首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, we cloned two Na+-coupled lactate transporters from mouse kidney, a high-affinity transporter (SMCT1 or slc5a8) and a low-affinity transporter (SMCT2 or slc5a12). Here we report on the cloning and functional characterization of human SMCT2 (SLC5A12) and compare the immunolocalization patterns of slc5a12 and slc5a8 in mouse kidney. The human SMCT2 cDNA codes for a protein consisting of 618 amino acids. When expressed in mammalian cells or Xenopus oocytes, human SMCT2 mediates Na+-coupled transport of lactate, pyruvate and nicotinate. The affinities of the transporter for these substrates are lower than those reported for human SMCT1. Several non-steroidal anti-inflammatory drugs inhibit human SMCT2-mediated nicotinate transport, suggesting that NSAIDs interact with the transporter as they do with human SMCT1. Immunofluorescence microscopy of mouse kidney sections with an antibody specific for SMCT2 shows that the transporter is expressed predominantly in the cortex. Similar studies with an anti-SMCT1 antibody demonstrate that SMCT1 is also expressed mostly in the cortex. Dual-labeling of SMCT1 and SMCT2 with 4F2hc (CD98), a marker for basolateral membrane of proximal tubular cells in the S1 and S2 segments of the nephron, shows that both SMCT1 and SMCT2 are expressed in the apical membrane of the tubular cells. These studies also show that while SMCT2 is broadly expressed along the entire length of the proximal tubule (S1/S2/S3 segments), the expression of SMCT1 is mostly limited to the S3 segment. These studies suggest that the low-affinity transporter SMCT2 initiates lactate absorption in the early parts of the proximal tubule followed by the participation of the high-affinity transporter SMCT1 in the latter parts of the proximal tubule.  相似文献   

2.
3.
4.
Ultra-violet (UV) radiation causes oxidative injuries to human retinal pigment epithelium (RPE) cells. We tested the potential effect of keratinocyte growth factor (KGF) against the process. KGF receptor (KGFR) is expressed in ARPE-19?cells and primary human RPE cells. Pre-treatment with KGF inhibited UV-induced reactive oxygen species (ROS) production and RPE cell death. KGF activated nuclear-factor-E2-related factor 2 (Nrf2) signaling in RPE cells, causing Nrf2 Ser-40 phosphorylation, stabilization and nuclear translocation as well as expression of Nrf2-dependent genes (HO1, NOQ1 and GCLC). Nrf2 knockdown (by targeted shRNAs) or S40T mutation almost reversed KGF-induced RPE cell protection against UV. Further studies demonstrated that KGF activated KGFR-Akt-mTORC1 signaling to mediate downstream Nrf2 activation. KGFR shRNA or Akt-mTORC1 inhibition not only blocked KGF-induced Nrf2 Ser-40 phosphorylation and activation, but also nullified KGF-mediated RPE cell protection against UV. We conclude that KGF-KGFR activates Akt-mTORC1 downstream Nrf2 signaling to protect RPE cells from UV radiation.  相似文献   

5.
Glucagon-like peptide-1 receptor (GLP-1R) is closely associated with the onset of diabetes and its complications. However, its roles in diabetic retinopathy are unknown. Retinal pigment epithelial (RPE) cells are a crucial component of the outer blood–retina barrier and their death is related to the progression of diabetic retinopathy. Thus, we examined the pathophysiological role of GLP-1R in RPE cell apoptosis. We found that GLP-1R expression was lower in the isolated neuroretina and RPE cells of streptozotocin-treated rats than in vehicle-treated rats. High-glucose treatment also decreased GLP-1R expression in a human RPE cell line (ARPE-19 cells). GLP-1R was silenced in ARPE-19 cells, in order to elucidate the pathophysiological roles of GLP-1R. This increased intracellular reactive oxygen species (ROS) generation and activated p53-mediated Bax promoter and endoplasmic reticulum (ER) stress signaling. We also found that GLP-1R knockdown-mediated p53 expression was regulated by ER stress. Interestingly, antioxidant treatment and peroxiredoxin 1 (Prx1) overexpression attenuated GLP-1R knockdown-induced ER stress signaling and p53 expression. Finally, to confirm that GLP-1R activation has protective effects, ARPE-19 cells were treated with exendin-4, a synthetic GLP-1R agonist. This attenuated high-glucose-induced ROS generation, ER stress signaling, and p53 expression. Collectively, these results indicated that hyperglycemia decreases GLP-1R expression in RPE cells. Such a decrease generates intracellular ROS, which increases ER stress-mediated p53 expression, and subsequently causes apoptosis by increasing Bax promoter activity. Our data suggested that regulation of GLP-1R expression is a promising approach for the treatment of diabetic retinopathy.  相似文献   

6.
Recently, we cloned two Na(+)-coupled lactate transporters from mouse kidney, a high-affinity transporter (SMCT1 or slc5a8) and a low-affinity transporter (SMCT2 or slc5a12). Here we report on the cloning and functional characterization of human SMCT2 (SLC5A12) and compare the immunolocalization patterns of slc5a12 and slc5a8 in mouse kidney. The human SMCT2 cDNA codes for a protein consisting of 618 amino acids. When expressed in mammalian cells or Xenopus oocytes, human SMCT2 mediates Na(+) -coupled transport of lactate, pyruvate and nicotinate. The affinities of the transporter for these substrates are lower than those reported for human SMCT1. Several non-steroidal anti-inflammatory drugs inhibit human SMCT2-mediated nicotinate transport, suggesting that NSAIDs interact with the transporter as they do with human SMCT1. Immunofluorescence microscopy of mouse kidney sections with an antibody specific for SMCT2 shows that the transporter is expressed predominantly in the cortex. Similar studies with an anti-SMCT1 antibody demonstrate that SMCT1 is also expressed mostly in the cortex. Dual-labeling of SMCT1 and SMCT2 with 4F2hc (CD98), a marker for basolateral membrane of proximal tubular cells in the S1 and S2 segments of the nephron, shows that both SMCT1 and SMCT2 are expressed in the apical membrane of the tubular cells. These studies also show that while SMCT2 is broadly expressed along the entire length of the proximal tubule (S1/S2/S3 segments), the expression of SMCT1 is mostly limited to the S3 segment. These studies suggest that the low-affinity transporter SMCT2 initiates lactate absorption in the early parts of the proximal tubule followed by the participation of the high-affinity transporter SMCT1 in the latter parts of the proximal tubule.  相似文献   

7.
Members of the transforming growth factor beta (TGF-β) superfamily are multifunctional cytokines that regulate several cellular processes, including cell cycle arrest, differentiation, morphogenesis, and apoptosis. TGF-β promotes extracellular matrix production and morphological change. Morphogenetic responses to TGF-β include cell migration and epithelial–mesenchymal transition (EMT), which are critical during embryogenesis, development of fibrotic diseases, and the spreading of advanced carcinomas. The purpose of this study was to clarify how TGF-β regulates the fate of retinal pigment epithelial (RPE) cells. TGF-β1 promoted cell cycle progression and phosphorylation of retinoblastoma protein (Rb) in ARPE-19 cells. TGF-β1 induced survivin expression, which in turn stabilized tubulin and Aurora B. RT-PCR and western blot analysis revealed that survivin expression increased in ARPE-19 cells following TGF-β1 treatment. When survivin was depleted, TGF-β1 induced cell cycle arrest and apoptosis and also reduced Rb phosphorylation. In conclusion, the present study shows that induction of EMT in human RPE cells upregulates survivin, leading to survivin-dependent inhibition of cell cycle arrest and apoptosis. Whether cells undergo EMT or apoptosis in response to TGF-β1 is dependent on their cell cycle state, and TGF-β1 regulates the cell cycle via survivin.  相似文献   

8.
Veterinary treatment of livestock with diclofenac, a non-steroidal anti-inflammatory drug (NSAID), has caused catastrophic declines of Gyps vultures in Asia. This has highlighted a lack of knowledge on the potential impacts of NSAIDs on scavenging birds. Surveys of veterinarians and zoos document the outcomes of the treatment of over 870 scavenging birds from 79 species. As well as diclofenac, carprofen and flunixin were associated with mortality, with deaths observed in 13 and 30% of cases, respectively. Mortality was also found following treatment with ibuprofen and phenylbutazone. NSAID toxicity was reported for raptors, storks, cranes and owls, suggesting that the potential conservation impact of NSAIDs may extend beyond Gyps vultures and could be significant for New World vultures. In contrast, there were no reported mortalities for the NSAID meloxicam, which was administered to over 700 birds from 60 species. The relative safety of meloxicam supports other studies indicating the suitability of this NSAID to replace diclofenac in Asia.  相似文献   

9.
Three Gyps vulture species are on the brink of extinction in South Asia owing to the veterinary non-steroidal anti-inflammatory drug (NSAID) diclofenac. Carcasses of domesticated ungulates are the main food source for Asia''s vultures and birds die from kidney failure after consuming diclofenac-contaminated tissues. Here, we report on the safety testing of the NSAID ketoprofen, which was not reported to cause mortality in clinical treatment of scavenging birds and is rapidly eliminated from livestock tissues. Safety testing was undertaken using captive non-releasable Cape griffon vultures (Gyps coprotheres) and wild-caught African white-backed vultures (G. africanus), both previously identified as susceptible to diclofenac and suitable surrogates. Ketoprofen doses ranged from 0.5 to 5 mg kg−1 vulture body weight, based upon recommended veterinary guidelines and maximum levels of exposure for wild vultures (estimated as 1.54 mg kg−1). Doses were administered by oral gavage or through feeding tissues from cattle dosed with ketoprofen at 6 mg kg−1 cattle body weight, before slaughter. Mortalities occurred at dose levels of 1.5 and 5 mg kg−1 vulture body weight (within the range recommended for clinical treatment) with the same clinical signs as observed for diclofenac. Surveys of livestock carcasses in India indicate that toxic levels of residual ketoprofen are already present in vulture food supplies. Consequently, we strongly recommend that ketoprofen is not used for veterinary treatment of livestock in Asia and in other regions of the world where vultures access livestock carcasses. The only alternative to diclofenac that should be promoted as safe for vultures is the NSAID meloxicam.  相似文献   

10.
Complement factor H (CFH) is one of the most important soluble complement regulatory proteins and is closely associated with age-related macular degeneration (AMD), the leading cause of irreversible central vision loss in the elderly population in developed countries. Our study searches to investigate whether CFH expression is changed in oxidative damaged retinal pigment epithelium (RPE) cells and the role of CFH in the in vitro neovascularization. First, it was confirmed by immunofluorescence staining that CFH was expressed by ARPE-19 cells. CFH mRNA and protein in oxidative (H2O2) damaged ARPE-19 cells were both reduced, as determined by Real-time PCR and Western blotting analysis. Enzyme-linked immunosorbent assay (ELISA) also showed that ARPE-19 cells treated with H2O2 caused an increase in C3a content, which indicates complement activation. Then, wound assays were performed to show that CFH expression suppression promoted human umbilical vein endothelial cell (HUVECs) migration. Thereafter, ARPE-19 cells were transfected with CFH-specific siRNA and CFH knockdown was confirmed with the aid of Real-time PCR, immunofluorescence staining and Western blotting. The ELISA results showed that specific CFH knockdown in ARPE-19 cells activated the complement system. Finally, in vitro matrigel tube formation assay was performed to determine whether change of CFH expression in RPE would affect tube formation by HUVECs. More tubes were formed by HUVECs co-cultured with ARPE-19 cells transfected with CFH specific-siRNA when compared with controls. Our results suggested that RPE cells might be the local CFH source, and RPE cell injuries (such as oxidative stress) may cause CFH expression suppression, which in turn may lead to complement activation and promotion of tube formation by HUVECs. This finding is of importance in elucidating the role of complement in the pathogenesis of ocular neovascularization including choroidal neovascularization.  相似文献   

11.
12.
Retinyl esters represent an insoluble storage form of vitamin A and are substrates for the retinoid isomerase (Rpe65) in cells of the retinal pigment epithelium (RPE). The major retinyl-ester synthase in RPE cells is lecithin:retinol acyl-transferase (LRAT). A second palmitoyl coenzyme A-dependent retinyl-ester synthase activity has been observed in RPE homogenates but the protein responsible has not been identified. Here we show that diacylglycerol O-acyltransferase-1 (DGAT1) is expressed in multiple cells of the retina including RPE and Müller glial cells. DGAT1 catalyzes the synthesis of retinyl esters from multiple retinol isomers with similar catalytic efficiencies. Loss of DGAT1 in dgat1 -/- mice has no effect on retinal anatomy or the ultrastructure of photoreceptor outer-segments (OS) and RPE cells. Levels of visual chromophore in dgat1 -/- mice were also normal. However, the normal build-up of all-trans-retinyl esters (all-trans-RE’s) in the RPE during the first hour after a deep photobleach of visual pigments in the retina was not seen in dgat1 -/- mice. Further, total retinyl-ester synthase activity was reduced in both dgat1 -/- retina and RPE.  相似文献   

13.
In contrast to transport across basolateral membranes, the mechanism governing transport of organic anions across the luminal membranes of proximal tubules has remained unclear. We recently found Tetracycline transporter-like protein (TETRAN), a human ortholog of yeast Tpo1p that can transport anionic Non-steroidal anti-inflammatory drugs (NSAIDs). In this study, we examine the expression and function of TETRAN. TETRAN mRNA is expressed in various human tissues, including kidney. When overexpressed in cultured cells, TETRAN was predominantly localized on cytoplasmic membranes. Immunohistochemical analysis of human and mouse kidney tissue showed that TETRAN was expressed at the luminal membranes of proximal tubules. Overexpression of TETRAN in cultured cells facilitated the uptake of organic anions such as indomethacin (a NSAID) and fluorescein. The results suggest that TETRAN is a novel human organic anion transporter, and that it serves as a transporter for some NSAIDs and various other organic anions at the final excretion step.  相似文献   

14.
The non-steroidal anti-inflammatory drugs (NSAIDs) are widely used for analgesia but may inhibit bone formation. We investigated whether the reported NSAID effect on bone is related to inhibition of bone marrow mesenchymal stem cell (MSC) proliferation and osteogenic and chondrogenic differentiation and evaluated both cyclooxygenase (COX)-1 and COX-2 specific drugs. The effects of seven COX-1 and COX-2 inhibitors on MSC proliferation and osteogenic and chondrogenic differentiation were tested using Vybrant, sodium 3′-[1-(phenylaminocarbonyl)- 3,4-tetrazolium]-bis (4-methoxy-6-nitro) benzene sulfonic acid hydrate (XTT), functional and quantitative assays of MSC differentiation. The MSC expression of COX-1 and COX-2 and prostaglandin E2 (PGE-2) levels were evaluated serially during lineage differentiation by quantitative PCR and ELISA. None of the NSAIDs at broad range of concentration (range 10−3 to 100 μg/ml) significantly affected MSC proliferation. Surprisingly, MSC osteogenic differentiation inhibition was not evident. However, NSAIDs affected chondrogenic potential with a reduction in sulphated glycosaminoglycans (sGAG) content by 45% and 55% with diclofenac and ketorolac, respectively (P < 0.05 compared to controls). Parecoxib and meloxicam, more COX-2 specific reagents inhibited sGAG to a lesser degree, 22% and 27% respectively (P < 0.05 compared to controls). Cartilage pellet immunohistochemistry confirmed the above results. Pellet chondrogenesis was associated with increased COX-1 expression levels but not COX-2, and COX-1 specific drugs suppressed MSC PGE-2 more than COX-2 specific inhibitors. These findings suggest that NSAIDs may inhibit bone formation via blockage of MSC chondrogenic differentiation which is an important intermediate phase in normal endochondral bone formation.  相似文献   

15.
16.
Many nonsteroidal anti-inflammatory drugs (NSAIDs) which have antiproliferative activity in colon cancer cells are carboxylate compounds forming acyl glucuronide metabolites. Acyl glucuronides are potentially reactive, able to hydrolyse, rearrange into isomers, and covalently modify proteins under physiological conditions. This study investigated whether the acyl glucuronides (and isomers) of the carboxylate NSAIDs diflunisal, zomepirac and diclofenac had antiproliferative activity on human adenocarcinoma HT-29 cells in culture. Included as controls were the carboxylate NSAIDs themselves, the non-carboxylate NSAID piroxicam, and the carboxylate non-NSAID valproate, as well as its acyl glucuronide and isomers. The compounds were incubated at 1-3000 microM with HT-29 cells for 24 hr, with [3H]-thymidine added for an additional 2 hr incubation. IC50 values were calculated from the concentration-inhibition response curves for thymidine uptake. The four NSAIDs inhibited thymidine uptake, with IC50 values about 200-500 microM. All of the NSAID acyl glucuronides (and isomers, tested in the case of diflunisal) showed antiproliferative activity broadly comparable to the parent drugs. This activity may stem from direct uptake of intact glucuronide/isomers followed by covalent modification of proteins critical in the cell replication process. However, hydrolysis during incubation and cellular uptake of liberated parent NSAID will play a role. In HT-29 cells incubated with zomepirac, covalently modified proteins in cytosol were detected by immunoblotting with a zomepirac antibody, suggesting that HT-29 cells do have the capacity to glucuronidate zomepirac. The anti-epileptic drug valproate had no effect on inhibition of thymidine uptake, though, surprisingly, its acyl glucuronide and isomers were active. The reasons for this are unclear at present.  相似文献   

17.
Bone repair after trauma or surgical intervention involves a tightly regulated cascade of events that starts with hemostasis and an inflammatory response, which are critical for successful healing. Nonsteroidal anti-inflammatory drugs (NSAID) are routinely prescribed for pain relief despite their potential inhibitory effect on bone repair. The goal of this study was to determine the impact of administration of the non-selective NSAID diclofenac in the inflammatory phase of bone repair in mice with or without lipopolysaccharide-induced systemic inflammation. Repair of femoral window defects was characterized using micro computed tomography imaging and histological analyses at 2 weeks postoperative. The data indicate (a) impaired bone regeneration associated with reduced osteoblast, osteoclast, and macrophage activity; (b) changes in the number, activity, and distribution of mast cells in regenerating bone; and (c) impaired angiogenesis due to a direct toxic effect of diclofenac on vascular endothelial cells. The results of this study provide strong evidence to support the conjecture that administration of NSAIDs in the first 2 weeks after orthopaedic surgery disrupts the healing cascade and exacerbates the negative effects of systemic inflammation on the repair process.  相似文献   

18.
Family focal segmental glomerulosclerosis (FSGS) is characterized by sclerosis and hyalinosis of particular loops of glomeruli and is one of the causes of the nephrotic syndrome. Certain mutations in the structure of TRPC6 channels are the genetic impetus for FSGS development resulting in podocytes functional abnormalities and various nephropathies. We have recently demonstrated that non-steroid antiinflammatory drugs (NSAID) ibuprofen and diclofenac decrease the activity of endogenous TRPC-like calcium channels in the podocytes of the freshly isolated rat glomeruli. It has also been shown that TRPC6 channels are expressed in the podocytes. In the current study we have functionally reconstituted TRPC6 channels in mammalian cells to investigate the effects of diclofenac on the activity of wild type TRPC6 channel and TRPC6P112Q channel containing a mutation in the N-terminus that was described in FSGS patients. Intracellular calcium level measurements in transfected cells revealed a more intensive carbachol-induced increase of calcium concentration in HEK-293 cells expressing TRPC6P112Q versus the cells expressing wild-type TRPC6. We also performed patch-clamp experiments to study TRPC6 channels reconstituted in Chinese hamster ovary (CHO) cell line and found that application of diclofenac (500 μM) acutely reduced single channel activity. Preincubation with diclofenac (100 μM) also decreased the whole-cell current in CHO cells overexpressing TRPC6P112Q. Therefore, our previously published data on the effects of NSAID on TRPC-like channels in the isolated rat glomeruli, along with this current investigation on the cultured overexpressed mammalian cells, allows hypothesizing that TRPC6 channels may be a target for NSAID that can be important in the treatment of FSGS.  相似文献   

19.
This study aims to explore the effects of exosomes, secreted by retinal pigment epithelial (RPE) cells under oxidative stress (OS), on apoptosis and inflammation of normal RPE cells. Exosomes secreted by normal RPE cells (named as exo) and rotenone (2.5 µmol/L) stimulated RPE cells (named as rot-exo) were isolated and extracted by multi-step differential centrifugation for morphology observation under a transmission electron microscopy. pcDNA3.1a, pcDNA3.1a-Apaf1, and p3xFlag-CMV-caspase-9 plasmids were constructed and transfected into ARPE-19 cells. Exosomes secreted by ARPE-19 cells were injected into the vitreous body of rats to verify the effect of Apaf1 and caspase-9 on cell apoptosis and inflammation. Co-immunoprecipitation was applied to clarify the interaction of Apaf1 with caspase-9. Exosomes secreted by rotenone stimulated ARPE-19 cells could induce cell apoptosis, oxidative injury, and inflammation in ARPE-19 cells. Exosomes secreted under OS can damage retinal functions of rats and have upregulated expression of Apaf1. Overexpression of Apaf1 in exosomes secreted under OS can cause the inhibition of cell proliferation, the increase of cell apoptosis and elicitation of inflammatory response in ARPE-19 cells. Exosomes derived from ARPE-19 cells under OS regulate Apaf1 expression to increase cell apoptosis and to induce oxidative injury and inflammatory response through a caspase-9 apoptotic pathway.  相似文献   

20.
The integrity of the retinal pigment epithelial (RPE) cell is essential for the survival of rod and cone photoreceptor cells. Several stressors, including reactive oxygen species, trigger apoptotic damage in RPE cells preceded by an anti-inflammatory, pro-survival response, the formation of neuroprotectin D1 (NPD1), an oxygenation product derived from the essential omega-3 fatty acid family member docosahexaenoic acid. To define the ability of NPD1 and other endogenous novel lipid mediators in cell survival, we generated a stable knockdown human RPE (ARPE-19) cell line using short hairpin RNA to target 15-lipoxygenase-1. The 15-lipoxygenase-1-deficient cells exhibited 30% of the protein expression, and 15-lipoxygenase-2 remained unchanged, as compared with an ARPE-19 cell line control established using nonspecific short hairpin RNA transfected cells. NPD1 synthesis was stimulated by tumor necrosis factor α/H2O2-mediated oxidative stress in nonspecific cells (controls), whereas in silenced cells, negligible amounts of NPD1, 12(S)- and 15(S)-hydroxyeicosatetraenoic acid, and lipoxin A4 were found under these conditions. Neither control nor the deficient cells showed an increase in 15-lipoxygenase-1 protein content after 16 h of oxidative stress, suggesting that the increased activity of 15-lipoxygenase-1 is due to activation of pre-existing proteins. 15-Lipoxygenase-silenced cells also displayed an exacerbated sensitivity to oxidative stress-induced apoptosis when compared with the control cells. NPD1 selectively and potently rescued 15-lipoxygenase-silenced cells from oxidative stress-induced apoptosis. These results demonstrate that 15-lipoxygenase-1 is activated by oxidative stress in ARPE-19 cells and that NPD1 is part of an early survival signaling in RPE cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号