首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L Pan  X Wang  S Yang  X Wu  I Lee  X Zhang  RA Rupp  J Xu 《PloS one》2012,7(8):e44142
Ultraviolet (UV) light has a potent effect on biological organisms. Hemoglobin, an oxygen-transport protein, plays an irreplaceable role in sustaining life of all vertebrates. In this study we scrutinize the effects of ultraviolet irradiation (UVI) as well as visible irradiation on the fluorescence characteristics of bovine hemoglobin (BHb) in vitro. Data show that UVI results in fluorescence enhancement of BHb in a dose-dependant manner. Furthermore, UVI-induced fluorescence enhancement is significantly increased when BHb is pretreated with hydrogen peroxide (H(2)O(2)), a type of reactive oxygen species (ROS). Meanwhile, The water-soluble antioxidant vitamin C suppresses this UVI-induced fluorescence enhancement. In contrast, green light irradiation does not lead to fluorescence enhancement of BHb no matter whether H(2)O(2) is acting on the BHb solution or not. Taken together, these results indicate that catalysis of ROS and UVI-dependent irradiation play two key roles in the process of UVI-induced fluorescence enhancement of BHb.  相似文献   

2.
Germination is controlled by external factors, such as temperature, water, light and by hormone balance. Recently, reactive oxygen species (ROS) have been shown to act as messengers during plant development, stress responses and programmed cell death. We analyzed the role of ROS during germination and demonstrated that ROS in addition to their role as cell wall loosening factor are essential signalling molecules in this process. Indeed, we showed that ROS are released prior to endosperm rupture, that their production is required for germination, and that class III peroxidases, as ROS level regulators, colocalized with ROS production. Among ROS, H2O2 modifies, during germination early steps, the expression of genes encoding for enzymes regulating ROS levels. This pointing out a regulatory feedback loop for ROS production. Measurements of endogenous levels of ROS following application of GA and ABA suggested that ABA inhibits germination by repressing ROS accumulation, and that, conversely, GA triggers germination by promoting an increase of ROS levels. We followed the early visible steps of germination (testa and endosperm rupture) in Arabidopsis seeds treated by specific ROS scavengers and as the light quality perception is necessary for a regular germination, we examined the germination in presence of exogenous H2O2 in different light qualities. H2O2 either promoted germination or repressed germination depending on the light wavelengths, showing that H2O2 acts as a signal molecule regulating germination in a light-dependent manner. Using photoreceptors null-mutants and GA-deficient mutants, we showed that H2O2-dependent promotion of germination relies on phytochrome signalling, but not on cryptochrome signalling, and that ROS signalling requires GA signalling.  相似文献   

3.
The biological effects of ultraviolet radiation (UV), such as DNA damage, mutagenesis, cellular aging, and carcinogenesis, are in part mediated by reactive oxygen species (ROS). The major intracellular ROS intermediate is hydrogen peroxide, which is synthesized from superoxide anion (O2) and further metabolized into the highly reactive hydroxyl radical. In this study, we examined the involvement of mitochondria in the UV‐induced H2O2 accumulation in a keratinocyte cell line HaCaT. Respiratory chain blockers (cyanide‐p‐trifluoromethoxy‐phenylhydrazone and oligomycin) and the complex II inhibitor (theonyltrifluoroacetone) prevented H2O2 accumulation after UV. Antimycin A that inhibits electron flow from mitochondrial complex III to complex IV increased the UV‐induced H2O2 synthesis. The same effect was seen after incubation with rotenone, which blocks electron flow from NADH‐reductase (complex I) to ubiquinone. UV irradiation did not affect mitochondrial transmembrane potential (ΔΨm). These data indicate that UV‐induced ROS are produced at complex III via complex II (succinate‐Q‐reductase). J. Cell. Biochem. 80:216–222, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

4.
Reactive oxygen species (ROS) are produced in response to many environmental stresses, such as UV, chilling, salt and pathogen attack. These stresses also accompany leaf abscission in some plants, however, the relationship between these stresses and abscission is poorly understood. In our recent report, we developed an in vitro abscission system that reproduces stress-induced pepper leaf abscission in planta. Using this system, we demonstrated that continuous production of hydrogen peroxide (H2O2) is involved in leaf abscission signaling. Continuous H2O2 production is required to induce expression of the cell wall-degrading enzyme, cellulase and functions downstream of ethylene in abscission signaling. Furthermore, enhanced production of H2O2 occurs at the execution phase of abscission, suggesting that H2O2 also plays a role in the cell-wall degradation process. These data suggest that H2O2 has several roles in leaf abscission signaling. Here, we propose a model for these roles.Key words: leaf abscission, reactive oxygen species, H2O2, in vitro, ethylene, auxin, pepper, NADPH oxidase  相似文献   

5.
用流式细胞计(flow cytometry,FCM)测定H2O2损伤后的红细胞(RBC)与IgG的结合能力,并直接检测细胞自发荧光的变化,以研究H2O2对RBC抗原性和脂质过氧化(LPO)荧光产物生成的影响.结果表明RBC抗原性和自发荧光变化与H2O2浓度和作用时间有关,抗原性变化对H2O2更敏感,比引起自发荧光明显增强所需H2O2浓度低两个数量级;还发现了RBC抗原性和自发荧光的变化与细胞的散射光有相关性.  相似文献   

6.
Plants may activate similar defence systems to reduce cellular damages caused by different stress conditions. In the present experiments, the formation of lipid peroxidation products [thiobarbituric acid reactive species (TBARS)] was significant during both drought and ultraviolet (UV)‐B stresses, whereas the formation of reactive oxygen species (ROS) was a more delayed response to UV‐B than to drought. H2O2 was detected during both stresses, whereas ·OH radical production was a more characteristic response to drought. The present characterization of transgenic tobacco plants revealed a common role for aldose/aldehyde reductase (ALR) in the detoxification of lipid peroxidation products under water depletion and UV‐B irradiation. As the result of the increased synthesis of ALR enzyme, the transformed plants were more tolerant to both stress conditions, exhibiting reduced loss of photosynthetic function and decreased accumulation of TBARS and H2O2 as compared to control (SR1) plants. When plants had been exposed to mild, non‐lethal drought and were then watered again to recover, they were more tolerant to a subsequent stress by UV‐B. This was characteristic to both transgenic and wild‐type plants. However, this drought‐induced cross‐tolerance to UV‐B stress of SR1 tobacco did not reach the enhancement achieved by the overexpression of ALR.  相似文献   

7.
Immunofluorescence has been widely used to localize microbes or specific molecules in insect tissues or cells. However, significant autofluorescence is frequently observed in tissues which can interfere with the fluorescent identification of target antigens, leading to inaccurate or even false positive fluorescent labeling. The alimentary canal of the potato psyllid, Bactericera cockerelli ?ulc, exhibits intense autofluorescence, hindering the application of immunolocalization for the detection and localization of the economically important pathogen transmitted by this insect, “Candidatus Liberibacter solanacearum” (Lso). In the present study, we tested the use of irradiation, hydrogen peroxide (H2O2) and Sudan black B (SBB) treatments to reduce the autofluorescence in the B. cockerelli alimentary canal tissues. Furthermore, we assessed the compatibility of the above‐mentioned treatments with Lso immunolocalization and actin staining using phalloidin. Our results showed that the autofluorescence in the alimentary canal was reduced by irradiation, H2O2, or SBB treatments. The compatibility assays indicated that irradiation and H2O2 treatment both greatly reduced the fluorescent signal associated with Lso and actin. However, the SBB incubation preserved those target signals, while efficiently eliminating autofluorescence in the psyllid alimentary canal. Therefore, herein we propose a robust method for reducing the autofluorescence in the B. cockerelli alimentary canal with SBB treatment, which may improve the use of immunofluorescence labeling in this organism. This method may also have a wide range of uses by reducing the autofluorescence in other arthropod species.  相似文献   

8.
The induction of autofluorescence of melanins by UV radiation (330–380nm) and near UV (400–440nm) light (jointly called UV light) was studied in tissue sections using three commercially available mounting media. Only Immu-Mount (Shandon) was found suitable for this purpose. UV irradiation of melanins in sections mounted in this medium induced strong yellow auto-fluorescence irrespective of the type of the polymer (eumelanin, neuromelanin, pheomelanin and ochronotic pigment). The phenomenon of auto-fluorescence induction was also observed with isolated natural and in vitro prepared melanins. It was inhibited by anhydrous conditions, sodium azide and catalase. In parallel experiments, rapid degradation of melanins with an intermediate fluorescent stage was achieved in UV-irradiated sections mounted in media artificially enriched with hydrogen peroxide, or directly in aqueous solutions of H2O2, Na2O2 or HIO4. Oxidations not associated with UV light led to nonfluorogenic breakdown of melanins. These observations indicate that the common mechanism may be an oxidative attack resulting from a concerted action of hydrogen peroxide and UV light leading, through strongly fluorescent intermediates, to a complete bleaching and oxidative breakdown of melanin and melanin-like polymers. Reactive oxygen species (including ozone) are considered to be important reactants in these experiments. Lipopigments differ from melanin-like pigments by their primary auto-fluorescence, which mostly faded during continuous prolonged irradiation. The only regular exception was melanosis coli pigment, the auto-fluorescence of which was considerably augmented by UV irradiation. Our results demonstrate a novel type of fluorogen in auto-fluorescent pigment histochemistry. The implications of the results are discussed especially in the light of the possible presence of melanin-based fluorogens in lipopigments.  相似文献   

9.
Xanthomonas citri subsp. citri (Xcc) is the bacterium responsible for citrus canker. This bacterium is exposed to reactive oxygen species (ROS) at different points during its life cycle, including those normally produced by aerobic respiration or upon exposition to ultraviolet (UV) radiation. Moreover, ROS are key components of the host immune response. Among enzymatic ROS-detoxifying mechanisms, catalases eliminate H2O2, avoiding the potential damage caused by this specie. Xcc genome includes four catalase genes. In this work, we studied the physiological role of KatG, the only bifunctional catalase of Xcc, through the construction and characterization of a modified strain (XcckatG), carrying an insertional mutation in the katG gene. First, we evaluated the involvement of KatG in the bacterial adaptive response to H2O2. XcckatG cultures exhibited lower catalase activity than those of the wild-type strain, and this activity was not induced upon treatment with sub-lethal doses of H2O2. Moreover, the KatG-deficient mutant exhibited decreased tolerance to H2O2 toxicity compared to wild-type cells and accumulated high intracellular levels of peroxides upon exposure to sub-lethal concentrations of H2O2. To further study the role of KatG in Xcc physiology, we evaluated bacterial survival upon exposure to UV-A or UV-B radiation. In both conditions, XcckatG showed a high mortality in comparison to Xcc wild-type. Finally, we studied the development of bacterial biofilms. While structured biofilms were observed for the Xcc wild-type, the development of these structures was impaired for XcckatG. Based on these results, we demonstrated that KatG is responsible for Xcc adaptive response to H2O2 and a key component of the bacterial response to oxidative stress. Moreover, this enzyme plays an important role during Xcc epiphytic survival, being essential for biofilm formation and UV resistance.  相似文献   

10.
Hydrogen peroxide: a Jekyll and Hyde signalling molecule   总被引:1,自引:0,他引:1  
Reactive oxygen species (ROS) are a group of molecules produced in the cell through metabolism of oxygen. Endogenous ROS such as hydrogen peroxide (H2O2) have long been recognised as destructive molecules. The well-established roles they have in the phagosome and genomic instability has led to the characterisation of these molecules as non-specific agents of destruction. Interestingly, there is a growing body of literature suggesting a less sinister role for this Jekyll and Hyde molecule. It is now evident that at lower physiological levels, H2O2 can act as a classical intracellular signalling molecule regulating kinase-driven pathways. The newly discovered biological functions attributed to ROS include proliferation, migration, anoikis, survival and autophagy. Furthermore, recent advances in detection and quantification of ROS-family members have revealed that the diverse functions of ROS can be determined by the subcellular source, location and duration of these molecules within the cell. In light of this confounding paradox, we will examine the factors and circumstances that determine whether H2O2 acts in a pro-survival or deleterious manner.  相似文献   

11.
Hydrogen peroxide (H2O2) is a key reactive oxygen species (ROS) in signal transduction pathways leading to activation of plant defenses against biotic and abiotic stresses. In this study, we investigated the effects of H2O2 pretreatment on aluminum (Al) induced antioxidant responses in root tips of two wheat (Triticum aestivum L.) genotypes, Yangmai‐5 (Al‐sensitive) and Jian‐864 (Al‐tolerant). Al increased accumulation of H2O2 and O2?? leading to more predominant lipid peroxidation, programmed cell death and root elongation inhibition in Yangmai‐5 than in Jian‐864. However, H2O2 pretreatment alleviated Al‐induced deleterious effects in both genotypes. Under Al stress, H2O2 pretreatment increased the activities of superoxide dismutase, catalase, peroxidase, ascorbate peroxidase and monodehydroascorbate reductase, glutathione reductase and glutathione peroxidase as well as the levels of ascorbate and glutathione more significantly in Yangmai‐5 than in Jian‐864. Furthermore, H2O2 pretreatment also increased the total antioxidant capacity evaluated as the 2, 2‐diphenyl‐1‐picrylhydrazyl‐radical scavenging activity and the ferric reducing/antioxidant power more significantly in Yangmai‐5 than in Jian‐864. Therefore, we conclude that H2O2 pretreatment improves wheat Al acclimation during subsequent Al exposure by enhancing the antioxidant defense capacity, which prevents ROS accumulation, and that the enhancement is greater in the Al‐sensitive genotype than in the Al‐tolerant genotype.  相似文献   

12.
The human myelogenous cell line, K562 has been extensively used as a model for the study of megakaryocytic (MK) differentiation, which could be achieved by exposure to phorbol 12-myristate 13-acetate (PMA). In this study, real-time PCR analysis revealed that the expression of catalase (cat) was significantly repressed during MK differentiation of K562 cells induced by PMA. In addition, PMA increased the intracellular reactive oxygen species (ROS) concentration, suggesting that ROS was a key factor for PMA-induced differentiation. PMA-differentiated K562 cells were exposed to hydrogen peroxide (H2O2) to clarify the function of ROS during MK differentiation. Interestingly, the percentage of high-ploidy (DNA content >4N) cells with H2O2 was 34.8±2.3% at day 9, and was 70% larger than that without H2O2 (21.5±0.8%). Further, H2O2 addition during the first 3 days of PMA-induced MK differentiation had the greatest effect on polyploidization. In an effort to elucidate the mechanisms of enhanced polyploidization by H2O2, the BrdU assay clearly indicated that H2O2 suppressed the division of 4N cells into 2N cells, followed by the increased polyploidization of K562 cells. These findings suggest that the enhancement in polyploidization mediated by H2O2 is due to synergistic inhibition of cytokinesis with PMA. Although H2O2 did not increase ploidy during the MK differentiation of primary cells, we clearly observed that cat expression was repressed in both immature and mature primary MK cells, and that treatment with the antioxidant N-acetylcysteine effectively blocked and/or delayed the polyploidization of immature MK cells. Together, these findings suggest that MK cells are more sensitive to ROS levels during earlier stages of maturation.  相似文献   

13.
Reactive oxygen species (ROS), namely superoxide radical (O2 ) and hydrogen peroxide (H2O2) are generated when plant tissues endure a variety of environmental stresses, including light stress. The extremely short life times of ROS makes the study of their production in planta very difficult. The use of ROS-specific tracer dyes, 3-3′ diaminobenzidine and nitroblue tetrazolium, together with high-resolution imaging provides the opportunity to identify sites of photooxidative stress response by ROS accumulation. This technique was applied to grapevine during the first 7 days after transfer from in vitro to ex vitro under an irradiance 4-fold higher than in vitro. ROS accumulation was detected in the first days of analysis, which gradually decreased to levels comparable to greenhouse leaves. O2 was uniformly distributed while H2O2 accumulated preferentially in veins, wounds and stomatal guard and surrounding cells. To evaluate the role of H2O2 in stomatal functioning and its crosstalk with abscisic acid (ABA) we focused on the percentage of coloured structures, stomatal aperture and ABA concentration. We propose that the high H2O2 level triggered by increased light is responsible for the activation of a signalling pathway over stomatal cells, in a process apparently irrespective of ABA regulation prior to root protrusion. This could explain the gain of function of a low yet consistent percentage of stomatal cells, essential for plant survival during the ontogenic period in analysis.  相似文献   

14.
Xanthine oxidase (XO) is a critical source of reactive oxygen species (ROS) in inflammatory disease. Focus, however, has centered almost exclusively on XO-derived superoxide (O2??), whereas direct H2O2 production from XO has been less well investigated. Therefore, we examined the relative quantities of O2?? and H2O2 produced by XO under a range (1–21%) of O2 tensions. At O2 concentrations between 10 and 21%, H2O2 accounted for ~75% of ROS production. As O2 concentrations were lowered, there was a concentration-dependent increase in H2O2 formation, accounting for 90% of ROS production at 1% O2. Alterations in pH between 5.5 and 7.4 did not affect the relative proportions of H2O2 and O2?? formation. Immobilization of XO, by binding to heparin–Sepharose, further enhanced relative H2O2 production by ~30%, under both normoxic and hypoxic conditions. Furthermore, XO bound to glycosaminoglycans on the apical surface of bovine aortic endothelial cells demonstrated a similar ROS production profile. These data establish H2O2 as the dominant (70–95%) reactive product produced by XO under clinically relevant conditions and emphasize the importance of H2O2 as a critical factor when examining the contributory roles of XO-catalyzed ROS in inflammatory processes as well as cellular signaling.  相似文献   

15.
Rosebush (Rosa “Radrazz”) plants are an excellent model to study light control of bud outgrowth since bud outgrowth only arises in the presence of light and never occurs in darkness. Recently, we demonstrated high levels of hydrogen peroxide (H2O2) present in the quiescent axillary buds strongly repress the outgrowth process. In light, the outgrowing process occurred after H2O2 scavenging through the promotion of Ascorbic acid–Glutathione (AsA–GSH)-dependent pathways and the continuous decrease in H2O2 production. Here we showed Respiratory Burst Oxidase Homologs expression decreased in buds during the outgrowth process in light. In continuous darkness, the same decrease was observed although H2O2 remained at high levels in axillary buds, as a consequence of the strong inhibition of AsA–GSH cycle and GSH synthesis preventing the outgrowth process. Cytokinin (CK) application can evoke bud outgrowth in light as well as in continuous darkness. Furthermore, CKs are the initial targets of light in the photocontrol process. We showed CK application to cultured buds in darkness decreases bud H2O2 to a level that is similar to that observed in light. Furthermore, this treatment restores GSH levels and engages bud burst. We treated plants with buthionine sulfoximine, an inhibitor of GSH synthesis, to solve the sequence of events involving H2O2/GSH metabolisms in the photocontrol process. This treatment prevented bud burst, even in the presence of CK, suggesting the sequence of actions starts with the positive CK effect on GSH that in turn stimulates H2O2 scavenging, resulting in initiation of bud outgrowth.

Light-induced bud outgrowth in rosebush results from cytokinin-mediated peroxide scavenging and glutathione metabolism stimulation.  相似文献   

16.
An ultraviolet (UV)-based advanced oxidation process (AOP), with hydrogen peroxide and medium-pressure (MP) UV light (H2O2/UV), was used as a pretreatment strategy for biofilm control in water. Suspended Pseudomonas aeruginosa cells were exposed to UV-based AOP treatment, and the adherent biofilm formed by the surviving cells was monitored. Control experiments using H2O2 or MP UV irradiation alone could inhibit biofilm formation for only short periods of time (<24 h) post-treatment. In a H2O2/filtered-UV (>295 nm) system, an additive effect on biofilm control was shown vs filtered-UV irradiation alone, probably due to activity of the added hydroxyl radical (OH?). In a H2O2/full-UV (ie full UV spectrum, not filtered) system, this result was not obtained, possibly due to the germicidal UV photons overwhelming the AOP system. Generally, however, H2O2/UV prevented biofilm formation for longer periods (days) only when maintained with residual H2O2. The ratio of surviving bacterial concentration post-treatment to residual H2O2 concentration played an important role in biofilm prevention and bacterial regrowth. H2O2 treatments alone resulted in poorer biofilm control compared to UV-based AOP treatments maintained with similar levels of residual H2O2, indicating a possible advantage of AOP.  相似文献   

17.
18.
Abstract

Apoptosis is an important cell death system that deletes damaged and mutated cells, preventing the induction of cancer. We previously have reported that UV irradiation inhibited the apoptosis induced by serum starvation and cell detachment. This phenomenon is suitable for clarifying the relationship between cancer and the dysregulation of apoptosis by UV irradiation. Here, we have studied the factors responsible for this inhibition of apoptosis, focusing on reactive oxygen species (ROS) and DNA damage. Treatment with xanthine oxidase in the presence of hypoxanthine, which is known to produce superoxide anion (O2??) and hydrogen peroxide (H2O2), inhibited the induction of apoptosis. The xanthine oxidase-induced anti-apoptotic effect was suppressed in the presence of an H2O2-eliminating enzyme, catalase, but not in the presence of an O2??-eliminating enzyme, superoxide dismutase. Treatment with H2O2 itself significantly inhibited the induction of apoptosis. Furthermore, the effect of the inhibition of cell death by UVB irradiation and by H2O2 treatment decreased in H2O2-resistant cells. Although both UVB and H2O2 are known to induce DNA damage, other DNA damaging agents, like γ-irradiation and treatment with cisplatin and bleomycin, showed no inhibition of apoptosis. These findings suggested that H2O2 was essential to the inhibition of apoptosis, in which DNA damage had no role.  相似文献   

19.
Abiotic stresses, such as drought, can increase the production of reactive oxygen species (ROS) in plants. An increase in ROS levels can provoke a partial or severe oxidation of cellular components inducing redox status changes, so continuous control of ROS and therefore of their metabolism is decisive under stress conditions. The present work focuses on the contribution of one pro-oxidant, hydrogen peroxide (H2O2) and one antioxidant, ascorbate (AA) and its redox status, in the control of plant responses to drought-oxidative stress in resistant plants growing in field conditions. After a general introduction to the concept of drought and oxidative stress and its relationship, we describe the role of H2O2 in drought stress responses, emphasizing the importance of studies in H2O2 subcellular localization, needed for a better understanding of its role in plant responses to stress. Although more studies are needed in the study of changes of redox status in plants subjected to stress, the AA pools and its redox status can be indicative of its involvement as a part of cellular mechanisms by which the plant respond to drought-induced oxidative stress. The mechanism of resistance and/or tolerance to drought-oxidative stress is complex, especially when studies are carried out in plants growing in field conditions, where an interaction of stresses occurs. This study sheds light on the mechanisms of plant responses to water-oxidative stress in plants growing in the field.  相似文献   

20.
In the last decade, the generation and the role of reactive oxygen species (ROS), particularly hydrogen peroxide, in cell signalling transduction pathways have been intensively studied, and it is now clear that an increase of ROS level affects cellular growth and proliferation pathways related to cancer development. Hydrogen peroxide (H2O2) has been long thought to permeate biological membranes by simple diffusion since recent evidence challenged this notion disclosing the role of aquaporin water channels (AQP) in mediating H2O2 transport across plasma membranes. We previously demonstrated that NAD(P)H oxidase (Nox)-generated ROS sustain glucose uptake and cellular proliferation in leukaemia cells. The aim of this study was to assess whether specific AQP isoforms can channel Nox-produced H2O2 across the plasma membrane of leukaemia cells affecting downstream pathways linked to cell proliferation. In this work, we demonstrate that AQP inhibition caused a decrease in intracellular ROS accumulation in leukaemia cells both when H2O2 was produced by Nox enzymes and when it was exogenously added. Furthermore, AQP8 overexpression or silencing resulted to modulate VEGF capacity of triggering an H2O2 intracellular level increase or decrease, respectively. Finally, we report that AQP8 is capable of increasing H2O2-induced phosphorylation of both PI3K and p38 MAPK and that AQP8 expression affected positively cell proliferation. Taken together, the results here reported indicate that AQP8 is able to modulate H2O2 transport through the plasma membrane affecting redox signalling linked to leukaemia cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号