首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Introduction  

Chemokines and their receptors control immune cell migration during infections as well as in autoimmune responses. A 32 bp deletion in the gene of the chemokine receptor CCR5 confers protection against HIV infection, but has also been reported to decrease susceptibility to rheumatoid arthritis (RA). The influence of this deletion variant on the clinical course of this autoimmune disease was investigated.  相似文献   

2.

Background  

Breast cancer is a major malignancy affecting females worldwide. It is the most common cause of death from cancer in women. Cell lines are widely used in laboratory research and particularly as in vitro models in cancer research. But we found that the routinely used breast cancer cell lines were mostly derived from Caucasians or African-Americans. There were few standard models to study the pathogenic mechanism at molecular level and cell signaling pathway of breast cancer for Asian patients. It is quite necessary to establish new breast cancer cell lines from xanthoderm to study the pathogenic mechanism and therapeutic methods.  相似文献   

3.

Background

Tumor necrosis factor alpha (TNF) is able to kill cancer cells via receptor-mediated cell death requiring adenosine triphosphate (ATP). Clinical usage of TNF so far is largely limited by its profound hepatotoxicity. Recently, it was found in the murine system that specific protection of hepatocytes against TNF''s detrimental effects can be achieved by fructose-mediated ATP depletion therein. Before employing this quite attractive selection principle in a first clinical trial, we here comprehensively investigated the interdependence between ATP depletion and TNF hepatotoxicity in both in vitro and ex vivo experiments based on usage of primary patient tissue materials.

Methods

Primary human hepatocytes, and both non-tumorous and tumorous patient-derived primary liver tissue slices were used to elucidate fructose-induced ATP depletion and TNF-induced cytotoxicity.

Results

PHH as well as tissue slices prepared from non-malignant human liver specimen undergoing a fructose-mediated ATP depletion were both demonstrated to be protected against TNF-induced cell death. In contrast, due to tumor-specific overexpression of hexokinase II, which imposes a profound bypass on hepatocytic-specific fructose catabolism, this was not the case for human tumorous liver tissues.

Conclusion

Normal human liver tissues can be protected transiently against TNF-induced cell death by systemic pretreatment with fructose used in non-toxic/physiologic concentrations. Selective TNF-targeting of primary and secondary tumors of the liver by transient and specific depletion of hepatocytic ATP opens up a new clinical avenue for the TNF-based treatment of liver cancers.  相似文献   

4.

Background  

Eurycomanone is a cytotoxic compound found in Eurycoma longifolia Jack. Previous studies had noted the cytotoxic effect against various cancer cell lines. The aim of this study is to investigate the cytotoxicity against human hepato carcinoma cell in vitro and the mode of action. The cytotoxicity of eurycomanone was evaluated using MTT assay and the mode of cell death was detected by Hoechst 33258 nuclear staining and flow cytometry with Annexin-V/propidium iodide double staining. The protein expression Bax, Bcl-2, p53 and cytochrome C were studied by flow cytometry using a spesific antibody conjugated fluorescent dye to confirm the up-regulation of p53 and Bax in cancer cells.  相似文献   

5.

Background  

RBBP6 is a 250 kDa splicing-associated protein that has been identified as an E3 ligase due to the presence of a RING finger domain. In humans and mice it interacts with both p53 and Rb, and plays a role in the induction of apoptosis and regulation of the cell cycle. RBBP6 has recently been shown to be highly up-regulated in oesophageal cancer, and to be a promising target for immunotherapy against the disease.  相似文献   

6.
Uboldi AD  Savage N 《Cytokine》2002,19(5):250-258
Recent reports indicate that cAMP-elevating agents can protect against cell death induced by many stimuli, including tumour necrosis factor-alpha (TNF-alpha). We investigated the ability of cAMP-elevating agents to modulate TNF-alpha-mediated cytotoxicity in L929 cells. Using the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) reduction assay and a DNA fragmentation assay as indicators of cell survival, we have shown that forskolin confers partial protection against TNF-alpha-mediated cytotoxicity and inhibits TNF-alpha-induced internucleosomal DNA fragmentation in L929 cells. The protection conferred by forskolin is cAMP-independent since 1,9-dideoxyforskolin (an adenylate cyclase-inactive analog) also protected against TNF-alpha, while both dibutyryl-cAMP and the cAMP-phosphodiesterase inhibitor theophylline were not protective. This is the first example (that we know of) of cAMP-independent cytoprotection by forskolin. We conclude that forskolin acts in a cAMP-independent manner, potentially at a site upstream of caspase-3 activation, to protect against TNF-alpha-mediated cytotoxicity in L929 cells, and that cAMP elevation, in general, does not confer protection against TNF-alpha-induced death in L929 cells. In addition, we observed that Cyclosporin A, a mitochondrial permeability transition (MPT) inhibitor, protected L929 cells against TNF-alpha, underlining the importance of mitochondria in the cytotoxic process induced by TNF-alpha in L929 cells.  相似文献   

7.

Background  

Despite the great advances in the understanding of programmed cell death, little attention has been paid to the sequence of the events that characterise it. In particular, the course of apoptotic events induced by microtubule-interfering agents such as taxanes is poorly understood. In order to increase such knowledge, we studied a number of independent biochemical and cytological modifications using cytometric methods in a bladder cancer cell line treated with the second generation taxane, docetaxel.  相似文献   

8.
9.
Phenoxodiol is an isoflavone derivative that has been shown to elicit cytotoxic effects against a broad range of human cancers. We examined the effect of phenoxodiol on cell death pathways on the prostate cell lines LNCaP, DU145 and PC3, representative of different stages of prostate cancer, and its effects on cell death pathways in these cell lines. Cell proliferation assays demonstrated a significant reduction in the rate of cell proliferation after 48 h exposure to phenoxodiol (10 and 30 μM). FACS analysis and 3′-end labelling indicated that all three prostate cancer cell lines underwent substantial levels of cell death 48 h after treatment. Mitochondrial membrane depolarization, indicative of early-stage cell death signalling, using JC-1 detection, was also apparent in all cell lines after exposure to phenoxodiol in the absence of caspase-3 activation. Caspase inhibition assays indicated that phenoxodiol operates through a caspase-independent cell death pathway. These data demonstrate that phenoxodiol elicits anti-cancer effects in prostate cancer cell lines representative of early and later stages of development through an as-yet-unknown cell death mechanism. These data warrant the further investigation of phenoxodiol as a potential treatment for prostate cancer.  相似文献   

10.

Aims

Ardipusilloside I (ADS-I), a triterpenoid saponin isolated from Ardisia pusilla A.DC (Myrsinaceae), has been recently tested for cancer treatment including brain cancer. However, the mechanism of its action remains elusive. The present study was to investigate the role of autophagy activation in the anti-tumor activities of ADS-I in human glioma cells.

Main methods

The tetrazolium dye (MTT) colorimetric assay was used for the measurement of cell proliferation in cultured glioma cells, transmission electron microscopy (TEM) for the examination of autophagic activity, flow cytometric analysis for the determination of cell cycle and apoptotic cells, and immunocytochemistry and Western blot for protein expression of microtubule-associated protein light-chain 3 (LC3) and Beclin 1.

Key findings

ADS-I significantly inhibited the proliferation of both U373 and T98G glioma cells in cultures in a dose-dependent manner. The cytotoxic activity of ADS-I against glioma cell growth was associated not only with the induction of cell cycle arrest at G2/M phase and cell apoptosis in flow cytometric analysis, but also with the activation of autophagy, indicated by the formation of autophagosomes and up-regulated expression of both autophagic protein Beclin 1 and LC3 in glioma cells. Additionally, the treatment with chloroquine, an autophagy inhibitor, reduced ADS-1-mediated cell death.

Significance

These data suggest that the anti-proliferative activity of ADS-I in human glioma cells is associated with the activation of autophagy in addition to cell cycle arrest and apoptosis, and the antagonistic effect of chloroquine suggests an important role of autophagy in ADS-I-mediated cell death against tumor growth.  相似文献   

11.

Background

Cancer has continually been the leading cause of death worldwide for decades. Thus, scientists have actively devoted themselves to studying cancer therapeutics. Doxorubicin is an efficient drug used in cancer therapy, but also produces reactive oxygen species (ROS) that induce severe cytotoxicity against heart cells. Quercetin, a plant-derived flavonoid, has been proven to contain potent antioxidant and anti-inflammatory properties. Thus, this in vitro study investigated whether quercetin can decrease doxorubicin-induced cytotoxicity and promote cell repair systems in cardiomyocyte H9C2 cells.

Results

Proteomic analysis and a cell biology assay were performed to investigate the quercetin-induced responses. Our data demonstrated that quercetin treatment protects the cardiomyocytes in a doxorubicin-induced heart damage model. Quercetin significantly facilitated cell survival by inhibiting cell apoptosis and maintaining cell morphology by rearranging the cytoskeleton. Additionally, 2D-DIGE combined with MALDI-TOF MS analysis indicated that quercetin might stimulate cardiomyocytes to repair damage after treating doxorubicin by modulating metabolic activation, protein folding and cytoskeleton rearrangement.

Conclusion

Based on a review of the literature, this study is the first to report detailed protective mechanisms for the action of quercetin against doxorubicin-induced cardiomyocyte toxicity based on in-depth cell biology and proteomic analysis.  相似文献   

12.

Background

Xylopia aethiopica, a plant found throughout West Africa, has both nutritional and medicinal uses. The present study aims to characterize the effects of extracts of this plant on cancer cells.

Results

We report that X. aethiopica extract prepared with 70% ethanol has antiproliferative activity against a panel of cancer cell lines. The IC50 was estimated at 12 ??g/ml against HCT116 colon cancer cells, 7.5 ??g/ml and > 25 ??g/ml against U937 and KG1a leukemia cells, respectively. Upon fractionation of the extract by HPLC, the active fraction induced DNA damage, cell cycle arrest in G1 phase and apoptotic cell death. By using NMR and mass spectrometry, we determined the structure of the active natural product in the HPLC fraction as ent-15-oxokaur-16-en-19-oic acid.

Conclusion

The main cytotoxic and DNA-damaging compound in ethanolic extracts of Xylopia aethiopica is ent-15-oxokaur-16-en-19-oic acid.  相似文献   

13.

Background  

The voltage gated potassium (K+) channels Eag and HERG have been implicated in the pathogenesis of various cancers, through association with cell cycle changes and programmed cell death. The role of these channels in the onset and progression of ovarian cancer is unknown. An understanding of mechanism by which Eag and HERG channels affect cell proliferation in ovarian cancer cells is required and therefore we investigated their role in cell proliferation and their effect on the cell cycle and apoptosis of ovarian cancer cells.  相似文献   

14.

Background

The molecular chaperone Hsp90 is a promising new target in cancer therapy and selective Hsp90 inhibitors are currently in clinical trials. Previously these inhibitors have been reported to induce either cell cycle arrest or cell death in cancer cells. Whether the cell cycle arrest is reversible or irreversible has not generally been assessed. Here we have examined in detail the cell cycle arrest and cell death responses of human small cell lung cancer cell lines to Hsp90 inhibition.

Methodology/Principal Findings

In MTT assays, small cell lung cancer cells showed a biphasic response to the Hsp90 inhibitors geldanamycin and radicicol, with low concentrations causing proliferation arrest and high concentrations causing cell death. Assessment of Hsp90 intracellular activity using loss of client protein expression showed that geldanamycin concentrations that inhibited Hsp90 correlated closely with those causing proliferation arrest but not cell death. The proliferation arrest induced by low concentrations of geldanamycin was not reversed for a period of over thirty days following drug removal and showed features of senescence. Rare populations of variant small cell lung cancer cells could be isolated that had additional genetic alterations and no longer underwent irreversible proliferation arrest in response to Hsp90 inhibitors.

Conclusions/Significance

We conclude that: (1) Hsp90 inhibition primarily induces premature senescence, rather than cell death, in small cell lung cancer cells; (2) small cell lung cancer cells can bypass this senescence through further genetic alterations; (3) Hsp90 inhibitor-induced cell death in small cell lung cancer cells is due to inhibition of a target other than cytosolic Hsp90. These results have implications with regard to how these inhibitors will behave in clinical trials and for the design of future inhibitors in this class.  相似文献   

15.

Background

This study evaluated the cytotoxic activity of extracts from Caesalpinia sappan heartwood against multiple cancer cell lines using an MTT cell viability assay. The cell death though induction of apoptosis was as indicated by DNA fragmentation and caspase-3 enzyme activation.

Results

A methanol extract from C. sappan (MECS) showed cytotoxic activity against several of the cancer cell lines. The most potent activity exhibited by the MECS was against HeLa cells with an IC50 value of 26.5 ± 3.2 μg/mL. Treatment of HeLa cells with various MECS concentrations resulted in growth inhibition and induction of apoptosis, as indicated by DNA fragmentation and caspase-3 enzyme activation.

Conclusion

This study is the first report of the anticancer properties of the heartwood of C. sappan native to Vietnam. Our findings demonstrate that C. sappan heartwood may have beneficial applications in the field of anticancer drug discovery.  相似文献   

16.

Background  

The prototypical antiprogestin mifepristone exhibits potent growth inhibition activity towards ovarian cancer cells in vitro and in vivo. The aim of this research was to establish whether mifepristone is capable of inhibiting cell proliferation and inducing apoptotic cell death regardless of the degree of sensitivity ovarian cancer cells exhibit to cisplatin.  相似文献   

17.

Background

Otto Warburg observed that cancer cells are often characterized by intense glycolysis in the presence of oxygen and a concomitant decrease in mitochondrial respiration. Research has mainly focused on a possible connection between increased glycolysis and tumor development whereas decreased respiration has largely been left unattended. Therefore, a causal relation between decreased respiration and tumorigenesis has not been demonstrated.

Methodology/Principal Findings

For this purpose, colonies of Saccharomyces cerevisiae, which is suitable for manipulation of mitochondrial respiration and shows mitochondria-mediated cell death, were used as a model. Repression of respiration as well as ROS-scavenging via glutathione inhibited apoptosis and conferred a survival advantage during seeding and early development of this fast proliferating solid cell population. In contrast, enhancement of respiration triggered cell death.

Conclusion/Significance

Thus, the Warburg effect might directly contribute to the initiation of cancer formation - not only by enhanced glycolysis - but also via decreased respiration in the presence of oxygen, which suppresses apoptosis.  相似文献   

18.

Background  

Heat shock proteins (HSP) are induced during cellular stress. Their role is to chaperone cellular proteins giving protection from denaturation and ultimately preventing cell death. Monocytes are key cells involved in atherosclerosis and are highly responsive to HSP induction. Therefore, we wished to examine monocyte Hsp70 expression and induction in patients with peripheral arterial disease (PAD) and in healthy controls.  相似文献   

19.

Background  

Colorectal cancer is the third most-common cancer and the second most-common cause of cancer related death in UK. Although chemotherapy plays significant role in the treatment of colorectal cancer, morbidity and mortality due to drug resistance and cancer metastasis are yet to be eliminated. Recently, doxycycline has been reported to have cytotoxic and anti-proliferating properties in various cancer cells. In this study, whether doxycycline was apoptosis threshold lowering agent in colorectal cancer cells by targeting mitochondria was answered.  相似文献   

20.

Background

The incidence of cancer in patients with neurological diseases, who have been treated with LiCl, is below average. LiCl is a well-established inhibitor of Glycogen synthase kinase-3, a kinase that controls several cellular processes, among which is the degradation of the tumour suppressor protein p53. We therefore wondered whether LiCl induces p53-dependent cell death in cancer cell lines and experimental tumours.

Results

Here we show that LiCl induces apoptosis of tumour cells both in vitro and in vivo. Cell death was accompanied by cleavage of PARP and Caspases-3, -8 and -10. LiCl-induced cell death was not dependent on p53, but was augmented by its presence. Treatment of tumour cells with LiCl strongly increased TNF-α and FasL expression. Inhibition of TNF-α induction using siRNA or inhibition of FasL binding to its receptor by the Nok-1 antibody potently reduced LiCl-dependent cleavage of Caspase-3 and increased cell survival. Treatment of xenografted rats with LiCl strongly reduced tumour growth.

Conclusions

Induction of cell death by LiCl supports the notion that GSK-3 may represent a promising target for cancer therapy. LiCl-induced cell death is largely independent of p53 and mediated by the release of TNF-α and FasL. Key words: LiCl, TNF-α, FasL, apoptosis, GSK-3, FasL  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号