首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hearing loss is a common communication disorder caused by various environmental and genetic factors. Hereditary hearing loss is very heterogeneous, and most of such cases involve sensorineural defects in the auditory pathway. There are currently 57 known autosomal dominant non-syndromic hearing loss (DFNA) loci, and the causative genes have been identified at 22 of these loci. In the present study, we performed a genome-wide linkage analysis in a Korean family segregating autosomal dominant hearing loss. We observed linkage on chromosome 1p34, and at this locus, we detected a novel mutation consisting of an 18 nucleotide deletion in exon 4 of the KCNQ4 gene, which encodes a voltage-gated potassium channel. We carried out a functional in vitro study to analyze the effects of this mutation (c.664_681del) along with two previously described KCNQ4 mutations, p.W276S and p.G285C. Although the c.664_681del mutation is located in the intercellular loop and the two previously described mutations, p.W276S and p.G285C, are located in the pore region, all mutants inhibit normal channel function by a dominant negative effect. Our analysis indicates that the intercellular loop is as significant as the pore region as a potential site of pathogenic effects on KCNQ4 channel function.  相似文献   

2.
Autosomal dominant non‐syndromic hearing loss is genetically heterogeneous with 47 genes identified to date, including POU4F3. In this study, by using a next‐generation sequencing panel targeting 127 deafness genes, we identified a pathogenic frameshift mutation c.704_705del and a missense mutation c.593G>A in two three‐generation Chinese families with late‐onset progressive ADNSHL, respectively. The novel mutations of POU4F3 co‐segregated with the deafness phenotype in these two families. c.704_705del caused a frameshift p.T235fs and c.593G>A caused an amino acid substitution of p.R198H. Both mutations led to an abnormal and incomplete protein structure. POU4F3 with either of the two mutations was transiently transfected into HEI‐OC1 and HEK 293 cell lines and immunofluorescence assay was performed to investigate the subcellular localization of mutated protein. The results indicated that both c.704_705del (p.T235fs) and c.593G>A (p.R198H) could impair the nuclear localization function of POU4F3. The p.R198H POU4F3 protein was detected as a weak band of the correct molecular weight, indicating that the stability of p.R198H POU4F3 differed from that of the wild‐type protein. While, the p.T235fs POU4F3 protein was expressed with a smaller molecular weight, implying this mutation result in a frameshift and premature termination of the POU4F3 protein. In summary, we report two novel mutations of POU4F3 associated with progressive ADNSHL and explored their effects on POU4F3 nuclear localization. These findings expanded the mutation spectrum of POU4F3 and provided new knowledge for the pathogenesis of POU4F3 in hearing loss.  相似文献   

3.

BACKGROUND:

Hearing loss is the most prevalent human genetic sensorineural defect. Mutations in the CLDN14 gene, encoding the tight junction claudin 14 protein expressed in the inner ear, have been shown to cause non-syndromic recessive hearing loss DFNB29.

AIM:

We describe a Moroccan SF7 family with non-syndromic hearing loss. We performed linkage analysis in this family and sequencing to identify the mutation causing deafness.

MATERIALS AND METHODS:

Genetic linkage analysis, suggested the involvement of CLDN14 and KCNE1 gene in deafness in this family. Mutation screening was performed using direct sequencing of the CLDN14 and KCNE1 coding exon gene.

RESULTS:

Our results show the presence of c.11C>T mutation in the CLDN14 gene. Transmission analysis of this mutation in the family showed that the three affected individuals are homozygous, whereas parents and three healthy individuals are heterozygous. This mutation induces a substitution of threonine to methionine at position 4.

CONCLUSION:

These data show that CLDN14 gene can be i mplicated in the development of hearing loss in SF7 family; however, the pathogenicity of c.11C>T mutation remains to be determined.  相似文献   

4.
Autosomal dominant non-syndromic hearing loss (AD-NSHL) is one of the most common genetic diseases in human and is well-known for the considerable genetic heterogeneity. In this study, we utilized whole exome sequencing (WES) and linkage analysis for direct genetic diagnosis in AD-NSHL. The Korean family had typical AD-NSHL running over 6 generations. Linkage analysis was performed by using genome-wide single nucleotide polymorphism (SNP) chip and pinpointed a genomic region on 5q31 with a significant linkage signal. Sequential filtering of variants obtained from WES, application of the linkage region, bioinformatic analyses, and Sanger sequencing validation identified a novel missense mutation Arg326Lys (c.977G>A) in the POU homeodomain of the POU4F3 gene as the candidate disease-causing mutation in the family. POU4F3 is a known disease gene causing AD-HSLH (DFNA15) described in 5 unrelated families until now each with a unique mutation. Arg326Lys was the first missense mutation affecting the 3rd alpha helix of the POU homeodomain harboring a bipartite nuclear localization signal sequence. The phenotype findings in our family further supported previously noted intrafamilial and interfamilial variability of DFNA15. This study demonstrated that WES in combination with linkage analysis utilizing bi-allelic SNP markers successfully identified the disease locus and causative mutation in AD-NSHL.  相似文献   

5.
ABSTRACT: BACKGROUND: Hereditary hearing loss is one of the most common heterogeneous disorders, and genetic variants that can cause hearing loss have been identified in over fifty genes. Most of these hearing loss genes have been detected using classical genetic methods, typically starting with linkage analysis in large families with hereditary hearing loss. However, these classical strategies are not well suited for mutation analysis in smaller families who have insufficient genetic information. METHODS: Eighty known hearing loss genes were selected and simultaneously sequenced by targeted next-generation sequencing (NGS) in 8 Korean families with autosomal dominant non-syndromic sensorineural hearing loss. RESULTS: Five mutations in known hearing loss genes, including 1 nonsense and 4 missense mutations, were identified in 5 different genes (ACTG1, MYO1F, DIAPH1, POU4F3 and EYA4), and the genotypes for these mutations were consistent with the autosomal dominant inheritance pattern of hearing loss in each family. No mutational hot-spots were revealed in these Korean families. CONCLUSION: Targeted NGS allowed for the detection of pathogenic mutations in affected individuals who were not candidates for classical genetic studies. This report is the first documenting the effective use of an NGS technique to detect pathogenic mutations that underlie hearing loss in an East Asian population. Using this NGS technique to establish a database of common mutations in Korean patients with hearing loss and further data accumulation will contribute to the early diagnosis and fundamental therapies for hereditary hearing loss.  相似文献   

6.
Human MYO7A mutations can cause a variety of conditions involving the inner ear. These include dominant and recessive non-syndromic hearing loss and syndromic conditions such as Usher syndrome. Mouse models of deafness allow us to investigate functional pathways involved in normal and abnormal hearing processes. We present two novel mouse models with mutations in the Myo7a gene with distinct phenotypes. The mutation in Myo7aI487N/I487N ewaso is located within the head motor domain of Myo7a. Mice exhibit a profound hearing loss and manifest behaviour associated with a vestibular defect. A mutation located in the linker region between the coiled-coil and the first MyTH4 domains of the protein is responsible in Myo7aF947I/F947I dumbo. These mice show a less severe hearing loss than in Myo7aI487N/I487N ewaso; their hearing loss threshold is elevated at 4 weeks old, and progressively worsens with age. These mice show no obvious signs of vestibular dysfunction, although scanning electron microscopy reveals a mild phenotype in vestibular stereocilia bundles. The Myo7aF947I/F947I dumbo strain is therefore the first reported Myo7a mouse model without an overt vestibular phenotype; a possible model for human DFNB2 deafness. Understanding the molecular basis of these newly identified mutations will provide knowledge into the complex genetic pathways involved in the maintenance of hearing, and will provide insight into recessively inherited sensorineural hearing loss in humans.  相似文献   

7.
Mutations in five unconventional myosin genes have been associated with genetic hearing loss (HL). These genes encode the motor proteins myosin IA, IIIA, VI, VIIA and XVA. To date, most mutations in myosin genes have been found in the Caucasian population. In addition, only a few functional studies have been performed on the previously reported myosin mutations. We performed screening and functional studies for mutations in the MYO1A and MYO6 genes in Korean cases of autosomal dominant non-syndromic HL. We identified four novel heterozygous mutations in MYO6. Three mutations (p.R825X, p.R991X and Q918fsX941) produce a premature truncation of the myosin VI protein. Another mutation, p.R205Q, was associated with diminished actin-activated ATPase activity and actin gliding velocity of myosin VI in an in vitro analysis. This finding is consistent with the results of protein modelling studies and corroborates the pathogenicity of this mutation in the MYO6 gene. One missense variant, p.R544W, was found in the MYO1A gene, and in silico analysis suggested that this variant has deleterious effects on protein function. This finding is consistent with the results of protein modelling studies and corroborates the pathogenic effect of this mutation in the MYO6 gene.  相似文献   

8.
9.
The TMPRSS3 gene (DFNB8/10), which encodes a transmembrane serine protease, is a common hearing loss gene in several populations. Accurate functions of TMPRSS3 in the hearing pathway are still unknown, but TMPRSS3 has been reported to play a crucial role in inner ear development or maintenance. To date, 16 pathogenic mutations have been identified in many countries, but no mutational studies of the TMPRSS3 gene have been conducted in the Korean hearing loss population. In this study, we performed genetic analysis of TMPRSS3 in 40 unrelated Korean patients with autosomal recessive hearing loss to identify the aspect and frequency of TMPRSS3 gene mutations in the Korean population. A total of 22 variations were detected, including a novel variant (p.V291L) and a previously reported pathogenic mutation (p.A306T). The p.A306T mutation which has been detected in only compound heterozygous state in previous studies was identified in homozygous state for the first time in this study. Moreover, the clinical evaluation identified bilateral dilated vestibules in the patient with p.A306T mutation, and it suggested that p.A306T mutation of the TMPRSS3 gene might be associated with vestibular anomalies. In conclusion, this study investigated that only 2.5% of patients with autosomal recessive hearing loss were related to TMPRSS3 mutations suggesting low prevalence of TMPRSS3 gene in Korean hearing loss population. Also, it will provide the information of genotype–phenotype correlation to understand definite role of TMPRSS3 in the auditory system.  相似文献   

10.
Connexins (CXs), as a component of gap junction channel, are homologous four transmembrane-domain proteins, with numerous studies confirming their auditory functions. Among a cohort of patients having incurred non-syndromic hearing loss, we identified two novel missense mutations, p.R15G and p.L23H, in the GJC3 gene encoding CX30.2/CX31.3, as causally related to hearing loss in previous study. However, the functional alteration of CX30.2/CX31.3 caused by the mutant GJC3 gene remains unknown. In this study, we compared the intracellular distribution of mutant CX30.2/CX31.3 (p.R15G and p.L23H) with the wild-type (WT) protein in HeLa cells and the effect of the mutant protein had on those cells. Analytical results indicated that p.R15G and p.L23H mutant exhibited continuous staining along apposed cell membranes in the fluorescent localization assay, which is the same with the WT. Moreover, ATP release (hemichannel function) is less in HeLa cells carrying mutant GJC3 genes than those of WT expressing cells. We believe that although p.R15G and p.L23H mutants do not decrease the trafficking of CX proteins, mutations in GJC3 genes result in a loss of hemichannel function of CX30.2/CX31.3 protein, possibly causing hearing loss. Results of this study provide a novel molecular explanation for the role of GJC3 in hearing loss.  相似文献   

11.
Mutations in the GJB2 gene are the most common cause of nonsyndromic autosomal recessive sensorineural hearing loss (HL). A few mutations in GJB2 have also been reported to cause dominant nonsyndromic HL. Here we report a large inbred family including two individuals with nonsyndromic sensorineural hearing loss. A dominant GJB2 mutation, c.551G>A (p.R184Q), was detected in the proband, yet his parents were negative for the mutation. The second affected person had heterozygous c.35delG mutation, which was inherited from his father. Large deletions of the GJB6 gene were not detected in this family. This study highlights the importance of mutation analysis in all affected cases within a pedigree.  相似文献   

12.
13.
Tight junctions (TJs) are essential components of eukaryotic cells, and serve as paracellular barriers and zippers between adjacent tissues. TJs are critical for normal functioning of the organ of Corti, a part of the inner ear that causes loss of sensorineural hearing when damaged. To investigate the relation between genes involved in TJ function and hereditary loss of sensorineural hearing in the Korean population, we selected the TJP2 and CLDN14 genes as candidates for gene screening of 135 Korean individuals. The TJP2 gene, mutation of which causes autosomal dominant non-syndromic hearing loss (ADNSHL), lies at the DFNA51 locus on chromosome 9. The CLDN14 gene, mutation of which causes autosomal recessive non-syndromic hearing loss (ARNSHL), lies at the DFNB29 locus on chromosome 21. In the present study, we conducted genetic analyses of the TJP2 and CLDN14 genes in 87 unrelated patients with ADNSHL and 48 unrelated patients with either ARNSHL or potentially sporadic hearing loss. We identified two pathogenic variations, c.334G>A (p.A112T) and c.3562A>G (p.T1188A), and ten single nucleotide polymorphisms (SNPs) in the TJP2 gene. We found eight non-pathogenic variations in the CLDN14 gene. These findings indicate that, whereas mutation of the TJP2 gene might cause ADNSHL, CLDN14 is not a major causative gene for ARNSHL in the Korean population studied. Our findings may improve the understanding of the genetic cause of non-syndromic hearing loss in the Korean population.  相似文献   

14.
Mutations of the GJB2 gene, encoding connexin 26, are the most common cause of hereditary congenital hearing loss in many countries and account for up to 50% of cases of autosomal-recessive non-syndromic deafness. By contrast, only a few GJB2 mutations have been reported to cause an autosomal-dominant form of non-syndromic deafness. Here, we report a family from Southern Italy affected by non-syndromic autosomal dominant post-lingual hearing loss, due to a novel missense mutation in the GJB2 gene, a threonine to asparagine amino acid substitution at codon 55 (T55N). Functional studies indicated that the mutation T55N produces a protein that, although expressed to levels similar to those of the wt counterpart, is deeply impaired in its intracellular trafficking and fails to reach the plasma membrane. The mutation T55N is located at the apex of the first extracellular loop of the protein, a region suggested to play a role in protein targeting and a site for other two mutations, G59A and D66H, causing dominant forms of deafness.  相似文献   

15.
We studied a family presenting 10 individuals affected by autosomal dominant deafness in all frequencies and three individuals affected by high frequency hearing loss. Genomic scanning using the 50k Affymetrix microarray technology yielded a Lod Score of 2.1 in chromosome 14 and a Lod Score of 1.9 in chromosome 22. Mapping refinement using microsatellites placed the chromosome 14 candidate region between markers D14S288 and D14S276 (8.85 cM) and the chromosome 22 near marker D22S283. Exome sequencing identified two candidate variants to explain hearing loss in chromosome 14 [PTGDR – c.G894A:p.R298R and PTGER2 – c.T247G:p.C83G], and one in chromosome 22 [MYH9, c.G2114A:p.R705H]. Pedigree segregation analysis allowed exclusion of the PTGDR and PTGER2 variants as the cause of deafness. However, the MYH9 variant segregated with the phenotype in all affected members, except the three individuals with different phenotype. This gene has been previously described as mutated in autosomal dominant hereditary hearing loss and corresponds to DFNA17. The mutation identified in our study is the same described in the prior report. Thus, although linkage studies suggested a candidate gene in chromosome 14, we concluded that the mutation in chromosome 22 better explains the hearing loss phenotype in the Brazilian family.  相似文献   

16.
17.
Autosomal dominant non-syndromic hearing loss (ADNSHL) is highly heterogeneous, among them, KCNQ4 is one of the most frequent disease-causing genes. More than twenty KCNQ4 mutations have been reported, but none of them were detected in Chinese mainland families. In this study, we identified a novel KCNQ4 mutation in a five generation Chinese family with 84 members and a known KCNQ4 mutation in a six generation Chinese family with 66 members. Mutation screening of 30 genes for ADNSHL was performed in the probands from thirty large Chinese families with ADNSHL by targeted region capture and high-throughput sequencing. The candidate variants and the co-segregation of the phenotype were verified by polymerase chain reaction (PCR) amplification and Sanger sequencing in all ascertained family members. Then we identified a novel KCNQ4 mutation p.W275R in exon 5 and a known KCNQ4 mutation p.G285S in exon 6 in two large Chinese ADNSHL families segregating with post-lingual high frequency-involved and progressive sensorineural hearing loss. This is the first report of KCNQ4 mutation in Chinese mainland families. KCNQ4, a member of voltage-gated potassium channel family, is likely to be a common gene in Chinese patients with ADNSHL. The results also support that the combination of targeted enrichment and high-throughput sequencing is a valuable molecular diagnostic tool for autosomal dominant hereditary deafness.  相似文献   

18.
Theγ-actin(ACTG1)gene is a cytoplasmic nonmuscle actin gene,which encodes a major cytoskeletal protein in the sensory hair cells of the cochlea.Mutations in ACTG1 were found to cause autosomal dominant,progressive,sensorineural hearing loss linked to the DFNA 20/26 locus on chromosome 17q25.3 in European and American families,respectively.In this study,a novel missense mutation (c.364A>G;p.I122V)co-segregated with the affected individuals in the family and did not exist in the unaffected family members and 150 unrelated normal controls.The alteration of residue I1e122 was predicted to damage its interaction with actin-binding proteins,which may cause disruption of hair cell organization and function.These findings strongly suggested that the I122V mutation in ACTG1 caused autosomal dominant non-syndromic hearing impairment in a Chinese family and expanded the spectrum of ACTG1 mutations causing hearing loss.  相似文献   

19.
Hereditary hearing loss (HHL) is a common disorder accounting for at least 60% of prelingual deafness. It is characterized by a large genetic heterogeneity, and despite the presence of a major gene, still there is a need to search for new causative mutations/genes. Very recently, a mutation within ATP-gated P2X(2) receptor (ligand-gated ion channel, purinergic receptor 2) gene (P2RX2) at DNFA41 locus has been reported leading to a bilateral and symmetrical sensorineural non-syndromic autosomal dominant HHL in two Chinese families. We performed a linkage analysis in a large Italian family with a dominant pattern of inheritance showing a significant 3.31 LOD score in a 2 Mb region overlapping with the DNFA41 locus. Molecular analyses of P2RX2 identified a novel missense mutation (p.Gly353Arg) affecting a residue highly conserved across species. Visual inspection of the protein structure as obtained from comparative modeling suggests that substitution of the small glycine residue with a charged bulky residue such as an arginine that is close to the ‘neck’ of the region responsible for ion channel gating should have a high energetic cost and should lead to a severely destabilization of the fold. The identification of a second most likely causative mutation in P2RX2 gene further supports the possible role of this gene in causing autosomal dominant HHL.  相似文献   

20.
Mutations in GJB2 encoding the gap junction protein connexin-26 (Cx26) have been established as the basis of autosomal recessive non-syndromic hearing loss. The involvement of GJB2 in autosomal dominant deafness has also been proposed, although the putative mutation identified in one family with both deafness and palmoplantar keratoderma has recently been suggested to be merely a non-disease associated polymorphism. We have observed a similar phenotype in an Egyptian family that segregated with a heterozygous missense mutation of GJB2, leading to a non-conservative amino acid substitution (R75W). The deleterious dominant-negative effect of R75W on gap channel function was subsequently demonstrated in the paired oocyte expression system. Not only was R75W alone incapable of inducing electrical conductance between adjacent cells, but it almost completely suppressed the activity of co-expressed wildtype protein. The Cx26 mutant W77R, which has been implicated in autosomal recessive deafness, also failed to form functional gap channels by itself but did not significantly interfere with the function of wildtype Cx26. These data provide compelling evidence for the serious functional consequences of Cx26 mutations in dominant and recessive deafness. Received: 22 June 1998 / Accepted: 15 July 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号