首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Succinic semialdehyde dehydrogenase (SSADH) is involved in the final degradation step of the inhibitory neurotransmitter γ‐aminobutyric acid by converting succinic semialdehyde to succinic acid in the mitochondrial matrix. SSADH deficiency, a rare autosomal recessive disease, exhibits variable clinical phenotypes, including psychomotor retardation, language delay, behaviour disturbance and convulsions. Here, we present crystal structures of both the oxidized and reduced forms of human SSADH. Interestingly, the structures show that the catalytic loop of the enzyme undergoes large structural changes depending on the redox status of the environment, which is mediated by a reversible disulphide bond formation between a catalytic Cys340 and an adjacent Cys342 residues located on the loop. Subsequent in vivo and in vitro studies reveal that the ‘dynamic catalytic loop’ confers a response to reactive oxygen species and changes in redox status, indicating that the redox‐switch modulation could be a physiological control mechanism of human SSADH. Structural basis for the substrate specificity of the enzyme and the impact of known missense point mutations associated with the disease pathogenesis are presented as well.  相似文献   

2.
Succinic semialdehyde dehydrogenase (SSADH) converts succinic semialdehyde (SSA) to succinic acid in the mitochondrial matrix and is involved in the metabolism of the inhibitory neurotransmitter γ‐aminobutyric acid (GABA). The molecular structure of human SSADH revealed the intrinsic regulatory mechanism—redox‐switch modulation—by which large conformational changes are brought about in the catalytic loop through disulfide bonding. The crystal structures revealed two SSADH conformations, and computational modeling of transformation between them can provide substantial insights into detailed dynamic redox modulation. On the basis of these two clear crystal structures, we modeled the conformational motion between these structures in silico. For that purpose, we proposed and used a geometry‐based coarse‐grained mathematical model of long‐range protein motion and the related modeling algorithm. The algorithm is based on solving the special optimization problem, which is similar to the classical Monge–Kantorovich mass transportation problem. The modeled transformation was supported by another morphing method based on a completely different framework. The result of the modeling facilitates better interpretation and understanding of the SSADH biological role. Proteins 2015; 83:2217–2229. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
The γ-Aminobutyric acid (GABA) that is found in prokaryotic and eukaryotic organisms has been used in various ways as a signaling molecule or a significant component generating metabolic energy under conditions of nutrient limitation or stress, through GABA catabolism. Succinic semialdehyde dehydrogenase (SSADH) catalyzes the oxidation of succinic semialdehyde to succinic acid in the final step of GABA catabolism. Here, we report the catalytic properties and two crystal structures of SSADH from Streptococcus pyogenes (SpSSADH) regarding its cofactor preference. Kinetic analysis showed that SpSSADH prefers NADP+ over NAD+ as a hydride acceptor. Moreover, the structures of SpSSADH were determined in an apo-form and in a binary complex with NADP+ at 1.6 Å and 2.1 Å resolutions, respectively. Both structures of SpSSADH showed dimeric conformation, containing a single cysteine residue in the catalytic loop of each subunit. Further structural analysis and sequence comparison of SpSSADH with other SSADHs revealed that Ser158 and Tyr188 in SpSSADH participate in the stabilization of the 2’-phosphate group of adenine-side ribose in NADP+. Our results provide structural insights into the cofactor preference of SpSSADH as the gram-positive bacterial SSADH.  相似文献   

4.

Background

In mammals succinic semialdehyde dehydrogenase (SSADH) plays an essential role in the metabolism of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) to succinic acid (SA). Deficiency of SSADH in humans results in elevated levels of GABA and γ-Hydroxybutyric acid (GHB), which leads to psychomotor retardation, muscular hypotonia, non-progressive ataxia and seizures. In Escherichia coli, two genetically distinct forms of SSADHs had been described that are essential for preventing accumulation of toxic levels of succinic semialdehyde (SSA) in cells.

Methodology/Principal Findings

Here we structurally characterise SSADH encoded by the E coli gabD gene by X-ray crystallographic studies and compare these data with the structure of human SSADH. In the E. coli SSADH structure, electron density for the complete NADP+ cofactor in the binding sites is clearly evident; these data in particular revealing how the nicotinamide ring of the cofactor is positioned in each active site.

Conclusions/Significance

Our structural data suggest that a deletion of three amino acids in E. coli SSADH permits this enzyme to use NADP+, whereas in contrast the human enzyme utilises NAD+. Furthermore, the structure of E. coli SSADH gives additional insight into human mutations that result in disease.  相似文献   

5.
Succinic semialdehyde dehydrogenase (SSADH) from cyanobacterium Synechococcus differs from other SSADHs in the γ-aminobutyrate shunt. Synechococcus SSADH (SySSADH) is a TCA cycle enzyme and completes a 2-oxoglutarate dehydrogenase-deficient cyanobacterial TCA cycle through a detour metabolic pathway. SySSADH produces succinate in an NADP+-dependent manner with a single cysteine acting as the catalytic residue in the catalytic loop. Crystal structures of SySSADH were determined in their apo form, as a binary complex with NADP+ and as a ternary complex with succinic semialdehyde and NADPH, providing details about the catalytic mechanism by revealing a covalent adduct of a cofactor with the catalytic cysteine in the binary complex and a proposed thiohemiacetal intermediate in the ternary complex. Further analyses showed that SySSADH is an oxidation-sensitive enzyme and that the formation of the NADP-cysteine adduct is a kinetically preferred event that protects the catalytic cysteine from H2O2-dependent oxidative stress. These structural and functional features of SySSADH provide a molecular basis for cofactor-dependent oxidation protection in 1-Cys SSADH, which is unique relative to other 2-Cys SSADHs employing a redox-dependent formation of a disulfide bridge.  相似文献   

6.
Ec DOS is a heme-based gas sensor enzyme that catalyzes conversion from cyclic-di-GMP to linear-di-GMP in response to gas molecules, such as oxygen, CO and NO. Ec DOS contains an N-terminal heme-binding PAS domain and C-terminal phosphodiesterase domain. Based on crystal structures of the isolated heme-binding domain, it is suggested that the FG loop is involved in intra-molecular signal transduction to the catalytic domain. We generated nine full-length proteins mutated at ionic and non-ionic polar residues between positions 83 and 96 corresponding to the F-helix and FG loop, and examined the heme binding properties, autoxidation rates, and catalytic activities of mutant proteins. N84A and R85A mutant proteins displayed lower heme binding affinities, consistent with the finding that Asn84 interacts with propionate of protoporphyrin IX, and Arg85 with Asp40 on the heme proximal side. Autoxidation rates (0.058-0.54 min−1) of R91A, S96A and K89A/R91A/E93A mutant proteins were significantly higher than that (0.0053 min−1) of wild-type protein, suggesting that these residues in the FG loop form heme distal architecture conferring stability to the Fe(II)-O2 complex. Catalytic activities of N84A and R85A mutant proteins with low heme affinity were significantly higher than those of wild-type protein in the absence of gas molecules. Accordingly, we propose that loss of heme binding enhances basal catalysis without the gas molecule, consistent with previous reports on heme inhibition of Ec DOS catalysis.  相似文献   

7.

Background

Fibrobacter succinogenes 1,3-1,4-β-d-glucanase (Fsβ-glucanase) is the only naturally occurring circularly permuted β-glucanase among bacterial glucanases with reverse protein domains. We characterized the functional and structural significance of residues 200–209 located in the domain B of Fsβ-glucanase, corresponding to the major surface loop in the domain A region of Bacillus licheniformis glucanase.

Methods

Rational design approaches including site-directed mutagenesis, initial-rate kinetics, and structural modeling analysis were used in this study.

Results

Our kinetic data showed that D202N and D206N exhibited a 1.8- and 1.5-fold increase but G207N, G207−, F205L, N208G and T204F showed a 7.0- to 2.2-fold decrease, in catalytic efficiency (kcat/KM) compared to the wild-type enzyme. The comparative energy ΔΔGb value in individual mutant enzymes was well correlated to their catalytic efficiency. D206R mutant enzyme exhibited the highest relative activity at 50 °C over 10 min, whereas K200F was the most heat-sensitive enzyme.

Conclusions

This study demonstrates that Phe205, Gly207, and Asn208 in the Type II turn of the connecting loop may play a role in the catalytic function of Fsβ-glucanase.

General significance

Residues 200–209 in Fsβ-glucanase resided at the similar structural topology to that of Bacillus enzyme were found to play some similar catalytic function in glucanase.  相似文献   

8.
A conserved structural module following the KMSKS catalytic loop exhibits α-α-β-α topology in class Ia and Ib aminoacyl-tRNA synthetases. However, the function of this domain has received little attention. Here, we describe the effect this module has on the aminoacylation and editing capacities of leucyl-tRNA synthetases (LeuRSs) by characterizing the key residues from various species. Mutation of highly conserved basic residues on the third α-helix of this domain impairs the affinity of LeuRS for the anticodon stem of tRNALeu, which decreases both aminoacylation and editing activities. Two glycine residues on this α-helix contribute to flexibility, leucine activation, and editing of LeuRS from Escherichia coli (EcLeuRS). Acidic residues on the β-strand enhance the editing activity of EcLeuRS and sense the size of the tRNALeu D-loop. Incorporation of these residues stimulates the tRNA-dependent editing activity of the chimeric minimalist enzyme Mycoplasma mobile LeuRS fused to the connective polypeptide 1 editing domain and leucine-specific domain from EcLeuRS. Together, these results reveal the stem contact-fold to be a functional as well as a structural linker between the catalytic site and the tRNA binding domain. Sequence comparison of the EcLeuRS stem contact-fold domain with editing-deficient enzymes suggests that key residues of this module have evolved an adaptive strategy to follow the editing functions of LeuRS.  相似文献   

9.
2-Cys peroxiredoxins (Prxs) are a large family of peroxidases, responsible for antioxidant function and regulation in cell signaling, apoptosis and differentiation. The Escherichia coli alkylhydroperoxide reductase (AhpR) is a prototype of the Prxs-family, and is composed of an NADH-dependent AhpF reductase (57 kDa) and AhpC (21 kDa), catalyzing the reduction of H2O2. We show that the E. coli AhpC (EcAhpC, 187 residues) forms a decameric ring structure under reduced and close to physiological conditions, composed of five catalytic dimers. Single particle analysis of cryo-electron micrographs of C-terminal truncated (EcAhpC1 -172 and EcAhpC1 -182) and mutated forms of EcAhpC reveals the loss of decamer formation, indicating the importance of the very C-terminus of AhpC in dimer to decamer transition. The crystallographic structures of the truncated EcAhpC1 -172 and EcAhpC1 -182 demonstrate for the first time that, in contrast to the reduced form, the very C-terminus of the oxidized EcAhpC is oriented away from the AhpC dimer interface and away from the catalytic redox-center, reflecting structural rearrangements during redox-modulation and -oligomerization. Furthermore, using an ensemble of different truncated and mutated EcAhpC protein constructs the importance of the very C-terminus in AhpC activity and in AhpC–AhpF assembly has been demonstrated.  相似文献   

10.
Erysimum is a genus of the Brassicaceae family closely related to the genus Arabidopsis. Several Erysimum species accumulate 5β-cardenolides. Progesterone 5β-reductases (P5βRs) first described in Digitalis species are thought to be involved in 5β-cardenolide biosynthesis. P5βRs belong to the dehydrogenase/reductase super-family of proteins. A full length cDNA clone encoding a P5βR was isolated from Erysimum crepidifolium leaves by 5′/3′ RACE-PCR (termed EcP5βR). Subsequently, the P5βR cDNAs of another nine Erysimum species were amplified by RT-PCR using 5′ and 3′ end primers deduced from the EcP5βR cDNA. The EcP5βR cDNA is 1170 bp long and encodes for 389 amino acids. The EcP5βR cDNA was ligated into the vector pQE 30 UA and the recombinant His-tagged protein (termed rEcP5βR) was over-expressed in Escherichia coli and purified by Ni-chelate affinity chromatography. Kinetic constants were determined for progesterone, 2-cyclohexen-1-one, isophorone, and NADPH. The by far highest specificity constant (kcat KM?1) was estimated for 2-cyclohexen-1-one indicating that this monocyclic enone may be more related to the natural substrate of the enzyme than progesterone. The atomic structure of rEcP5βR was modelled using the crystal structure of P5βR from Digitalis lanata 2V6G as the template. All sequence motifs specific for SDRs as well as the NFYYxxED motif typical for P5βR-like enzymes were present and the protein sequence fitted into the template smoothly.  相似文献   

11.
Mitochondrial respiratory chain complexes convert chemical energy into a membrane potential by connecting electron transport with charge separation. Electron transport relies on redox cofactors that occupy strategic positions in the complexes. How these redox cofactors are assembled into the complexes is not known. Cytochrome b, a central catalytic subunit of complex III, contains two heme bs. Here, we unravel the sequence of events in the mitochondrial inner membrane by which cytochrome b is hemylated. Heme incorporation occurs in a strict sequential process that involves interactions of the newly synthesized cytochrome b with assembly factors and structural complex III subunits. These interactions are functionally connected to cofactor acquisition that triggers the progression of cytochrome b through successive assembly intermediates. Failure to hemylate cytochrome b sequesters the Cbp3–Cbp6 complex in early assembly intermediates, thereby causing a reduction in cytochrome b synthesis via a feedback loop that senses hemylation of cytochrome b.  相似文献   

12.
Corynebacterium glutamicum that expresses an exogenous l-glutamate decarboxylase (GAD) gene can synthesize γ-aminobutyric acid (GABA). GABA is decomposed to succinic semialdehyde (SSA) by GABA transaminase (GABA-T) and to succinate thereafter by SSA dehydrogenase (SSADH). However, deletion of the gabT gene encoding GABA-T could not prevent GABA from decomposing at neutral pH. In this study, an additional transaminase gene, NCgl2515, was deleted in a gabT-deleted GAD strain, and GABA fermentation in this gabT NCgl2515-deleted GAD strain was investigated. GABA concentration remained at 22.5–24.0 g/L when pH was maintained at 7.5–8.0, demonstrating that GABA decomposition was reduced. Activity assay indicated that unlike GabT, which exhibits high GABA-T activity (1.34 ± 0.06 U/mg) and utilizes only α-ketoglutarate as amino acceptor, the purified NCgl2515 protein exhibits very low GABA-T activity (approximately 0.03 U/mg) only when coupled with the SSADH, GabD, but can utilize both α-ketoglutarate and pyruvate as amino acceptor. The optimum pH for coupled NCgl2515–GabD was 8.0, similar to that of GabT (7.8). Therefore, NCgl2515 has weak GABA-T activity and is involved in GABA decomposition in C. glutamicum. Deletion of gabT and NCgl2515 could effectively reduce GABA decomposition at neutral pH.  相似文献   

13.
Escherichia coli SSB (EcSSB) is a model single-stranded DNA (ssDNA) binding protein critical in genome maintenance. EcSSB forms homotetramers that wrap ssDNA in multiple conformations to facilitate DNA replication and repair. Here we measure the binding and wrapping of many EcSSB proteins to a single long ssDNA substrate held at fixed tensions. We show EcSSB binds in a biphasic manner, where initial wrapping events are followed by unwrapping events as ssDNA-bound protein density passes critical saturation and high free protein concentration increases the fraction of EcSSBs in less-wrapped conformations. By destabilizing EcSSB wrapping through increased substrate tension, decreased substrate length, and protein mutation, we also directly observe an unstable bound but unwrapped state in which ∼8 nucleotides of ssDNA are bound by a single domain, which could act as a transition state through which rapid reorganization of the EcSSB–ssDNA complex occurs. When ssDNA is over-saturated, stimulated dissociation rapidly removes excess EcSSB, leaving an array of stably-wrapped complexes. These results provide a mechanism through which otherwise stably bound and wrapped EcSSB tetramers are rapidly removed from ssDNA to allow for DNA maintenance and replication functions, while still fully protecting ssDNA over a wide range of protein concentrations.  相似文献   

14.
β-2 microglobulin (β2m) is an amyloidogenic protein involved in dialysis-related amyloidosis. We report here the study of the structural properties of the protein in solution and in the form of single crystals by Fourier transform infrared (FTIR) spectroscopy and microspectroscopy. The investigation has been extended to four β2m mutants previously characterized by x-ray crystallography: Asp53Pro, Asp59Pro, Trp60Gly, and Trp60Val. These variants displayed very similar three-dimensional structures but different thermal stability and aggregation propensity, investigated here by FTIR spectroscopy. For each variant, appreciable spectral differences were found between the protein in solution and in single crystals, consisting in a downshift of the main β-sheet band and in better resolved turn and loop bands, indicative of reduced protein secondary structure dynamics in the crystalline state. Notably, the well-resolved spectra of the β2m crystalline variants enabled us to identify structural differences induced by the single amino acid mutations. Such differences encompass turn and loop structures that might affect the stability and aggregation propensity of the investigated β2m variants. This study highlights the potential of FTIR microspectroscopy to acquire useful structural information on protein crystals, complementary to the crystallographic analyses.  相似文献   

15.
Adrenalectomy (ADX) has been useful for a good in vivo model for apoptosis in the hippocampus by the absence of corticosteroids following ADX. In some neurodegenerative diseases, GABAergic neurons are more resistant to neuronal damage as compared with glutamatergic neurons. In the present study, we observed chronological changes in three GABA degradation enzymes, e.g., GABA transaminase (GABA-T), succinic semialdehyde dehydrogenase (SSADH) and succinic semialdehyde reductase (SSAR) immunoreactivity and protein levels in the gerbil hippocampal CA1 region after ADX. Changes in their immunoreactivities were distinct in the stratum pyramidale of the CA1 region. GABA-T immunoreactivity and protein level were significantly increased in the CA1 region 3 h after ADX, in contrast, SSAR and SSADH immunoreactivity and protein level were increased 12 h and 3–12 h, respectively, after ADX. These results suggest that the increases of GABA-T, SSADH and SSAR immunoreactivity and protein levels in the hippocampal CA1 region in ADX gerbils may be associated with the control of GABA levels in this region.  相似文献   

16.
Penicillin acylases are industrially important enzymes for the production of 6‐APA, which is used extensively in the synthesis of secondary antibiotics. The enzyme translates into an inactive single chain precursor that subsequently gets processed by the removal of a spacer peptide connecting the chains of the mature active heterodimer. We have cloned the penicillin G acylase from Kluyvera citrophila (KcPGA) and prepared two mutants by site‐directed mutagenesis. Replacement of N‐terminal serine of the β‐subunit with cysteine (Serβ1Cys) resulted in a fully processed but inactive enzyme. The second mutant in which this serine is replaced by glycine (Serβ1Gly) remained in the unprocessed and inactive form. The crystals of both mutants belonged to space group P1 with four molecules in the asymmetric unit. The three‐dimensional structures of these mutants were refined at resolutions 2.8 and 2.5 Å, respectively. Comparison of these structures with similar structures of Escherichia coli PGA (EcPGA) revealed various conformational changes that lead to autocatalytic processing and consequent removal of the spacer peptide. The large displacements of residues such as Arg168 and Arg477 toward the N‐terminal cleavage site of the spacer peptide or the conformational changes of Arg145 and Phe146 near the active site in these structures suggested probable steps in the processing dynamics. A comparison between the structures of the processed Serβ1Cys mutant and that of the processed form of EcPGA showed conformational differences in residues Argα145, Pheα146, and Pheβ24 at the substrate binding pocket. Three conformational transitions of Argα145 and Pheα146 residues were seen when processed and unprocessed forms of KcPGA were compared with the substrate bound structure of EcPGA. Structure mediation in activity difference between KcPGA and EcPGA toward acyl homoserine lactone (AHL) is elucidated.  相似文献   

17.
Pyruvate oxidase from Escherichia coli (EcPOX) is a thiamin diphosphate- (ThDP) and FAD-dependent peripheral membrane protein that carries out the irreversible oxidative decarboxylation of pyruvate to acetate and carbon dioxide. Concomitant two-electron reduction of the flavin cofactor was suggested to induce a structural rearrangement of the C-terminus triggering recruitment of the protein from the cytosol to the cell membrane, where the electrons are eventually transferred to final electron acceptor ubiquinone 8. Binding to the membrane, or alternatively, mild proteolytic digestion leads to a multifold enhancement of both the catalytic activity and substrate affinity. Recent X-ray crystallographic studies on EcPOX in the resting state and on a C-terminal truncation variant mimicking the membrane-bound activated form have fueled our understanding of the membrane-binding mechanism and concomitant catalytic activation. In the resting state, the auto-inhibitory C-terminal membrane anchor adopts a half-barrel/helix fold that occludes the active site. Upon activation, the C-terminus is expelled and becomes structurally flexible thereby freeing the active site. Circular dichroism spectroscopic analysis revealed the isolated C-terminus to be disordered, however, formation of a helical structure was observed in the presence of micelles. Limited proteolysis experiments indicate that activation of EcPOX involves at least two sequential structural transitions: the first occurring after binding of pyruvate to ThDP and the second after two-electron reduction of the flavin.  相似文献   

18.
Prion diseases involve the conformational conversion of the cellular prion protein (PrPC) to its misfolded pathogenic form (PrPSc). To better understand the structural mechanism of this conversion, we performed extensive all-atom, explicit-solvent molecular-dynamics simulations for three structures of the wild-type human PrP (huPrP) at different pH values and temperatures. Residue 129 is polymorphic, being either Met or Val. Two of the three structures have Met in position 129 and the other has Val. Lowering the pH or raising the temperature induced large conformational changes of the C-terminal globular domain and increased exposure of its hydrophobic core. In some simulations, HA and its preceding S1-HA loop underwent large displacements. The C-terminus of HB was unstable and sometimes partially unfolded. Two hydrophobic residues, Phe-198 and Met-134, frequently became exposed to solvent. These conformational changes became more dramatic at lower pH or higher temperature. Furthermore, Tyr-169 and the S2-HB loop, or the X-loop, were different in the starting structures but converged to common conformations in the simulations for the Met-129, but not the Val-129, protein. α-Strands and β-strands formed in the initially unstructured N-terminus. α-Strand propensity in the N-terminus was different between the Met-129 and Val129 proteins, but β-strand propensity was similar. This study reveals detailed structural and dynamic properties of huPrP, providing insight into the mechanism of the conversion of PrPC to PrPSc.  相似文献   

19.
An elicitor derived from the cell wall of rice blast fungus (Magnaporthe grisea) causes cell death in suspension cultured cells of rice (Oryza sativa L.). To elucidate the role of M. grisea elicitor on metabolic pathway of rice cells, we performed metabolite profiling using capillary electrophoresis-mass spectrometry (CE/MS). Treatment with M. grisea elicitor increased the amounts of antioxidants and free amino acids and decreased the amount of metabolites in the tricarboxylic acid (TCA) cycle. Lower ATP concentration caused aberrant energy charge, concurrently with reduced amount of NAD(P)H in elicitor treated cells. Among free amino acids detected in this study, the level of gamma-aminobutyric acid (GABA) increased. GABA is metabolized through a bypass pathway of the TCA cycle called GABA shunt, which is composed of glutamate decarboxylase (GAD), GABA transaminase (GABA-T) and succinic semialdehyde dehydrogenase (SSADH). While M. grisea elicitor negligibly affected GAD and SSADH, GABA-T activity significantly decreased. The decrease in GABA-T activity was recovered by NADPH oxidase inhibitor, which prevents cell death induced by M. grisea elicitor. Thus, GABA accumulation observed in rice cells under elicitor stress is partly associated with GABA-T activity.Key words: metabolome, Magnaporthe grisea, capillary electrophoresis, mass spectrometry, gamma-aminobutyric acid, GABA transaminase, Oryza sativa  相似文献   

20.
5′-Methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidase (MTAN) plays a key role in the methionine-recycling pathway of bacteria and plants. Despite extensive structural and biochemical studies, the molecular mechanism of substrate specificity for MTAN remains an outstanding question. Bacterial MTANs show comparable efficiency in hydrolyzing MTA and SAH, while the plant enzymes select preferentially for MTA, with either no or significantly reduced activity towards SAH. Bacterial and plant MTANs show significant conservation in the overall structure, and the adenine- and ribose-binding sites. The observation of a more constricted 5′-alkylthio binding site in Arabidopsis thaliana AtMTAN1 and AtMTAN2, two plant MTAN homologues, led to the hypothesis that steric hindrance may play a role in substrate selection in plant MTANs. We show using isothermal titration calorimetry that SAH binds to both Escherichia coli MTAN (EcMTAN) and AtMTAN1 with comparable micromolar affinity. To understand why AtMTAN1 can bind but not hydrolyze SAH, we determined the structure of the protein–SAH complex at 2.2 Å resolution. The lack of catalytic activity appears to be related to the enzyme’s inability to bind the substrate in a catalytically competent manner. The role of dynamics in substrate selection was also examined by probing the amide proton exchange rates of EcMTAN and AtMTAN1 via deuterium–hydrogen exchange coupled mass spectrometry. These results correlate with the B factors of available structures and the thermodynamic parameters associated with substrate binding, and suggest a higher level of conformational flexibility in the active site of EcMTAN. Our results implicate dynamics as an important factor in substrate selection in MTAN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号