共查询到20条相似文献,搜索用时 4 毫秒
1.
Gail T. McDonald 《Experimental cell research》2010,316(19):3197-3206
Approaches to overcome chemoresistance in cancer cells have involved targeting specific signaling pathways such as the phosphatidylinositol 3-kinase (PI3K) pathway, a stress response pathway known to be involved in the regulation of cell survival, apoptosis and growth. The present study determined the effect of PI3K inhibition on the clonogenic survival of human cancer cells following exposure to various chemotherapeutic agents. Treatment with the PI3K inhibitors LY294002 or Compound 15e resulted in increased survival of MDA-MB-231 breast carcinoma cells after exposure to doxorubicin, etoposide, 5-fluorouracil, and vincristine. Increased survival following PI3K inhibition was also observed in DU-145 prostate, HCT-116 colon and A-549 lung carcinoma cell lines exposed to doxorubicin. Increased cell survival mediated by LY294002 was correlated with a decrease in cell proliferation, which was linked to an increase in the proportion of cells in the G1 phase of the cell cycle. Inhibition of PI3K signaling also resulted in higher levels of the cyclin-dependent kinase inhibitors p21Waf1/Cip1 and p27Kip1; and knockdown of p27kip1 with siRNA attenuated resistance to doxorubicin in cells treated with LY294002. Incubation in the presence of LY294002 after exposure to doxorubicin resulted in decreased cell survival. These findings provide evidence that PI3K inhibition leads to chemoresistance in human cancer cells by causing a delay in cell cycle; however, the timing of PI3K inhibition (either before or after exposure to anti-cancer agents) may be a critical determinant of chemosensitivity. 相似文献
2.
Programmed cell death 6 (PDCD6) was originally found as a pro-apoptotic protein, but its molecular mechanism is not well understood. In this study, we have attempted to investigate the effects of PDCD6 on the inhibition of angiogenesis-mediated cell growth as a novel anti-angiogenic protein. Purified recombinant human PDCD6 inhibited cell migration in a concentration-time-dependent manner. We also found that overexpressed PDCD6 suppressed vascular endothelial growth factor (VEGF)-induced proliferation, invasion, and capillary-like structure tube formation in vitro. PDCD6 suppressed phosphorylation of signaling regulators downstream from PI3K, including Akt, mammalian target of rapamycin (mTOR), glycogen synthase kinase-3β(GSK-3β), ribosomal protein S6 kinase (p70S6K), and also decreased cyclin D1 expression. We found binding PDCD6 to VEGFR-2, a key player in the PI3K/mTOR/P70S6K signaling pathway. Taken together, these data suggest that PDCD6 plays a significant role in modulating cellular angiogenesis. 相似文献
3.
Lanlan Li Jiayi Wang Yue Zhang Yan Zhang Lifang Ma Wenhao Weng Yongxia Qiao Weifan Xiao Hongmei Wang Wenjun Yu Qiuhui Pan Yunyan He Fenyong Sun 《FEBS letters》2013
Mitogen-activated protein kinase kinase 1 (MAP2K1/MEK1) as well as Yes-associated protein (YAP), the downstream effector of Hippo signaling pathway, is linked to hepatocarcinogenesis. However, little is known about whether and how MEK1 interacts with YAP. In this study, we find that MEK1-YAP interaction is critical for liver cancer cell proliferation and maintenance of transformed phenotypes both in vitro and in vivo. Moreover, MEK1 and YAP proteins are closely correlated in human liver cancer samples. Mechanistically, inhibition of MEK1 by both PD98059 and U0126 as well as RNAi reduces beta-transducin repeat containing E3 ubiquitin protein ligase (BTRC), which acts as a potential endogenous YAP protector. 相似文献
4.
Olga V. Gvozdeva IIya S. DovydenkoAlya G. Venyaminova Marina A. ZenkovaValentin V. Vlassov Elena L. Chernolovskaya 《FEBS letters》2014
DsRNAs longer than 30 bp induce interferon response and global changes in gene expression profile in mammalians. 21 bp siRNA and 25/27 bp dsiRNA acting via RNA interference mechanism are used for specific gene silencing in this class of organisms. We designed selectively 2′-O-methyl-modified 42 and 63 bp anti-MDR1-siRNAs that silence the expression of P-glycoprotein and restore the sensitivity of drug-resistant cancer cells to cytostatic more efficiently than canonical 21 bp siRNAs. We also show that they act in a Dicer-independent mode and are devoid of immunostimulating properties. Our findings suggest that 42 and 63 bp siRNAs could be used as potential therapeutics. 相似文献
5.
Stine Krog Frandsen Hanne Gissel Pernille Hojman Jens Eriksen Julie Gehl 《Biochimica et Biophysica Acta (BBA)/General Subjects》2014
Background
Electroporation with calcium (calcium electroporation) can induce ATP depletion-associated cellular death. In the clinical setting, the cytotoxic drug bleomycin is currently used with electroporation (electrochemotherapy) for palliative treatment of tumors. Calcium electroporation offers several advantages over standard treatment options: calcium is inexpensive and may readily be applied without special precautions, as is the case with cytostatic drugs. Therefore, details on the use of calcium electroporation are essential for carrying out clinical trials comparing calcium electroporation and electrochemotherapy.Methods
The effects of calcium electroporation and bleomycin electroporation (alone or in combination) were compared in three different cell lines (DC-3F, transformed Chinese hamster lung fibroblast; K-562, human leukemia; and murine Lewis Lung Carcinoma). Furthermore, the effects of electrical pulsing parameters and calcium compound on treatment efficacy were determined.Results
Electroporation with either calcium or bleomycin significantly reduced cell survival (p < 0.0001), without evidence of a synergistic effect. Cellular death following calcium or bleomycin treatment occurred at similar applied voltages, suggesting that similar parameters should be applied. At equimolar concentrations, calcium chloride and calcium glubionate resulted in comparable decreases in cell viability.Conclusions
Calcium electroporation and bleomycin electroporation significantly reduce cell survival at similar applied voltage parameters. The effect of calcium electroporation is independent of calcium compound.General significance
This study strongly supports the use of calcium electroporation as a potential cancer therapy and the results may aid in future clinical trials. 相似文献6.
Ku BM Ryu HW Lee YK Ryu J Jeong JY Choi J Cho HJ Park KH Kang SS 《Biochemical and biophysical research communications》2010,402(3):525-530
Chalcones are precursors of flavonoids and have been shown to have anti-cancer activity. Here, we identify the synthetic chalcone derivative 4′-acetoamido-4-hydroxychalcone (AHC) as a potential therapeutic agent for the treatment of glioma. Treatment with AHC reduced glioma cell invasion, migration, and colony formation in a concentration-dependent manner. In addition, AHC inhibited vascular endothelial growth factor-induced migration, invasion, and tube formation in HUVECs. To determine the mechanism underlying the inhibitory effect of AHC on glioma cell invasion and migration, we investigated the effect of AHC on the gene expression change and found that AHC affects actin dynamics in U87MG glioma cells. In actin cytoskeleton regulating system, AHC increased tropomyosin expression and stress fiber formation, probably through activation of PKA. Suppression of tropomyosin expression by siRNA or treatment with the PKA inhibitor H89 reduced the inhibitory effects of AHC on glioma cell invasion and migration. In vivo experiments also showed that AHC inhibited tumor growth in a xenograft mouse tumor model. Together, these data suggest that the synthetic chalcone derivative AHC has potent anti-cancer activity through inhibition of glioma proliferation, invasion, and angiogenesis and is therefore a potential chemotherapeutic candidate for the treatment of glioma. 相似文献
7.
8.
YiZu Jiao 《Biochemical and biophysical research communications》2010,391(4):1579-1584
Type-I ribosome-inactivating protein-trichosanthin (TCS) exhibits selective cytotoxicity toward different types of cells. It is believed that the cytotoxicity results from the inhibition of ribosomes to decrease protein synthesis, thereby indicating that there are specific mechanisms for TCS entry into target cells to reach the ribosomes. Low-density lipoprotein (LDL) receptor-related protein 1 (LRP1) is a large scavenger receptor that is responsible for the binding and endocytosis of diverse biological ligands on the cell surface. In this study, we demonstrated that 2 choriocarcinoma cell lines can significantly bind and internalize TCS. In contrast, Hela cell line displayed no obvious TCS binding and endocytosis. Furthermore LRP1 gene silencing in JAR and BeWo cell lines blocked TCS binding; TCS could also interact with LRP1.The results of our study established that LRP1 was a major receptor for phagocytosis of TCS in JAR and BeWo cell lines and might be the molecular basis of TCS abortificient and anti-choriocarcinoma activity. 相似文献
9.
Zraika S Hull RL Udayasankar J Utzschneider KM Tong J Gerchman F Kahn SE 《Biochemical and biophysical research communications》2007,354(1):234-239
Islet amyloid contributes to the loss of beta-cell mass in type 2 diabetes. To examine the roles of glucose and time on amyloid formation, we developed a rapid in vitro model using isolated islets from human islet amyloid polypeptide (hIAPP) transgenic mice. Islets from hIAPP transgenic and non-transgenic mice were cultured for up to 7 days with either 5.5, 11.1, 16.7 or 33.3mmol/l glucose. At various time-points throughout the culture period, islets were harvested for determination of amyloid and beta-cell areas, and for measures of cell viability, insulin content, and secretion. Following culture of hIAPP transgenic islets in 16.7 or 33.3mmol/l glucose, amyloid formation was significantly increased compared to 5.5 or 11.1mmol/l glucose culture. Amyloid was detected as early as day 2 and increased in a time-dependent manner so that by day 7, a decrease in the proportion of beta-cell area in hIAPP transgenic islets was evident. When compared to non-transgenic islets after 7-day culture in 16.7mmol/l glucose, hIAPP transgenic islets were 24% less viable, had decreased beta-cell area and insulin content, but displayed no change in insulin secretion. Thus, we have developed a rapid in vitro model of light microscopy-visible islet amyloid formation that is both glucose- and time-dependent. Formation of amyloid in this model is associated with reduced cell viability and beta-cell loss but adequate functional adaptation. It thus enables studies investigating the mechanism(s) underlying the amyloid-associated loss of beta-cell mass in type 2 diabetes. 相似文献
10.
Soo-Jung Park Mi-Ju Kim Hee-Young Sohn Chi-Dug Kang Sun-Hee Kim 《Experimental cell research》2009,315(11):1809-77
TNF-related apoptosis-inducing ligand (TRAIL) is a pro-apoptotic cytokine that is capable of inducing apoptosis in a wide variety of cancer cells but not in normal cells. Although many cancer cells are sensitive to TRAIL-induced apoptosis, chronic myeloid leukemia (CML) develops resistance to TRAIL. In this study, we investigated whether apicidin, a novel histone deacetylase inhibitor, could overcome the TRAIL resistance in CML-derived K562 cells. Compared to treatment with apicidin or TRAIL alone, cotreatment with apicidin and TRAIL-induced apoptosis synergistically in K562 cells. This combination led to activation of caspase-8 and Bcl-2 interacting domain (Bid), resulting in the cytosolic accumulation of cytochrome c from mitochondria as well as an activation of caspase-3. Treatment with apicidin resulted in down-regulation of Bcr-Abl and inhibition of its downstream target, PI3K/AKT-NF-κB pathway. In addition, apicidin decreased the level of NF-κB-dependent Bcl-xL, leading to caspase activation and Bid cleavage. These results suggest that apicidin may sensitize K562 cells to TRAIL-induced apoptosis through caspase-dependent mitochondrial pathway by regulating expression of Bcr-Abl and its related anti-apoptotic proteins. Therefore, the present study suggests that combination of apicidin and TRAIL may be an effective strategy for treating TRAIL-resistant Bcr-Abl expressing CML cells. 相似文献
11.
12.
Cadmium activates CaMK-II and initiates CaMK-II-dependent apoptosis in mesangial cells 总被引:1,自引:0,他引:1
Cadmium is a toxic metal that initiates both mitogenic responses and cell death. We show that Cd(2+) increases phosphorylation and activity of Ca(2+)/calmodulin-dependent protein kinase II (CaMK-II) in mesangial cells, in a concentration-dependent manner. Activation is biphasic with peaks at 1-5 min and 4-6 h. Cadmium also activates Erk, but this appears to be independent of CaMK-II. At 10-20 microM, Cd(2+) initiates apoptosis in 25-55% of mesangial cells by 6h. Inhibition of CaMK-II, but not of Erk, suppresses Cd(2+)-induced apoptosis. We conclude that activation of CaMK-II by Cd(2+) contributes to apoptotic cell death, independent of Erk activation. 相似文献
13.
Buforin IIb is a novel cell-penetrating anticancer peptide derived from histone H2A. In this study, we enhanced the cancer targeting specificity of buforin IIb using a tumor-associated enzyme-controlled activation strategy. Buforin IIb was fused with an anionic peptide (modified magainin intervening sequence, MMIS), which neutralizes the positive charge of buforin IIb and thus renders it inactive, via a matrix metalloproteinases (MMPs)-cleavable linker. The resulting MMIS:buforin IIb fusion peptide was completely inactive against MMPs-nonproducing cells. However, when the fusion peptide was administrated to MMPs-producing cancer cells, it regained the killing activity by releasing free buforin IIb through MMPs-mediated cleavage. Moreover, the activity of the fusion peptide toward MMPs-producing cancer cells was significantly decreased when the cells were pretreated with a MMP inhibitor. Taken together, these data indicate that the cancer targeting specificity of MMIS:buforin IIb is enhanced compared to the parent peptide by reactivation at the specialized areas where MMPs are pathologically produced. 相似文献
14.
Triterpenoids are known to induce apoptosis and to be anti-tumoural. Maslinic acid, a pentacyclic triterpene, is present in high concentrations in olive pomace. This study examines the response of HT29 and Caco-2 colon-cancer cell lines to maslinic-acid treatment. At concentrations inhibiting cell growth by 50-80% (IC50HT29=61+/-1 microM, IC80HT29=76+/-1 microM and IC50Caco-2=85+/-5 microM, IC80Caco-2=116+/-5 microM), maslinic acid induced strong G0/G1 cell-cycle arrest and DNA fragmentation, and increased caspase-3 activity. However, maslinic acid did not alter the cell cycle or induce apoptosis in the non-tumoural intestine cell lines IEC-6 and IEC-18. Moreover, maslinic acid induced cell differentiation in colon adenocarcinoma cells. These findings support a role for maslinic acid as a tumour suppressant and as a possible new therapeutic tool for aberrant cell proliferation in the colon. In this report, we demonstrate for the first time that, in tumoural cancer cells, maslinic acid exerts a significant anti-proliferation effect by inducing an apoptotic process characterized by caspase-3 activation by a p53-independent mechanism, which occurs via mitochondrial disturbances and cytochrome c release. 相似文献
15.
16.
Nobuaki Ochi Nagio Takigawa Daijiro Harada Masayuki Yasugi Eiki Ichihara Katsuyuki Hotta Masahiro Tabata Mitsune Tanimoto Katsuyuki Kiura 《Experimental cell research》2014
To study epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) resistance mechanisms, we established a novel gefitinib-resistant lung cancer cell line derived from an EGFR-mutant non-small cell lung cancer cell line (PC-9) pretreated with 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (designated PC9-GR). We found that gefitinib substantially suppressed the EGFR signaling pathway, whereas ERK was reactivated after several hours in PC9-GR but not in PC-9. The combination of gefitinib with ERK inhibition (by U0126) restored gefitinib susceptibility in PC9-GR, but PI3K-Akt inhibition with LY294002 did not. Although the levels of phosphorylated Src were up-regulated simultaneously with ERK reactivation, neither ERK suppression using U0126 nor an ERK-specific siRNA induced Src phosphorylation. Furthermore, dual inhibition of EGFR and Src restored gefitinib sensitivity in PC9-GR in vitro and in vivo. In conclusion, our results indicate that Src-mediated ERK reactivation may play a role in a novel gefitinib resistance mechanism, and that the combined use of gefitinib with a Src inhibitor may be a potent strategy to overcome this resistance. 相似文献
17.
Biljana Ristic Mihajlo Bosnjak Katarina Arsikin Aleksandar Mircic Violeta Suzin-Zivkovic Andrija Bogdanovic Vladimir Perovic Tamara Martinovic Tamara Kravic-Stevovic Vladimir Bumbasirevic Vladimir Trajkovic Ljubica Harhaji-Trajkovic 《Experimental cell research》2014
We investigated if the antileukemic drug idarubicin induces autophagy, a process of programmed cellular self-digestion, in leukemic cell lines and primary leukemic cells. Transmission electron microscopy and acridine orange staining demonstrated the presence of autophagic vesicles and intracellular acidification, respectively, in idarubicin-treated REH leukemic cell line. Idarubicin increased punctuation/aggregation of microtubule-associated light chain 3B (LC3B), enhanced the conversion of LC3B-I to autophagosome-associated LC3B-II in the presence of proteolysis inhibitors, and promoted the degradation of the selective autophagic target p62, thus indicating the increase in autophagic flux. Idarubicin inhibited the phosphorylation of the main autophagy repressor mammalian target of rapamycin (mTOR) and its downstream target p70S6 kinase. The treatment with the mTOR activator leucine prevented idarubicin-mediated autophagy induction. Idarubicin-induced mTOR repression was associated with the activation of the mTOR inhibitor AMP-activated protein kinase and down-regulation of the mTOR activator Akt. The suppression of autophagy by pharmacological inhibitors or LC3B and beclin-1 genetic knockdown rescued REH cells from idarubicin-mediated oxidative stress, mitochondrial depolarization, caspase activation and apoptotic DNA fragmentation. Idarubicin also caused mTOR inhibition and cytotoxic autophagy in K562 leukemic cell line and leukocytes from chronic myeloid leukemia patients, but not healthy controls. By demonstrating mTOR-dependent cytotoxic autophagy in idarubicin-treated leukemic cells, our results warrant caution when considering combining idarubicin with autophagy inhibitors in leukemia therapy. 相似文献
18.
Jinggong Liu Weilin Liu Hu Ge Jinbo Gao Qingqing He Lijuan Su Jun Xu Lian-quan Gu Zhi-shu Huang Ding Li 《Biochimica et Biophysica Acta (BBA)/General Subjects》2014
Background
Farnesyl pyrophosphate synthase (FPPS) is a key regulatory enzyme in the biosynthesis of cholesterol and in the post-translational modification of signaling proteins. It has been reported that non-bisphosphonate FPPS inhibitors targeting its allosteric binding pocket are potentially important for the development of promising anti-cancer drugs.Methods
The following methods were used: organic syntheses of non-bisphosphonate quinoline derivatives, enzyme inhibition studies, fluorescence titration assays, synergistic effect studies of quinoline derivatives with zoledronate, ITC studies for the binding of FPPS with quinoline derivatives, NMR-based HAP binding assays, molecular modeling studies, fluorescence imaging assay and MTT assays.Results
We report our syntheses of a series of quinoline derivatives as new FPPS inhibitors possibly targeting the allosteric site of the enzyme. Compound 6b showed potent inhibition to FPPS without significant hydroxyapatite binding affinity. The compound showed synergistic inhibitory effect with active-site inhibitor zoledronate. ITC experiment confirmed the good binding effect of compound 6b to FPPS, and further indicated the binding ratio of 1:1. Molecular modeling studies showed that 6b could possibly bind to the allosteric binding pocket of the enzyme. The fluorescence microscopy indicated that these compounds could get into cancer cells.Conclusions
Our results showed that quinoline derivative 6b could become a new lead compound for further optimization for cancer treatment.General significance
The traditional FPPS active-site inhibitors bisphosphonates show poor membrane permeability to tumor cells, due to their strong polarity. The development of new non-bisphosphonate FPPS inhibitors with good cell membrane permeability is potentially important. 相似文献19.
The anti-cancer drug mitomycin C is metabolically activated to bind and cross-link DNA. The cross-linking contributes significantly to the cytotoxicity. The complex chemical structure of mitomycin C allows its metabolism by several known (cytosolic NAD(P)H:quinone oxidoreductase and microsomal NADPH:cytochrome P450 reductase) and unknown enzymes. The identification of new enzymes/proteins that metabolize mitomycin C and like drugs is an area of significant research interest since these studies have direct implications in drug development and clinical usage. In the present studies, we have investigated a role of cytosolic glucose regulatory protein GRP58 in mitomycin C-induced DNA cross-linking and cytotoxicity. The control and GRP58 siRNA were transfected in human colon carcinoma HCT116 cells in culture. The transfection of GRP58 siRNA but not control siRNA significantly inhibited GRP58 in human colon carcinoma HCT116 cells. The inhibition of GRP58 led to decrease in mitomycin C-induced DNA cross-linking and cytotoxicity. These results establish a role of GRP58 in mitomycin C-induced DNA cross-linking and cytotoxicity. Site-directed mutagenesis of cysteines to serines in thioredoxin domains of GRP58 and cross-linking assays revealed that both N- and C-terminal thioredoxin domains are required for GRP58-mediated mitomycin C-induced DNA cross-linking. These results suggest that GRP58 might be an important target enzyme for further studies on mitomycin C and similar drug therapy. 相似文献