and RT-PCR analyses and an editing assay indicate that no APOBEC-1 was expressed in the liver. Thus the far upstream promoter responsible for hepatic expression in rodents does not operate in the opossum. An APOBEC-1-like enzyme such as might be involved in C->U RNA editing of tRNA in marsupial mitochondria was not demonstrated. The activity of opossum APOBEC-1 in the presence of both chicken and rodent auxiliary editing proteins was comparable to that of other mammals. These studies extend the origins of APOBEC-1 back 170 000 000 years to marsupials and help bridge the gap in the origins of this RNA editing process between birds and eutherian mammals.  相似文献   

17.
Mammalian apolipoprotein B (apoB) mRNA editing is mediated by a multicomponent holoenzyme containing apobec-1 and ACF. We have now identified CUGBP2, a 54-kDa RNA-binding protein, as a component of this holoenzyme. CUGBP2 and ACF co-fractionate in bovine liver S-100 extracts, and addition of recombinant apobec-1 leads to assembly of a holoenzyme. Immunodepletion of CUGBP2 co-precipitates ACF, and these proteins co-localize the nucleus of transfected cells, suggesting that CUGBP2 and ACF are bound in vivo. CUGBP2 binds apoB RNA, specifically an AU-rich sequence located immediately upstream of the edited cytidine. ApoB RNA from McA cells, bound to CUGBP2, was more extensively edited than the unbound fraction. However, addition of recombinant CUGBP2 to a reconstituted system demonstrated a dose-dependent inhibition of C to U RNA editing, which was rescued with either apobec-1 or ACF. Antisense CUGBP2 knockout increased endogenous apoB RNA editing, whereas antisense knockout of either apobec-1 or ACF expression eliminated apoB RNA editing, establishing the absolute requirement of these components of the core enzyme. These data suggest that CUGBP2 plays a role in apoB mRNA editing by forming a regulatory complex with the three components of the minimal editing enzyme, apobec-1, ACF, and apoB RNA.  相似文献   

18.
Yeast co-expressing rat APOBEC-1 and a fragment of human apolipoprotein B (apoB) mRNA assembled functional editosomes and deaminated C6666 to U in a mooring sequence-dependent fashion. The occurrence of APOBEC-1-complementing proteins suggested a naturally occurring mRNA editing mechanism in yeast. Previously, a hidden Markov model identified seven yeast genes encoding proteins possessing putative zinc-dependent deaminase motifs. Here, only CDD1, a cytidine deaminase, is shown to have the capacity to carry out C→U editing on a reporter mRNA. This is only the second report of a cytidine deaminase that can use mRNA as a substrate. CDD1-dependent editing was growth phase regulated and demonstrated mooring sequence-dependent editing activity. Candidate yeast mRNA substrates were identified based on their homology with the mooring sequence-containing tripartite motif at the editing site of apoB mRNA and their ability to be edited by ectopically expressed APOBEC-1. Naturally occurring yeast mRNAs edited to a significant extent by CDD1 were, however, not detected. We propose that CDD1 be designated an orphan C→U editase until its native RNA substrate, if any, can be identified and that it be added to the CDAR (cytidine deaminase acting on RNA) family of editing enzymes.  相似文献   

19.
The 5′ leader of the HIV-1 RNA genome encodes signals that control various steps in the replication cycle, including the dimerization initiation signal (DIS) that triggers RNA dimerization. The DIS folds a hairpin structure with a palindromic sequence in the loop that allows RNA dimerization via intermolecular kissing loop (KL) base pairing. The KL dimer can be stabilized by including the DIS stem nucleotides in the intermolecular base pairing, forming an extended dimer (ED). The role of the ED RNA dimer in HIV-1 replication has hardly been addressed because of technical challenges. We analyzed a set of leader mutants with a stabilized DIS hairpin for in vitro RNA dimerization and virus replication in T cells. In agreement with previous observations, DIS hairpin stability modulated KL and ED dimerization. An unexpected previous finding was that mutation of three nucleotides immediately upstream of the DIS hairpin significantly reduced in vitro ED formation. In this study, we tested such mutants in vivo for the importance of the ED in HIV-1 biology. Mutants with a stabilized DIS hairpin replicated less efficiently than WT HIV-1. This defect was most severe when the upstream sequence motif was altered. Virus evolution experiments with the defective mutants yielded fast replicating HIV-1 variants with second site mutations that (partially) restored the WT hairpin stability. Characterization of the mutant and revertant RNA molecules and the corresponding viruses confirmed the correlation between in vitro ED RNA dimer formation and efficient virus replication, thus indicating that the ED structure is important for HIV-1 replication.  相似文献   

20.
Activation-induced cytidine deaminase (AID) is essential to all three genetic alterations required for generation of antigen-specific immunoglobulin: class switch recombination, somatic hypermutation, and gene conversion. Here we demonstrate that AID molecules form a homodimer autonomously in the absence of RNA, DNA, other cofactors, or post-translational modifications. Studies on serial deletion mutants revealed the minimum region between Thr27 and His56 responsible for dimerization. Analyses of point mutations within this region revealed that the residues between Gly47 and Gly54 are most important for the dimer formation. Functional analyses of these mutations indicate that all mutations impairing the dimer formation are inefficient for class switching, suggesting that dimer formation is required for class switching activity. Dimer formation and its requirement for the function of AID are features that AID shares with APOBEC-1, an RNA editing enzyme of apolipoprotein B100 mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号