首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
p120-Catenin is known to play important roles in cell-cell adhesion stability by binding to cadherin and morphological changes of cells by regulating small RhoGTPase activities. Although the expression and binding states of p120-catenin are thought to dynamically change due to morphological adaptation of endothelial cells (ECs) to fluid shear stress, these dynamics remain to be explored. In the present study, we examined the time course of changes in p120-catenin expression and its binding to vascular endothelial (VE)-cadherin in ECs exposed to shear stress. Human umbilical vein ECs began to change their morphologies at 3-6 h, and became elongated and oriented to the direction of flow at 24 h after exposure to a shear stress of 1.5 Pa. Binding and co-localization of p120-catenin with VE-cadherin at the foci of cell-cell adhesions were retained in ECs during exposure to shear stress, indicating that VE-cadherin was stabilized in the plasma membrane. In contrast, cytoplasmic p120-catenin that was dissociated from VE-cadherin was transiently increased at 3-6 h after the flow onset. These results suggest that the transient increase of cytoplasmic p120-catenin may stimulate RhoGTPase activities and act as a switch for the morphological changes in ECs in response to shear stress.  相似文献   

2.
Functional and morphological responses of endothelial cells (ECs) to fluid shear stress are thought to be mediated by several mechanosensitive molecules. However, how the force due to fluid shear stress applied to the apical surface of ECs is transmitted to the mechanosensors is poorly understood. In the present paper, we performed an analysis of an intracellular mechanical field by observation of the deformation behaviors of living ECs exposed to shear stress with a novel experimental method. Lateral images of human umbilical vein ECs before and after the onset of flow were obtained by confocal microscopy, and image correlation and finite element analysis were performed for quantitative analyses of subcellular strain due to shear stress. The shear strain of the cells changed from 1.06 ± 1.09% (mean ± SD) to 4.67 ± 1.79% as the magnitude of the shear stress increased from 2 to 10 Pa. The nuclei of ECs also exhibited shear deformation, which was similar to that observed in cytoplasm, suggesting that nuclei transmit forces from apical to intracellular components, as well as cytoskeletons. The obtained strain-stress relation resulted in a mean shear modulus of 213 Pa for adherent ECs. These results provide a mechanical perspective on the investigation of flow-sensing mechanisms of ECs.  相似文献   

3.
Summary— To analytically study the morphological responses of vascular endothelial cells (ECs) to fluid flow, we designed a parallel plate flow culture chamber in which cells were cultured under fluid shear stress ranging from 0.01 to 2.0 Pa for several days. Via a viewing window of the chamber, EC responses to known levels of fluid shear stress were monitored either by direct observations or by a video-enhanced time-lapse microscopy. Among the responses of cultured ECs to flow, morphological responses take from hours to days to be fully expressed, except for the fluid shear stress-dependent motility pattern change we reported earlier which could be detected within 30 min of flow changes. We report here that ECs exposed to more than 1.0 Pa of fluid shear shear stress have developed lamellipodia in the direction of flow in 10 min. This is the fastest structurally identifiable EC response to fluid shear stress. This was a reversible response. When the flow was stopped or reduced to the level which exerted less than 0.1 Pa of fluid shear stress, the biased lamellipodium development was lost within several minutes. The microtubule organizing center was located posterior to the nucleus in ECs under the influence of flow. However, this position was established only in ECs responding to fluid shear stress for longer than 1 h, indicating that positioning of the microtubule organizing center was not the reason for, but rather the result of, the biased lamellipodium response. Colcemid-treated ECs responded normally to flow, indicating that microtubules were not involved in both flow sensing and the flow-induced, biased lamellipodium development.  相似文献   

4.
Endothelial cells (ECs) respond to fluid shear stress. They reveal shear stress related morphological changes in both their cell shape and cytoskeletal organization. Little is known about the cytoskeletal organization of ECs in situ. We studied, together with the living ultrasound high resolution imaging system, the distribution of stress fibers (SFs), certain focal adhesion (FA) and signal transduction associated proteins in guinea pig aortic and venous ECs. Although SFs present in the basal portion of venous ECs ran along the direction of the blood flow, their size was smaller and their number was fewer than those of aortic ECs. Venous ECs were elongated to the direction of flow than in aortic ECs exposed over normal shear stress (SS). Since fluid SS in the vein is low, a sustained and uni-directional low SS over a long period might thus cause these structural features observed in venous ECs.  相似文献   

5.
6.
Early atherosclerotic lesions localize preferentially, in arterial regions exposed to low flow, oscillatory flow, or both; however, the cellular basis of this observation remains to be determined. Atherogenesis involves dysfunction of the vascular endothelium, the cellular monolayer lining the inner surfaces of blood vessels. How low flow, oscillatory flow, or both may lead to endothelial dysfunction remains unknown. Over the past two decades, fluid mechanical shear (or frictional) stress has been shown to intricately regulate the structure and function of vascular endothelial cells (ECs). Furthermore, recent data indicate that beyond being merely responsive to shear stress, ECs are able to distinguish among and respond differently to different types of shear stress. This review focuses on EC differential responses to different types of steady and unsteady shear stress and discusses the implications of these responses for the localization of early atherosclerotic lesions. The mechanisms by which endothelial differential responsiveness to different types of flow may occur are also discussed.  相似文献   

7.
To explore mechanisms of diabetes-associated vascular endothelial cells (ECs) injury, human umbilical vein ECs were treated for 24 h with high glucose (HG; 26 mM), advanced glycation end-products (AGEs; 100 μg/ml) or their intermediate, glyoxal (GO: 50-5000 μM). HG and AGEs had no effects on ECs morphology and inflammatory states as measured by vascular cell adhesion molecule (VCAM)-1 and cyclooxygenase (COX)-2 expressions. GO (500 μM, 24 h) induced cytotoxic morphological changes and protein expression of COX-2 but not VCAM-1. GO (500 μM, 24 h) activated ERK but not JNK, p38 or NF-κB. However, ERK inhibitor PD98059 was ineffective to GO-induced COX-2. While EUK134, synthetic combined superoxide dismutase/catalase mimetic, had no effect on GO-mediated inflammation, sodium nitroprusside inhibited it. The present results indicate that glyoxal, a metabolite of glucose might be a more powerful inducer for vascular ECs inflammatory injury. Nitric oxide but not anti-oxidant is preventive against GO-mediated inflammatory injury.  相似文献   

8.
Vascular endothelial cells (ECs) are continuously exposed to shear stress (SS) generated by blood flow. Such stress plays a key role in regulation of various aspects of EC function including cell proliferation and motility as well as changes in cell morphology. Vascular endothelial-protein-tyrosine phosphatase (VE-PTP) is an R3-subtype PTP that possesses multiple fibronectin type III-like domains in its extracellular region and is expressed specifically in ECs. The role of VE-PTP in EC responses to SS has remained unknown, however. Here we show that VE-PTP is diffusely localized in ECs maintained under static culture conditions, whereas it undergoes rapid accumulation at the downstream edge of the cells relative to the direction of flow in response to SS. This redistribution of VE-PTP triggered by SS was found to require its extracellular and transmembrane regions and was promoted by integrin engagement of extracellular matrix ligands. Inhibition of actin polymerization or of Cdc42, Rab5, or Arf6 activities attenuated the SS-induced redistribution of VE-PTP. VE-PTP also underwent endocytosis in the static and SS conditions. SS induced the polarized distribution of internalized VE-PTP. Such an effect was promoted by integrin engagement of fibronectin but prevented by inhibition of Cdc42 activity or of actin polymerization. In addition, depletion of VE-PTP by RNA interference in human umbilical vein ECs blocked cell elongation in the direction of flow induced by SS. Our results suggest that the polarized redistribution of VE-PTP in response to SS plays an important role in the regulation of EC function by blood flow.  相似文献   

9.
Fluid shear stress (FSS) acting on the apical surface of endothelial cells (ECs) can be sensed by mechano-sensors in adhesive protein complexes found in focal adhesions and intercellular junctions. This sensing occurs via force transmission through cytoskeletal networks. This study quantitatively evaluated the force transmitted through cytoskeletons to the mechano-sensors by measuring the FSS-induced strain on SFs using live-cell imaging for actin stress fibers (SFs). FSS-induced bending of SFs caused the SFs to align perpendicular to the direction of the flow. In addition, the displacement vectors of the SFs were detected using image correlation and the FSS-induced axial strain of the SFs was calculated. The results indicated that FSS-induced strain on SFs spanned the range 0.01-0.1% at FSSs ranging from 2 to 10 Pa. Together with the tensile property of SFs reported in a previous study, the force exerted on SFs was estimated to range from several to several tens of pN.  相似文献   

10.
Shear stress stimulus is expected to enhance angiogenesis, the formation of microvessels. We determined the effect of shear stress stimulus on three-dimensional microvessel formation in vitro. Bovine pulmonary microvascular endothelial cells were seeded onto collagen gels with basic fibroblast growth factor to make a microvessel formation model. We observed this model in detail using phase-contrast microscopy, confocal laser scanning microscopy, and electron microscopy. The results show that cells invaded the collagen gel and reconstructed the tubular structures, containing a clearly defined lumen consisting of multiple cells. The model was placed in a parallel-plate flow chamber. A laminar shear stress of 0.3 Pa was applied to the surfaces of the cells for 48 h. Promotion of microvessel network formation was detectable after approximately 10 h in the flow chamber. After 48 h, the length of networks exposed to shear stress was 6.17 (+/-0.59) times longer than at the initial state, whereas the length of networks not exposed to shear stress was only 3.30 (+/-0.41) times longer. The number of bifurcations and endpoints increased for networks exposed to shear stress, whereas the number of bifurcations alone increased for networks not exposed to shear stress. These results demonstrate that shear stress applied to the surfaces of endothelial cells on collagen gel promotes the growth of microvessel network formation in the gel and expands the network because of repeated bifurcation and elongation.  相似文献   

11.
Outward arterial remodeling is a physiological response to accommodate chronically elevated blood flow and requires endothelial cells (ECs) and expression of endothelial nitric oxide synthase (eNOS). ECs may sense elevated flow via stretch-activated ion channels (SACs). We evaluated the role of SACs in regulation of flow-induced arterial expansion and eNOS expression by ECs. A high-flow environment was created in the common carotid arteries (CCAs) of mice via contralateral common carotid artery (CCA) ligation. Either streptomycin for SAC blockade or saline for placebo was delivered to the mice. CCAs were harvested for morphometric analysis 7 days post procedure. Cultured ECs were exposed to flow with wall shear stresses (WSSs) of 1.5–10 Pa for 24 h in presence or absence of streptomycin. Immunofluorescent staining was used for eNOS quantification. In vivo, CCA expansion in streptomycin-treated mice (n = 7) was significantly less than in the placebo-treated group (n = 8) (p = 0.015). In vitro, streptomycin exposure significantly inhibited eNOS expression at WSS >2.5 Pa (p = 0.001) while not affecting eNOS expression at baseline WSS (1.5–2.5 Pa). Blockade of SACs with streptomycin impairs outward arterial remodeling and eNOS expression at high WSSs. Activation of SACs under elevated WSS may contribute to vessel expansion by upregulating eNOS in ECs.  相似文献   

12.
Hemodynamic shear stress guides a variety of endothelial phenotype characteristics, including cell morphology, cytoskeletal structure, and gene expression profile. The sensing and processing of extracellular fluid forces may be mediated by mechanotransmission through the actin cytoskeleton network to intracellular locations of signal initiation. In this study, we identify rapid actin-mediated morphological changes in living subconfluent and confluent bovine aortic endothelial cells (ECs) in response to onset of unidirectional steady fluid shear stress (15 dyn/cm2). After flow onset, subconfluent cells exhibited dynamic edge activity in lamellipodia and small ruffles in the downstream and side directions for the first 12 min; activity was minimal in the upstream direction. After 12 min, peripheral edge extension subsided. Confluent cell monolayers that were exposed to shear stress exhibited only subtle increases in edge fluctuations after flow onset. Addition of cytochalasin D to disrupt actin polymerization served to suppress the magnitude of flow-mediated actin remodeling in both subconfluent confluent EC monolayers. Interestingly, when subconfluent ECs were exposed to two sequential flow step increases (1 dyn/cm2 followed by 15 dyn/cm2 12 min later), actin-mediated edge activity was not additionally increased after the second flow step. Thus, repeated flow increases served to desensitize mechanosensitive structural dynamics in the actin cytoskeleton.  相似文献   

13.
The deployment of a coronary stent near complex lesions can sometimes lead to incomplete stent apposition (ISA), an undesirable side effect of coronary stent implantation. Three-dimensional computational fluid dynamics (CFD) calculations are performed on simplified stent models (with either square or circular cross-section struts) inside an idealised coronary artery to analyse the effect of different levels of ISA to the change in haemodynamics inside the artery. The clinical significance of ISA is reported using haemodynamic metrics like wall shear stress (WSS) and wall shear stress gradient (WSSG). A coronary stent with square cross-sectional strut shows different levels of reverse flow for malapposition distance (MD) between 0 mm and 0.12 mm. Chaotic blood flow is usually observed at late diastole and early systole for MD=0 mm and 0.12 mm but are suppressed for MD=0.06 mm. The struts with circular cross section delay the flow chaotic process as compared to square cross-sectional struts at the same MD and also reduce the level of fluctuations found in the flow field. However, further increase in MD can lead to chaotic flow not only at late diastole and early systole, but it also leads to chaotic flow at the end of systole. In all cases, WSS increases above the threshold value (0.5 Pa) as MD increases due to the diminishing reverse flow near the artery wall. Increasing MD also results in an elevated WSSG as flow becomes more chaotic, except for square struts at MD=0.06 mm.  相似文献   

14.
A multi-well fluid loading (MFL) system was developed to deliver oscillatory subphysiologic to supraphysiologic fluid shear stresses to cell monolayers in vitro using standard multi-well culture plates. Computational fluid dynamics modeling with fluid-structure interactions was used to quantify the squeeze film fluid flow between an axially displaced piston and the well plate surface. Adjusting the cone angle of the piston base modulated the fluid pressure, velocity, and shear stress magnitudes. Modeling results showed that there was near uniform fluid shear stress across the well with a linear drop in pressure across the radius of the well. Using the MFL system, RAW 264.7 osteoclastic cells were exposed to oscillatory fluid shear stresses of 0, 0.5, 1.5, 4, 6, and 17 Pa. Cells were loaded 1 h per day at 1 Hz for two days. Compared to sub-physiologic and physiologic levels, supraphysiologic oscillatory fluid shear induced upregulation of osteoclastic activity as measured by tartrate-resistant acid phosphatase activity and formation of mineral resorption pits. Cell number remained constant across all treatment groups.  相似文献   

15.
Shear stress, a major hemodynamic force acting on the vessel wall, plays an important role in physiological processes such as cell growth, differentiation, remodelling, metabolism, morphology, and gene expression. We investigated the effect of shear stress on gene expression profiles in co-cultured vascular endothelial cells (ECs) and smooth muscle cells (SMCs). Human aortic ECs were cultured as a confluent monolayer on top of confluent human aortic SMCs, and the EC side of the co-culture was exposed to a laminar shear stress of 12 dyn/cm2 for 4 or 24 h. After shearing, the ECs and SMCs were separated and RNA was extracted from the cells. The RNA samples were labelled and hybridized with cDNA array slides that contained 8694 genes. Statistical analysis showed that shear stress caused the differential expression (p ≤ 0.05) of a total of 1151 genes in ECs and SMCs. In the co-cultured ECs, shear stress caused the up-regulation of 403 genes and down-regulation of 470. In the co-cultured SMCs, shear stress caused the up-regulation of 152 genes and down-regulation of 126 genes. These results provide new information on the gene expression profile and its potential functional consequences in co-cultured ECs and SMCs exposed to a physiological level of laminar shear stress. Although the effects of shear stress on gene expression in monocultured and co-cultured EC are generally similar, the response of some genes to shear stress is opposite between these two types of culture (e.g., ICAM-1 is up-regulated in monoculture and down-regulated in co-culture), which strongly indicates that EC–SMC interactions affect EC responses to shear stress.  相似文献   

16.
17.
Hindered barrier function has been implicated in the initiation and progression of atherosclerosis, a disease of focal nature associated with altered hemodynamics. In this study, endothelial permeability to macromolecules and endothelial electrical resistance were investigated in vitro in monolayers exposed to disturbed flow fields that model spatial variations in fluid shear stress found at arterial bifurcations. After 5 h of flow, areas of high shear stress gradients showed a 5.5-fold increase in transendothelial transport of dextran (molecular weight 70,000) compared with no-flow controls. Areas of undisturbed fully developed flow, within the same monolayer, showed a 2.9-fold increase. Monolayer electrical resistance decreased with exposure to flow. The resistance measured during flow and the rate of change in monolayer resistance after removal of flow were lowest in the vicinity of flow reattachment (highest shear stress gradients). These results demonstrate that endothelial barrier function and permeability to macromolecules are regulated by spatial variations in shear stress forces in vitro.  相似文献   

18.
Endothelial cells (ECs) are constantly exposed to shear stress, the action of which triggers signaling pathways and cellular responses. During inflammation, cytokines such as IL-6 increase in plasma. In this study, we examined the effects of steady flow on IL-6-induced endothelial responses. ECs exposed to IL-6 exhibited STAT3 activation via phosphorylation of Tyr705. However, when ECs were subjected to shear stress, shear force-dependent suppression of IL-6-induced STAT3 phosphorylation was observed. IL-6 treatment increased the phosphorylation of JAK2, an upstream activator of STAT3. Consistently, shear stress significantly reduced IL-6-induced JAK2 activation. Pretreatment of ECs with an inhibitor of MEK1 did not alter this suppression by shear stress, indicating that extracellular signal-regulated kinase (ERK1/2) was not involved. However, pretreatment of ECs with an endothelial nitric oxide synthase inhibitor (nitro-L-arginine methyl ester) attenuated this inhibitory effect of shear stress on STAT3 phosphorylation. Shear stress-treated ECs displayed decreased nuclear transmigration of STAT3 and reduced STAT3 binding to DNA. Intriguingly, ECs exposed to IL-6 entered the cell cycle, as evidenced by increasing G2/M phase, and shear stress to these ECs significantly reduced IL-6-induced cell cycle progression. STAT3-mediated IL-6-induced cell cycle was confirmed by the inhibition of the cell cycle in ECs infected with adenovirus carrying the inactive mutant of STAT3. Our study clearly shows that shear stress exerts its inhibitory regulation by suppressing the IL-6-induced JAK2/STAT3 signaling pathway and thus inhibits IL-6-induced EC proliferation. This shear force-dependent inhibition of IL-6-induced JAK2/STAT3 activation provides new insights into the vasoprotective effects of steady flow on ECs against cytokine-induced responses. shear stress; nitric oxide; cell cycle  相似文献   

19.
剪切应力下内皮细胞内皮素及其mRNA的表达   总被引:4,自引:0,他引:4  
应用Northern印迹方法研究高血压(SHR)和正常(WKY)大鼠脑微血管培养内皮细胞,在剪切应力0、0.5、1、2Pa作用下24h后检测内皮素及其基因mRNA表达上的区别。结果表明,在剪切应力0、0.5、1Pa下,WKY大鼠的内皮细胞随着剪切应力加大,其内皮素水平及其基因的mRNA的表达均比WKY相应组的为高。在剪切应力2Pa时,WKY和SHR大鼠的内皮细胞内皮素及其基因的mRNA表达水平不同  相似文献   

20.
Vascular endothelial cells (ECs) distinguish among and respond differently to different types of fluid mechanical shear stress. Elucidating the mechanisms governing this differential responsiveness is the key to understanding why early atherosclerotic lesions localize preferentially in arterial regions exposed to low and/or oscillatory flow. An early and very rapid endothelial response to flow is the activation of flow-sensitive K+ and Cl channels that respectively hyperpolarize and depolarize the cell membrane and regulate several important endothelial responses to flow. We have used whole cell current- and voltage-clamp techniques to demonstrate that flow-sensitive hyperpolarizing and depolarizing currents respond differently to different types of shear stress in cultured bovine aortic ECs. A steady shear stress level of 10 dyn/cm2 activated both currents leading to rapid membrane hyperpolarization that was subsequently reversed to depolarization. In contrast, a steady shear stress of 1 dyn/cm2 only activated the hyperpolarizing current. A purely oscillatory shear stress of 0 ± 10 dyn/cm2 with an oscillation frequency of either 1 or 0.2 Hz activated the hyperpolarizing current but only minimally the depolarizing current, whereas a 5-Hz oscillation activated neither current. These results demonstrate for the first time that flow-activated ion currents exhibit different sensitivities to shear stress magnitude and oscillation frequency. We propose that flow-sensitive ion channels constitute components of an integrated mechanosensing system that, through the aggregate effect of ion channel activation on cell membrane potential, enables ECs to distinguish among different types of flow. ion channels; atherosclerosis; mechanotransduction  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号