首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The primary amino groups of biomolecules such as aminophospholipids, as well as proteins, are the potential targets of covalent modifications by lipid peroxidation products; however, little attention has been paid to the modification of aminophospholipids such as phosphatidylethanolamine (PE). The purpose of this study is to characterize the formation of a novel modified phospholipid, N-(hexanoyl)phosphatidylethanolamine (HEPE), in the reaction of PE with lipid hydroperoxides using mass spectrometric analyses. Upon reaction of egg PE with 13-hydroperoxyoctadecadienoic acid or other oxidized polyunsaturated fatty acids followed by phospholipase D-mediated hydrolysis, the formation of N-(hexanoyl)ethanolamine (HEEA), a head group of HEPE, was confirmed by isotope dilution liquid chromatography/tandem mass spectrometry. Moreover, increasing HEEA was detected in the hydrolysates of oxidized erythrocyte ghosts and low-density lipoprotein with their increasing lipid peroxidation levels. Collectively, these results suggest that the N-hexanoylated product of phospholipid, HEPE, can be generated during lipid peroxidation and may serve as one mechanism for the covalent modification of aminophospholipids in vivo.  相似文献   

2.
It is known that n-3 polyunsaturated fatty acids (PUFAs), such as docosahexaenoic acid and eicosapentaenoic acid, are rapidly oxidized in vitro. N?-(propanoyl)lysine (propionyllysine, or PRL) is formed from the reaction of the oxidized products of n-3 PUFAs and lysine. To evaluate the oxidized n-3 PUFA-derived protein modifications in vivo, we have developed detection methods using a novel monoclonal antibody against PRL as well as liquid chromatography–mass spectrometry (LC/MS/MS). The antibody obtained specifically recognized PRL. A strong positive staining in atherosclerotic lesions of hypercholesterolemic rabbits was observed. We have also simultaneously identified and quantified both urinary PRL and urinary N?-(hexanoyl)lysine, using LC/MS/MS using isotope dilution methods. The level of urinary PRL (21.6 ± 10.6 μmol/mol of creatinine) significantly correlated with the other oxidative stress markers, 8-oxo-deoxyguanosine, dityrosine, and isoprostanes. The increase in the excretion of amide adducts into the urine of diabetic patients was also confirmed compared to healthy subjects. These results suggest that PRL may be good marker for n-3 PUFA-derived oxidative stress in vivo.  相似文献   

3.
The identification and quantification of N(epsilon)-(hexanoyl)lysine (N(epsilon)-HEL), which was found from the reactions between lipid hydroperoxide and lysine, from human urine was examined using liquid chromatography/tandem mass spectrometry (LC/MS/MS). The N(epsilon)-HEL in the partially purified urine fraction was identified using LC/MS/MS by several approaches including precursor/product ion scans. The peak found by the multiple-reaction monitoring (MRM) of the collision-induced fragmentation of N(epsilon)-HEL was clearly observed in urine, and the elution position coincided with the synthetic standard N(epsilon)-HEL. The product, estimated N(epsilon)-HEL, was absorbed by a specific antibody to N(epsilon)-HEL. Moreover, N(alpha)-HEL, one of the plausible hexanoyl adducts from the reaction between the N(alpha) moiety of L-lysine and the peroxidized lipid, was hardly detected in urine samples, suggesting that the origin of the N(epsilon)-HEL is the peroxidized lipid-modified proteins but not artificial hexanoylated L-lysine. Using the MRM technique, the amount of urinary N(epsilon)-HEL from the control subjects (observed healthy) was estimated to be 1.58 +/- 0.23 mumol/mol of creatinine. A comparative study of the urinary N(epsilon)-HEL with an oxidative stress marker, 8-oxo-7,8-dihydro-2'-deoxyguanosine, showed a high correlation (r = 0.844) between the two biomarkers. Furthermore, the quantification of N(epsilon)-HEL in the control and diabetic urines revealed that the urinary N(epsilon)-HEL from diabetic subjects (3.21 +/- 0.65 mumol/mol of creatinine) was significantly higher than that from the control subjects.  相似文献   

4.
We examined the relationship between the transbilayer distribution of aminophospholipids, such as phosphatidylethanolamine (PE), PE plasmalogen and phosphatidylserine, and the oxidative stability of polyunsaturated fatty acids (PUFAs) in the aminophospholipids. To modulate the transbilayer distribution of aminophospholipid in liposomes, we used phosphatidylcholine (PC) with two types of acyl chain region: dipalmitoyl (PC16:0) or dioleoyl (PC18:1). In the smaller-sized liposomes, the proportions of aminophospholipid in the liposomal external layer were significantly higher in liposomes containing PC18:1 than in those containing PC16:0. Additionally, aminophospholipids in the external layer of smaller-sized liposomes were able to protect their component PUFAs from 2,2'-azobis(2-amidinopropane)dihydrochloride-mediated lipid peroxidation.  相似文献   

5.
Oxidative damage is thought to be a major cause in development of pathologies and aging. However, quantification of oxidative damage is methodologically difficult. Here, we present a robust liquid chromatography–tandem mass spectrometry (LC‐MS/MS) approach for accurate, sensitive, and linear in vivo quantification of endogenous oxidative damage in the nematode Caenorhabditis elegans, based on F3‐isoprostanes. F3‐isoprostanes are prostaglandin‐like markers of oxidative damage derived from lipid peroxidation by Reactive Oxygen Species (ROS). Oxidative damage was quantified in whole animals and in multiple cellular compartments, including mitochondria and peroxisomes. Mutants of the mitochondrial electron transport proteins mev‐1 and clk‐1 showed increased oxidative damage levels. Furthermore, analysis of Superoxide Dismutase (sod) and Catalase (ctl) mutants uncovered that oxidative damage levels cannot be inferred from the phenotype of resistance to pro‐oxidants alone and revealed high oxidative damage in a small group of chemosensory neurons. Longitudinal analysis of aging nematodes revealed that oxidative damage increased specifically with postreproductive age. Remarkably, aging of the stress‐resistant and long‐lived daf‐2 insulin/IGF‐1 receptor mutant involved distinct daf‐16‐dependent phases of oxidative damage including a temporal increase at young adulthood. These observations are consistent with a hormetic response to ROS.  相似文献   

6.
The objectives of this study were to estimate the structure of the lipid hydroperoxide-modified lysine residue and to prove the presence of the adducts in vivo. The reaction of lipid hydroperoxide toward the lysine moiety was investigated employing N-benzoyl-glycyl-L-lysine (Bz-Gly-Lys) as a model compound of Lys residues in protein and 13-hydroperoxyoctadecadienoic acid (13-HPODE) as a model of the lipid hydroperoxides. One of the products, compound X, was isolated from the reaction mixture of 13-HPODE and Bz-Gly-Lys and was then identified as N-benzoyl-glycyl-Nepsilon-(hexanonyl)lysine. To prove the formation of Nepsilon-(hexanonyl)lysine, named HEL, in protein exposed to the lipid hydroperoxide, the antibody to the synthetic hexanonyl protein was prepared and then characterized in detail. Using the anti-HEL antibody, the presence of HEL in the lipid hydroperoxide-modified proteins and oxidized LDL was confirmed. Furthermore, the positive staining by anti-HEL antibody was observed in human atherosclerotic lesions using an immunohistochemical technique. The amide-type adduct may be a useful marker for the lipid hydroperoxide-derived modification of biomolecules.  相似文献   

7.
To assess the efficacy of conjugated quercetin metabolites as attenuators for oxidative stress in the central nervous system, we measured the 13-hydroperoxyoctadecadienoic acid (13-HPODE)-dependent formation of reactive oxygen species (ROS) in pheochromocytoma PC-12 cells in the presence of quercetin 3-O-β-glucuronide (Q3GA) and related compounds. A 2',7'-dichlorofluorescin (DCFH) assay showed that Q3GA significantly suppressed the formation of ROS, when it was coincubated with 13-HPODE (coincubation system). However, it was less effective than quercetin aglycon in the concentration range from 0.5 to 10 μM. In an experiment in which the cells were incubated with the test compounds for 24 h before being exposed to 13-HPODE, Q3GA was also effective in suppressing the formation of ROS in spite that little Q3GA was taken up into the cells. These results suggest that antioxidative metabolites of quercetin are capable of protecting nerve cells from attack of lipid hydroperoxides.  相似文献   

8.
Lipid peroxidation by managanese peroxidase (MnP) is reported to decompose recalcitrant polycyclic aromatic hydrocabon (PAH) and nonphenolic lignin models. To elucidate the oxidative process, linoleic acid and 13(S)-hydroperoxy-9Z,11E-octadecadienoic acid [13(S)-HPODE] were reacted with MnPs from Ceriporiopsis subvermispora and Bjerkandera adusta and the free radicals produced were analyzed by ESR. When the MnPs were reacted with 13(S)-HPODE in the presence of Mn(II), H2O2 and tert-nitrosobutane (t-NB), the ESR spectrum contained a sharp triplet of acyl radical (aN = 0.81 mT). Formation of acyl radical was also observed in the reactions of Mn(III)-tartrate with 13(S)-HPODE and with linoleic acid, but the latter reaction occurred explosively after an induction period of around 30 min. Reactions of MnP with linoleic acid in the presence of Mn(II), H2O2 and t-NB gave no spin adducts while addition of t-NB after preincubation of linoleic acid with MnP/Mn(II)/H2O2 for 2 h gave spin adducts of carbon-centered (aN = 1.53 mT, aH = 0.21 mT) and acyl (aN = 0.81 mT) radicals. In contrast to linoleic acid, methyl linoleate and oleic acid were not peroxidized by MnP and chelated Mn(III) within a few hours, indicating that structures containing both the 1,4-pentadienyl moiety and a free carboxyl group are necessary for inducing the peroxidation in a short reaction time. These results indicate that MnP-dependent lipid peroxidation is not initiated by direct abstraction of hydrogen from the bis-allylic position during turnover but proceeds by a Mn(III)-dependent hydrogen abstraction from enols and subsequent propagation reactions involving the formation of acyl radical from lipid hydroperoxide. This finding expands the role of chelated Mn(III) from a phenol oxidant to a strong generator of free radicals from lipids and lipid hydroperoxides in lignin biodegradation.  相似文献   

9.
Nepsilon-(hexanoyl)lysine (HEL) is a potentially useful marker of oxidative stress in animals. We investigated whether HEL might be useful as a marker in rice seeds damaged by oxidative stress during storage, as well as in animals. The germination ability of rice decreased with lipid peroxidation during storage at 40 degrees C for three months. Moreover, we observed accumulation of HEL in the damaged rice. In addition, the activities of antioxidative enzymes, catalase and superoxide dismutase, significantly decreased in the rice seeds during storage at 40 degrees C. These results suggest that HEL might be a useful marker of oxidative stress in rice.  相似文献   

10.
Although fatty acids are important components of biological membranes, energy sources, and signal transducers or precursors of lipid mediators, excess intake of fatty acids and their accumulation cause obesity and metabolic syndrome. Thus, fatty acid quantity is known to be an important factor for obesity-related diseases, but the effects of different types of fatty acids (i.e., fatty acid quality) on human health are not completely understood. We here focused on the relationship between fatty acid quality and oxidative stress by investigating whether resistibility to tert-butyl hydrperoxide (t-BuOOH)-induced oxidative stress in 3T3-L1 cells varied according to the fatty acid type. Among eight fatty acids (both saturated and unsaturated) tested, oleic acid (OA) exerted the most pronounced cytoprotective effects, with efficacy over a wide range of concentrations. OA treatment markedly enhanced the intracellular levels of lipid peroxidation markers, including N ε-(hexanoyl)lysine, 4-hydroxy-2-nonenal, and acrolein. The levels of these markers in OA-treated cells were decreased after t-BuOOH exposure, whereas the levels in untreated control cells were notably increased after t-BuOOH exposure. Our results suggested that unsaturated fatty acids, particularly OA, could promote an adaptive response and enhance cell tolerance through increased cellular antioxidative capacity via OA-induced mild lipid peroxidation (lipohormesis), and thus protect cells against subsequent oxidative stress-related injury.  相似文献   

11.
《Free radical research》2013,47(7):881-887
Abstract

Lipid peroxidation is responsible for the generation of chemically reactive, diffusible lipid-derived electrophiles (LDEs) that covalently modify cellular protein targets. These protein modifications modulate protein activity and macromolecular interactions and induce adaptive and toxic cell signaling. Protein modifications induced by LDEs can be identified and quantified by affinity enrichment and liquid chromatography–tandem mass spectrometry (LC–MS/MS)-based techniques. Tagged LDE analog probes with different electrophilic groups can be covalently captured by click chemistry for LC–MS/MS analyses, thereby enabling in-depth studies of proteome damage at the protein and peptide sequence levels. Conversely, click-reactive, thiol-directed probes can be used to evaluate thiol damage caused by LDE by difference. These analytical approaches permit systematic study of the dynamics of protein damage caused by LDE and mechanisms by which oxidative stress contribute to toxicity and diseases.  相似文献   

12.

Background

Free radical-mediated lipid peroxidation has been implicated in a number of human diseases. Diverse methods have been developed and applied to measure lipid peroxidation products as potential biomarkers to assess oxidative stress status in vivo, discover early indication of disease, diagnose progression of disease, and evaluate the effectiveness of drugs and antioxidants for treatment of disease and maintenance of health, respectively. However, standardized methods are not yet established.

Scope of review

Characteristics of various lipid peroxidation products as biomarkers are reviewed on the basis of mechanisms and dynamics of their formation and metabolism and also on the methods of measurement, with an emphasis on the advantages and limitations.

Major conclusions

Lipid hydroxides such as hydroxyoctadecadienoic acids (HODE), hydroxyeicosatetraenoic acids (HETE), and hydroxycholesterols may be recommended as reliable biomarkers. Notably, the four HODEs, 9-cis,trans, 9-trans,trans, 13-cis,trans, and 13-trans,trans-HODE, can be measured separately by LC–MS/MS and the trans,trans-forms are specific marker of free radical mediated lipid peroxidation. Further, isoprostanes and neuroprostanes are useful biomarker of lipid peroxidation. It is important to examine the distribution and temporal change of these biomarkers.

General significance

Despite the fact that lipid peroxidation products are non-specific biomarkers, they will enable to assess oxidative stress status, disease state, and effects of drugs and antioxidants. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.  相似文献   

13.
Background and aimWhen exceeding the homeostatic range, manganese (Mn) might cause neurotoxicity, characteristic of the pathophysiology of several neurological diseases. Although the underlying mechanism of its neurotoxicity remains unclear, Mn-induced oxidative stress contributes to disease etiology. DNA damage caused by oxidative stress may further trigger dysregulation of DNA-damage-induced poly(ADP-ribosyl)ation (PARylation), which is of central importance especially for neuronal homeostasis. Accordingly, this study was designed to assess in the genetically traceable in vivo model Caenorhabditis elegans the role of PARylation as well as the consequences of loss of pme-1 or pme-2 (orthologues of PARP1 and PARP2) in Mn-induced toxicity.MethodsA specific and sensitive isotope-dilution liquid chromatography-tandem mass spectrometry (LC–MS/MS) method was developed to quantify PARylation in worms. Next to monitoring the PAR level, pme-1 and pme-2 gene expression as well as Mn-induced oxidative stress was studied in wildtype worms and the pme deletion mutants.Results and conclusionWhile Mn failed to induce PARylation in wildtype worms, toxic doses of Mn led to PAR-induction in pme-1-deficient worms, due to an increased gene expression of pme-2 in the pme-1 deletion mutants. However, this effect could not be observed at sub-toxic Mn doses as well as upon longer incubation times. Regarding Mn-induced oxidative stress, the deletion mutants did not show hypersensitivity. Taken together, this study characterizes worms to model PAR inhibition and addresses the consequences for Mn-induced oxidative stress in genetically manipulated worms.  相似文献   

14.
《Journal of Proteomics》2010,73(1):30-40
Protein redox regulation is increasingly recognized as an important switch of protein activity in yeast, bacteria, mammals and plants. In this study, we identified proteins with potential thiol switches involved in jasmonate signaling, which is essential for plant defense. Methyl jasmonate (MeJA) treatment led to enhanced production of hydrogen peroxide in Arabidopsis leaves and roots, indicating in vivo oxidative stress. With monobromobimane (mBBr) labeling to capture oxidized sulfhydryl groups and 2D gel separation, a total of 35 protein spots that displayed significant redox and/or total protein expression changes were isolated. Using LC–MS/MS, the proteins in 33 spots were identified in both control and MeJA-treated samples. By comparative analysis of mBBr and SyproRuby gel images, we were able to determine many proteins that were redox responsive and proteins that displayed abundance changes in response to MeJA. Interestingly, stress and defense proteins constitute a large group that responded to MeJA. In addition, many cysteine residues involved in the disulfide dynamics were mapped based on tandem MS data. Identification of redox proteins and their cysteine residues involved in the redox regulation allows for a deeper understanding of the jasmonate signaling networks.  相似文献   

15.
Protein carbonylation is the covalent modification of proteins by α,β-unsaturated aldehydes produced by nonenzymatic lipid peroxidation of polyunsaturated fatty acids. The most widely studied aldehyde product of lipid peroxidation, trans-4-hydroxy-2-nonenal (4-HNE), is associated with obesity-induced metabolic dysfunction and has demonstrated reactivity toward key proteins involved in cellular function. However, 4-HNE is only one of many lipid peroxidation products and the lipid aldehyde profile in adipose tissue has not been characterized. To further understand the role of oxidative stress in obesity-induced metabolic dysfunction, a novel LC–MS/MS method was developed to evaluate aldehyde products of lipid peroxidation and applied to the analysis of adipose tissue. 4-HNE and trans-4-oxo-2-nonenal (4-ONE) were the most abundant aldehydes present in adipose tissue. In high fat-fed C57Bl/6J and ob/ob mice the levels of lipid peroxidation products were increased 5- to 11-fold in epididymal adipose, unchanged in brown adipose, but decreased in subcutaneous adipose tissue. Epididymal adipose tissue of high fat-fed mice also exhibited increased levels of proteins modified by 4-HNE and 4-ONE, whereas subcutaneous adipose tissue levels of these modifications were decreased. High fat feeding of C57Bl/6J mice resulted in decreased expression of a number of genes linked to antioxidant biology selectively in epididymal adipose tissue. Moreover, TNFα treatment of 3T3-L1 adipocytes resulted in decreased expression of GSTA4, GPx4, and Prdx3 while upregulating the expression of SOD2. These results suggest that inflammatory cytokines selectively downregulate antioxidant gene expression in visceral adipose tissue, resulting in elevated lipid aldehydes and increased protein carbonylation.  相似文献   

16.
The generation of superoxide radicals, lipid peroxidation (as measured by malone dialdehyde formation) and the activity of selected antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase) were assessed in radish (Raphanus sativus L.), in response to elevated concentrations of copper ions in the culture medium in vitro and in vivo. Experiments were performed on 7-day-old seedlings and 5-week-old calluses grown on media supplemented with CuSO4 in concentrations of 10, 100 and 1000 μМ. The exposure to elevated Cu concentrations in the medium significantly reduced both callogenesis and the proliferation of radish calluses in vitro. Cu treatment resulted in the increased generation of the superoxide radical (O2) in radish seedlings and calluses indicating the occurrence of oxidative stress in radish cells, whereas the level of lipid peroxidation (LPO) remained unchanged. Both in calluses and in radish seedlings in vivo, the relative level of oxidative stress was maximal at micromolar Cu concentrations and became attenuated with increasing Cu concentrations. Stronger oxidative stress occurred in the radish seedlings in vivo, compared with radish calluses in vitro. The observed lower sensitivity of calluses to Cu-induced oxidative stress and their ability to proliferate upon exposure to Cu concentrations of up to 1000 μМ demonstrate the potential of in vitro cell-selection to obtain metal-tolerant radish plant lines.  相似文献   

17.
To assess the efficacy of conjugated quercetin metabolites as attenuators for oxidative stress in the central nervous system, we measured the 13-hydroperoxyoctadecadienoic acid (13-HPODE)-dependent formation of reactive oxygen species (ROS) in pheochromocytoma PC-12 cells in the presence of quercetin 3-O-β-glucuronide (Q3GA) and related compounds. A 2′,7′-dichlorofluorescin (DCFH) assay showed that Q3GA significantly suppressed the formation of ROS, when it was coincubated with 13-HPODE (coincubation system). However, it was less effective than quercetin aglycon in the concentration range from 0.5 to 10 μM. In an experiment in which the cells were incubated with the test compounds for 24 h before being exposed to 13-HPODE, Q3GA was also effective in suppressing the formation of ROS in spite that little Q3GA was taken up into the cells. These results suggest that antioxidative metabolites of quercetin are capable of protecting nerve cells from attack of lipid hydroperoxides.  相似文献   

18.
《Free radical research》2013,47(7):816-826
Abstract

Isoprostanoids and isofuranoids are lipid mediators that can be formed from omega-3 and omega-6 polyunsaturated fatty acids (PUFAs). F2-isoprostanes formed from arachidonic acid, especially 15-F2t-isoprostane, are commonly measured in biological tissues for decades as the biomarker for oxidative stress and diseases. Recently, other forms of isoprostanoids derived from adrenic, eicosapentaenoic, and docosahexaenoic acids namely F2-dihomo-isoprostanes, F3-isoprostanes, and F4-neuroprostanes respectively, and isofuranoids including isofurans, dihomo-isofurans, and neurofurans are reported as oxidative damage markers for different metabolisms. The most widely used samples in measuring lipid peroxidation products include but not limited to the blood and urine; other biological fluids, specialized tissues, and cells can also be determined. In this review, measurement of isoprostanoids and isofuranoids in novel biological samples by gas chromatography (GC)–mass spectrometry (MS), GC–MS/MS, liquid chromatography (LC)–MS, and LC–MS/MS will be discussed.  相似文献   

19.
Research into lipid peroxidation-induced protein modification has been ongoing for many years. Recent studies on lipo-oxidation shows the occurrence of another type of protein modification, amide-type adduct formation by lipid hydroperoxide, as well as classical aldehyde-derived protein modifications. The amide-type modifications can be either classified as alkylamide and carboxyalkylamide according to the formed structures. As an alkylamide-type adduct, Nε-(hexanoyl)lysine can be formed by the reaction of peroxidized n − 6 fatty acid with lysine. Nε-(propanoyl)lysine is considered to be generated from oxidation of n − 3 fatty acid with lysine. The generation pattern of both might be useful for classification of which fatty acids are more involved in oxidation in vivo. Since the alkylamide type-adducts are relatively stable and detectable from biological specimens like urine, these adducts, especially Nε-(hexanoyl)lysine, are used as reliable markers for not only oxidative stress evaluation but also development of functional food.  相似文献   

20.
Oxidized lipids, such as 13-hydroperoxyoctadecadienoic acid (13-HPODE), have been implicated in the pathogenesis of atherosclerosis. 13-HPODE, a constituent of oxidized low-density lipoproteins, can induce cytotoxicity of vascular smooth muscle cells (SMC), which may facilitate plaque destabilization and/or rupture. 13-HPODE-induced cytotoxicity has been linked to oxidative stress, although the mechanisms by which this occurs are unknown. In the present study, we show that 13-HPODE and 9-HPODE (10-30 microM) increased superoxide (O2*-) production and induced cytotoxicity in SMC. The 13-HPODE-induced increase in O2*- was blocked by transfecting the cells with antisense oligonucleotides against p22phox, suggesting that the O2*- was produced by NAD(P)H oxidase. Similar concentrations of the corresponding HPODE reduction products, 13-hydroxyoctadecadienoic acid (13-HODE) and 9-HODE, neither increased O2*- production nor induced cytotoxicity, while 4-hydroxy nonenal (4-HNE), an unsaturated aldehyde lipid peroxidation product, induced cytotoxicity without increasing O2*- production. Treatment with superoxide dismutase or Tiron to scavenge O2*-, or transfection with p22phox antisense oligonucleotides to inhibit O2*- production, attenuated 13-HPODE-induced cytotoxicity, but not that induced by 4-HNE. These findings suggest that activation of NAD(P)H oxidase, and production of O2*-, play an important role in lipid hydroperoxide-induced smooth muscle cytotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号