首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An excess of fat mass excess predisposes to multiple complications such as type 2 diabetes, cardiovascular diseases or cancer. A dysregulation of lipid metabolism contributes to the development of obesity and the metabolic syndrome. Recent data on lipid mobilization in adipose tissue have revealed a complex pathway involving a human specific hormonal control of lipolysis via the natriuretic peptides and a new triglyceride lipase, ATGL. Activation of fatty acid reesterification and oxidation can lead to an increase in fatty acid utilization. Targeting these key steps of lipid metabolism (adipose tissue lipolysis and fatty acid oxidation) constitutes a potential strategy for the treatment of obesity and associated metabolic disorders.  相似文献   

2.

Objective:

Dietary supplement may potentially help to fight obesity and other metabolic disorders such as insulin‐resistance and low‐grade inflammation. The present study aimed to test whether supplementation with Agaricus blazei murill (ABM) extract could have an effect on diet‐induced obesity in rats.

Design and Methods:

Wistar rats were fed with control diet (CD) or high‐fat diet (HF) and either with or without supplemented ABM for 20 weeks.

Results:

HF diet‐induced body weight gain and increased fat mass compared to CD. In addition HF‐fed rats developed hyperleptinemia and insulinemia as well as insulin resistance and glucose intolerance. In HF‐fed rats, visceral adipose tissue also expressed biomarkers of inflammation. ABM supplementation in HF rats had a protective effect against body weight gain and all study related disorders. This was not due to decreased food intake which remained significantly higher in HF rats whether supplemented with ABM or not compared to control. There was also no change in gut microbiota composition in HF supplemented with ABM. Interestingly, ABM supplementation induced an increase in both energy expenditure and locomotor activity which could partially explain its protective effect against diet‐induced obesity. In addition a decrease in pancreatic lipase activity is also observed in jejunum of ABM‐treated rats suggesting a decrease in lipid absorption.

Conclusions:

Taken together these data highlight a role for ABM to prevent body weight gain and related disorders in peripheral targets independently of effect in food intake in central nervous system.  相似文献   

3.
Adipocytokines - novel link between inflammation and vascular function?   总被引:20,自引:0,他引:20  
Obesity and obesity related diseases are a major public health problem. Recent studies have shown that fat tissue is not a simple energy storage organ, but exerts important endocrine and immune functions. These are achieved predominantly through release of adipocytokines, which include several novel and highly active molecules released abundantly by adipocytes like leptin, resistin, adiponectin or visfatin, as well as some more classical cytokines released possibly by inflammatory cells infiltrating fat, like TNF-alpha, IL-6, MCP-1 (CCL-2), IL-1. All of those molecules may act on immune cells leading to local and generalized inflammation and may also affect vascular (endothelial) function by modulating vascular nitric oxide and superoxide release and mediating obesity related vascular disorders (including hypertension, diabetes, atherosclerosis, and insulin resistance) but also cancer or non-alcoholic fatty liver diseases. Present review, in a concise form, focuses on the effects of major adipocytokines, characteristic for adipose tissue like leptin, adiponectin, resistin and visfatin on the immune system, particularly innate and adaptive immunity as well as on blood vessels. Macrophages and T cells are populating adipose tissue which develops into almost an organized immune organ. Activated T cells further migrate to blood vessels, kidney, brain and other organs surrounded by infiltrated fat leading to their damage, thus providing a link between metabolic syndrome, inflammation and cardiovascular and other associated disorders. Ceretain treatments may lead to significant changes in adipocytokine levels. For example include beta-2 adrenoreceptor agonists, thiazolidinediones as well as androgens lead to decrease of plasma leptin levels. Moreover future treatments of metabolic system associated disorders should focus on the regulation of adipocytokines and their modes of action.  相似文献   

4.
Fat cell accumulation in skeletal muscle is a major characteristic of various disorders, such as obesity, sarcopenia and dystrophies. Moreover, these fat cells could be involved in muscle homeostasis regulation as previously described for adipocytes in bone marrow. Despite recent advances on the topic, no clearly characterized mouse model is currently available to study fat accumulation within skeletal muscle. Here, we report a detailed characterization of a mouse model of skeletal muscle fat cell accumulation after degeneration induced by intra-muscular injection of glycerol. Information is provided on the kinetics of degeneration/fat deposition, including the quantity of fat deposited based on various parameters such as glycerol concentration, age, sex and strain of mice. Finally, these fat cells are characterized as true white adipocytes morphologically and molecularly. Our study shows that the mouse adipocyte accumulation within skeletal muscle after glycerol degeneration is a reproducible, transposable and easy model to use. This mouse model should allow a more comprehensive understanding of the impact of adipocyte accumulation in skeletal muscle pathophysiology.  相似文献   

5.
Monogenic disorders of obesity and body fat distribution.   总被引:2,自引:0,他引:2  
Recently, great progress has been made towards understanding the molecular basis of body fat regulation. Identification of mutations in several genes in spontaneous monogenic animal models of obesity and development of transgenic models have indicated the physiological roles of many genes in the regulation of body fat distribution. In humans, mutations in leptin, leptin receptor, prohormone convertase 1 (PC1), pro-opiomelanocortin (POMC), melanocortin 4-receptor (MC4-R), and peroxisome proliferator-activated receptor (PPAR) gamma2 genes have been described in patients with severe obesity. Most of these obesity disorders exhibit a distinct phenotype with varying degrees of hypothalamic and pituitary dysfunction and a recessive inheritance, whereas MC4-R mutation has a nonsyndromic phenotype with dominant inheritance. These mutations suggest the critical role of central signaling systems composed of leptin/leptin receptor and alpha-melanocyte stimulating hormone/MC4-R in human energy homeostasis. Although the genetic basis of monogenic disorders of body fat distribution, such as congenital generalized lipodystrophy and familial partial lipodystrophy, Dunnigan variety, is still unknown, the genes for these have recently been localized to chromosomes 9q34 and 1q21-22, respectively. The advances in our knowledge of the phenotypic manifestations and underlying molecular mechanisms of genetic body fat disorders may lead to better treatment and prevention of obesity and other disorders of adipose tissue in the future.  相似文献   

6.
Lipodystrophy: lessons in lipid and energy metabolism   总被引:4,自引:0,他引:4  
PURPOSE OF REVIEW: Lipodystrophies are rare inherited and acquired disorders characterized by the selective loss of adipose tissue. Despite marked phenotypic and genotypic heterogeneity, most lipodystrophic syndromes predispose to similar metabolic complications seen in patients with obesity, such as insulin resistance, diabetes mellitus, hepatic steatosis and dyslipidemia. The purpose of this review is to highlight the current understanding of the mechanisms underlying dyslipidemia in patients with lipodystrophies. RECENT FINDINGS: Marked hypertriglyceridemia and reduced levels of high-density lipoprotein cholesterol are commonly seen, and the severity of these metabolic abnormalities seems to be related to the extent of fat loss. The precise mechanisms by which the lack of adipose tissue causes hypertriglyceridemia remain unknown. Anecdotal kinetic studies in hyperglycemic patients with lipodystrophies have revealed accelerated lipolysis and increased free fatty acid turnover, which drives hepatic triglyceride and very low-density lipoprotein synthesis. Other mechanisms may also be involved in causing dyslipidemia and ectopic triglyceride accumulation in the liver and skeletal muscles that remain to be identified. SUMMARY: Understanding the pathophysiology of dyslipidemia in these rare disorders of lipodystrophies may offer insights into the normal role of adipocytes in maintaining metabolic homeostasis, and its disturbances in common forms of obesity.  相似文献   

7.
Worldwide obesity is a growing health problem, associated with increased risk of chronic disease. Understanding the molecular basis of adipogenesis and fat cell development in obesity is essential to identify new biomarkers and therapeutic targets for the development of anti-obesity drugs. microRNAs (miRNAs) appear to play regulatory roles in many biological processes associated with obesity, including adipocyte differentiation, insulin action and fat metabolism. Recent studies show miRNAs are dysregulated in obese adipose tissue. During adipogenesis miRNAs can accelerate or inhibit adipocyte differentiation and hence regulate fat cell development. In addition miRNAs may regulate adipogenic lineage commitment in multipotent stem cells and hence govern fat cell numbers. Recent findings suggest miR-519d may be associated with human obesity, but larger case-control studies are needed. Few miRNA targets have been experimentally validated in adipocytes but interestingly both miR-27 and miR-519d target PPAR family members, which are well established regulators of fat cell development. In this review recent advances in our understanding of the role of miRNAs in fat cell development and obesity are discussed. The potential of miRNA based therapeutics targeting obesity is highlighted as well as recommendations for future research which could lead to a breakthrough in the treatment of obesity.  相似文献   

8.
Besides adipocytes, specialized in lipid handling and involved in energy balance regulation, white adipose tissue (WAT) is mainly composed of other cell types among which lymphocytes represent a non-negligible proportion. Different types of lymphocytes (B, αβT, γδT, NK and NKT) have been detected in WAT of rodents or humans, and vary in their relative proportion according to the fat pad anatomical location. The lymphocytes found in intra-abdominal, visceral fat pads seem representative of innate immunity, while those present in subcutaneous fat depots are part of adaptive immunity, at least in mice. Both the number and the activity of the different lymphocyte classes, except B lymphocytes, are modified in obesity. Several of these modifications in the relative proportions of the lymphocyte classes depend on the degree of obesity, or on leptin concentration, or even fat depot anatomical location. Recent studies suggest that alterations of lymphocyte number and composition precede the macrophage increase and the enhanced inflammatory state of WAT found in obesity. Lymphocytes express receptors to adipokines while several proinflammatory chemokines are produced in WAT, rendering intricate crosstalk between fat and immune cells. However, the evidences and controversies available so far are in favour of an involvement of lymphocytes in the control of the number of other cells in WAT, either adipocytes or immune cells and of their secretory and metabolic activities. Therefore, immunotherapy deserves to be considered as a promising approach to treat the endocrino-metabolic disorders associated to excessive fat mass development.  相似文献   

9.
Several behavioral disorders, including attention deficit hyperactivity disorder (ADHD), bipolar disorder, and aggressive behaviors are linked with sugar intake and obesity. The reason(s) for this association has been unclear. Here we present a hypothesis supporting a role for fructose, a component of sugar and high fructose corn syrup (HFCS), and uric acid (a fructose metabolite), in increasing the risk for these behavioral disorders. Recent studies have shown that the reason fructose intake is strongly associated with development of metabolic syndrome is that fructose intake activates an evolutionary-based survival pathway that stimulates foraging behavior and the storage of energy as fat. While modest intake may aid animals that would like to store fat as a protective response from food shortage or starvation, we propose that high intake of sugar and HFCS causes a hyperactive foraging response that stimulates craving, impulsivity, risk taking and aggression that increases the risk for ADHD, bipolar disease and aggressive behavior. High glycemic carbohydrates and salty foods may also contribute as they can be converted to fructose in the body. Some studies suggest uric acid produced during fructose metabolism may mediate some of these effects. Chronic stimulation of the pathway could lead to desensitization of hedonic responses and induce depression. In conclusion, a hyperactive foraging response driven by high glycemic carbohydrates and sugars may contribute to affective disorders.  相似文献   

10.
杨曦  沈沭彤  郭军 《生命科学》2011,(5):459-464
FTO(fat mass and obesity associated)是肥胖症易感基因,表达于人体各组织,且在下丘脑中高表达。它能编码核酸去甲基化酶,通过去甲基化作用影响其他相关基因表达。FTO的基因多态性与体重指数(BMI)及肥胖症密切相关。FTO能够影响能量摄入及能量消耗,并通过多种途径诱导人群中肥胖症及2型糖尿病等相关疾病的发生,而FTO失活的小鼠能够避免肥胖发生。主要综述了FTO基因多态性与肥胖等疾病易感性的相关性、FTO可能的作用机制和FTO对人群中能量平衡的影响。  相似文献   

11.
During evolution, the ability to overeat and store the extra energy as glycogen and lipids in specialized tissues must have conferred a reproductive advantage by releasing animals from the need to eat constantly, enabling them to engage in behaviors that improved reproductive success. Mechanisms that inhibited ingestive behavior might have been most adaptive when they caused individuals to stop foraging, hoarding and eating in order to find and court potential mates. Conversely, the ability to abstain from reproductive activities to engage in foraging and eating was probably critical for individual survival during severe energetic challenges because reproductive processes are energetically costly and can be delayed until the energetic conditions improve. The mechanisms that control ingestive behavior most likely evolved under conditions in which both food and mates were available, and thus, our understanding might be limited by our narrow focus on food intake in animals isolated from potential mates, and reproductive behaviors in the absence of food. Our understanding of obesity and eating disorders will be enriched by the study of the choice between ingestive and reproductive behaviors and by a renewed attention to "reproductive" hormones such as gonadal steroids and hypothalamic releasing hormones. Furthermore, leptin and reproductive hormones have both organizational and activational effects on the energy balancing system including those mechanisms that control appetite, body fat content and body fat distribution. Understanding these organizational and activational effects on body fat distribution might lead to a better understanding of sex differences in the propensity to develop obesity, type II diabetes and eating disorders.  相似文献   

12.
Genetic polymorphisms in the fat mass and obesity-associated (FTO) gene have been strongly associated with obesity in humans. The cellular level of FTO is tightly regulated, with alterations in its expression influencing energy metabolism, food intake and body weight. Although the proteasome system is involved, the cellular mechanism underlying FTO protein turnover remains unknown. Here, we report that FTO undergoes post-translational ubiquitination on Lys-216. Knock-in HeLa cells harboring the ubiquitin-deficient K216R mutation displayed a slower rate of FTO turnover, resulting in an increase in the level of FTO as well as enhanced phosphorylation of the ribosomal S6 kinase. Surprisingly, we also found that K216R mutation reduced the level of nuclear FTO and completely abolished the nuclear translocation of FTO in response to amino acid starvation. Collectively, our results reveal the functional importance of ubiquitination in controlling FTO expression and localization, which may be crucial for determining body mass and composition.  相似文献   

13.
Immune cells are bioenergetically expensive during activation, which requires tightly regulated control of metabolic pathways. Both low and high glycemic conditions can modulate immune function. States of undernourishment depress the immune system, and in the same way, excessive intake of nutrients, such as an obesity state, compromise its functioning. Multicellular organisms depend on two mechanisms to survive: the regulation and ability to store energy to prevent starvation and the ability to fight against infection. Synergic interactions between metabolism and immunity affect many systems underpinning human health. In a chronic way, the breakdown of glycemic homeostasis in the body can influence cells of the immune system and consequently contribute to the onset of diseases such as type II diabetes, obesity, Alzheimer's, and fat and lean mass loss. On the contrary, exercise, recognized as a primary strategy to control hyperglycemic disorders, also induces a coordinated immune-neuro-endocrine response that acutely modulates cardiovascular, respiratory, and muscle functions and the immune response to exercise is widely dependent on the intensity and volume that may affect an immunodepressive state. These altered immune responses induced by exercise are modulated through the “stress hormones” adrenaline and cortisol, which are a threat to leukocyte metabolism. In this context, carbohydrates appear to have a positive acute response as a strategy to prevent depression of the immune system by maintaining plasma glucose concentrations to meet the energy demand from all systems involved during strenuous exercises. Therefore, herein, we discuss the mechanisms through which exercise may promotes changes on glycemic homeostasis in the metabolism and how it affects immune cell functions under higher or lower glucose conditions.  相似文献   

14.
Monocyte chemotactic protein-1 and its role in insulin resistance   总被引:2,自引:0,他引:2  
PURPOSE OF REVIEW: In obesity, there is a strong link between increased adipose tissue mass and development of insulin resistance in tissues such as liver and muscle. Under these conditions, adipose tissue synthesizes various pro-inflammatory chemokines such as monocyte chemotactic protein-1. This review provides a summary of recent knowledge on the role of monocyte chemotactic protein-1 in adipose tissue inflammation and insulin resistance. RECENT FINDINGS: Monocyte chemotactic protein-1 is a proinflammatory adipokine that is believed to play a role in the pathogenesis of obesity and diabetes. New in-vitro data demonstrate that monocyte chemotactic protein-1 has the ability to induce insulin resistance in adipocytes and skeletal muscle cells. By using mice that either overexpress monocyte chemotactic protein-1 or are deficient in monocyte chemotactic protein-1 or its receptor, exciting new insights have been obtained into the role of monocyte chemotactic protein-1 in adipose tissue inflammation and insulin resistance. SUMMARY: Monocyte chemotactic protein-1 is an adipokine with insulin-resistance-inducing capacity that is related to increased adipose tissue mass in obesity and insulin resistance. It plays an important role in adipose tissue inflammation by recruiting macrophages into fat. Monocyte chemotactic protein-1 is thus a therapeutic target, and may represent an important factor linking adipose tissue inflammation, obesity and type 2 diabetes.  相似文献   

15.
Mature white fat tissue consists primarily of unilocular fat cells. Clearly, the study of the biology of these cells would be most helpful for the elucidation of the mechanism of obesity. We describe a new method termed 'ceiling culture' for culturing in vitro unilocular fat cells obtained from humans and rats. These cells can be maintained in culture for long periods of time and, under such conditions, continue to exhibit specific functions such as lipogenesis and lipolysis. Under the culture conditions described, unilocular fat cells change into multilocular fat cells or cells with a fibroblast-like appearance. These cells then proliferate, form a cell monolayer attached to the substratum, and after becoming confluent, exhibit accumulations of intracytoplasmic lipid droplets. These attached dedifferentiated cells continue to exhibit lipogenesis and lipolysis.  相似文献   

16.
Anorexia nervosa is a chronic illness that involves a reduction in caloric intake, loss of weight and amenorrhoea, either primary or secondary. In addition to prolonged amenorrhoea, osteopenia and osteoporosis are the most frequent complications. Patients exhibit an alteration in the hypothalamic-pituitary-gonadal axis, which is responsible for the menstrual disorders. The increase in gonadotrophin secretion that can be observed after ponderal recuperation suggests that malnutrition could be the most important mechanism involved in the decrease in gonadotrophin secretion. The loss of fat tissue, as a consequence of the restriction of nutrients, has been associated with hypoleptinaemia, abnormal secretion of peptides implicated in food control (neuropeptide Y, melanocortins and corticotrophin-releasing hormone, among others) and diminution of the amount of total body fat. Despite oestrogen therapy, the severe loss of bone mass may progress. Other factors such as weight loss, duration of amenorrhoea and low insulin-like growth factor-I (IGF-I) levels could contribute to the loss of bone mass in women with anorexia nervosa. The recuperation of weight and, in particular, the amount of total body fat could lead to the spontaneous recuperation of menstruation.  相似文献   

17.
Adipose tissue grows by two mechanisms: hyperplasia (cell number increase) and hypertrophy (cell size increase). Genetics and diet affect the relative contributions of these two mechanisms to the growth of adipose tissue in obesity. In this study, the size distributions of epididymal adipose cells from two mouse strains, obesity-resistant FVB/N and obesity-prone C57BL/6, were measured after 2, 4, and 12 weeks under regular and high-fat feeding conditions. The total cell number in the epididymal fat pad was estimated from the fat pad mass and the normalized cell-size distribution. The cell number and volume-weighted mean cell size increase as a function of fat pad mass. To address adipose tissue growth precisely, we developed a mathematical model describing the evolution of the adipose cell-size distributions as a function of the increasing fat pad mass, instead of the increasing chronological time. Our model describes the recruitment of new adipose cells and their subsequent development in different strains, and with different diet regimens, with common mechanisms, but with diet- and genetics-dependent model parameters. Compared to the FVB/N strain, the C57BL/6 strain has greater recruitment of small adipose cells. Hyperplasia is enhanced by high-fat diet in a strain-dependent way, suggesting a synergistic interaction between genetics and diet. Moreover, high-fat feeding increases the rate of adipose cell size growth, independent of strain, reflecting the increase in calories requiring storage. Additionally, high-fat diet leads to a dramatic spreading of the size distribution of adipose cells in both strains; this implies an increase in size fluctuations of adipose cells through lipid turnover.  相似文献   

18.

Background

Cigarette smoking and obesity are leading public health concerns. Both increase the risk for cardiovascular disease, cancer, and metabolic abnormalities. This study was conducted to assess the association between cigarette smoking and different types of obesity.

Methodology/Principal Findings

Two hundred eighty-three visitors to university hospitals located in four main provinces of South Korea were participated. All participants were classified as either current/past or never smokers and were divided into quartiles according to the total pack-years. Body mass index, waist circumference, total body fat percentage, and area of visceral and abdominal subcutaneous fat were measured. These results of each groups were compared. Waist circumference, and visceral fat area showed a J- or U-shaped association with total smoking amount during a lifetime. After restricting the analyses to past/current smokers, we found significant dose-dependent associations of smoking pack-years with abdominal and visceral obesity. Overall obesity measured by body mass index and total body fat percentage did not show such associations. Although current smokers clearly showed significant associations, we could not demonstrate these in past smokers, possibly because of the limited sample size.

Conclusions/Significance

Although smokers did not show significant difference in mean body mass index than those who never smoked, they showed more metabolically adverse fat distributions with increasing smoking amounts. This finding suggests that smoking is not beneficial for weight control. Therefore, smoking cessation and avoidance of smoking commencement should be addressed as important public health issues in preventing obesity and related complications.  相似文献   

19.
The beta3-adrenergic receptor (beta3-AR) may play a key role in the regulation of lipid metabolism and glucose homeostasis. Adrenaline and noradrenaline beta3-AR stimulate lipolysis and thermogenesis in human fat cells and increase glucose uptake in skeletal muscle. Therefore, the beta3-AR gene may be associated with obesity and related diseases, such as type 2 diabetes, coronary heart disease and hypertension. Many studies in different ethnic groups showed an association of beta3-AR gene polymorphism with insulin resistance, obesity and its metabolic disorders such as type 2 diabetes, coronary heart disease and hypertension. A Trp64Arg mutation in the beta3-AR gene has been reported to be correlated with the occurrence of those disorders among obese. Several studies revealed also the influence of the Trp/Arg polymorphism on carcinogenesis and its contribution to the link between cancer and obesity. Since obesity is a serious problem as a civilization-related disease, it is very important to investigate genes suspected to be connected with it.  相似文献   

20.
β‐Aminoisobutyric acid (BAIBA), a thymine catabolite, increases fatty acid oxidation (FAO) in liver and reduces the gain of body fat mass in Swiss (lean) mice fed a standard chow. We determined whether BAIBA could prevent obesity and related metabolic disorders in different murine models. To this end, BAIBA (100 or 500 mg/kg/day) was administered for 4 months in mice totally deficient in leptin (ob/ob). BAIBA (100 mg/kg/day) was also given for 4 months in wild‐type (+/+) mice and mice partially deficient in leptin (ob/+) fed a high‐calorie (HC) diet. BAIBA did not limit obesity and hepatic steatosis in ob/ob mice, but reduced liver cytolysis and inflammation. In ob/+ mice fed the HC diet, BAIBA fully prevented, or limited, the gain of body fat, steatosis and necroinflammation, glucose intolerance, and hypertriglyceridemia. Plasma β‐hydroxybutyrate was increased, whereas expression of carnitine palmitoyltransferase‐1 was augmented in liver and white adipose tissue. Acetyl‐CoA carboxylase was more phosphorylated, and de novo lipogenesis was less induced in liver. These favorable effects of BAIBA in ob/+ mice were associated with a restoration of plasma leptin levels. The reduction of body adiposity afforded by BAIBA was less marked in +/+ mice. Finally, BAIBA significantly stimulated the secretion of leptin in isolated ob/+ adipose cells, but not in +/+ cells. Thus, BAIBA could limit triglyceride accretion in tissues through a leptin‐dependent stimulation of FAO. As partial leptin deficiency is not uncommon in the general population, supplementation with BAIBA may help to prevent diet‐induced obesity and related metabolic disorders in low leptin secretors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号