首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Anchoring of proteins to membranes by glycosylphosphatidylinositols (GPIs) is ubiquitous among all eukaryotes and heavily used by parasitic protozoa. GPI is synthesized and transferred en bloc to form GPI- anchored proteins. The key enzyme in this process is a putative GPI:protein transamidase that would cleave a peptide bond near the COOH terminus of the protein and attach the GPI by an amide linkage. We have identified a gene, GAA1, encoding an essential ER protein required for GPI anchoring. gaal mutant cells synthesize the complete GPI anchor precursor at nonpermissive temperatures, but do not attach it to proteins. Overexpression of GAA1 improves the ability of cells to attach anchors to a GPI-anchored protein with a mutant anchor attachment site. Therefore, Gaa1p is required for a terminal step of GPI anchor attachment and could be part of the putative GPI:protein transamidase.  相似文献   

2.
Neurodegeneration in diseases caused by altered metabolism of mammalian prion protein (PrP) can be averted by reducing PrP expression. To identify novel pathways for PrP down-regulation, we analyzed cells that had adapted to the negative selection pressure of stable overexpression of a disease-causing PrP mutant. A mutant cell line was isolated that selectively and quantitatively routes wild-type and various mutant PrPs for ER retrotranslocation and proteasomal degradation. Biochemical analyses of the mutant cells revealed that a defect in glycosylphosphatidylinositol (GPI) anchor synthesis leads to an unprocessed GPI-anchoring signal sequence that directs both ER retention and efficient retrotranslocation of PrP. An unprocessed GPI signal was sufficient to impart ER retention, but not retrotranslocation, to a heterologous protein, revealing an unexpected role for the mature domain in the metabolism of misprocessed GPI-anchored proteins. Our results provide new insights into the quality control pathways for unprocessed GPI-anchored proteins and identify transamidation of the GPI signal sequence as a step in PrP biosynthesis that is absolutely required for its surface expression. As each GPI signal sequence is unique, these results also identify signal recognition by the GPI-transamidase as a potential step for selective small molecule perturbation of PrP expression.  相似文献   

3.
Transfer of a glycosylphosphatidylinositol (GPI) anchor to proteins carrying a C-terminal GPI-directing signal sequence occurs after protein translocation across the endoplasmic reticulum (ER). We describe the translocation and GPI modification of a model protein, preprominiPLAP, in ER microsomes depleted of lumenal content by high pH washing. In untreated microsomes preprominiPLAP was processed to prominiPLAP and GPI-anchored miniPLAP. Both products were fully translocated, since they resisted proteinase K treatment of the microsomes, and both behaved as membrane proteins by the carbonate extraction criterion. Microsomes depleted of lumenal content were able to translocate and process preprominiPLAP to give protease-protected prominiPLAP, but were unable to convert prominiPLAP to miniPLAP. Loss of GPI anchoring capacity occurred with a wash of pH > 9.5. If the alkaline wash was performed after formation of prominiPLAP conversion to miniPLAP was relatively unimpaired. The results indicate that constituents of the ER lumen, possibly chaperones interacting with the proprotein and/or the GPI anchor precursor, are required in the initial steps of GPI anchoring.  相似文献   

4.
The olive fruit fly Bactrocera oleae is the most destructive and intractable pest of olives. The management of B. oleae has been based on the use of organophosphate (OP) insecticides, a practice that induced resistance. OP-resistance in the olive fly was previously shown to be associated with two mutations in the acetylcholinesterase (AChE) enzyme that, apparently, hinder the entrance of the OP into the active site. The search for additional mutations in the ace gene that encodes AChE revealed a short deletion of three glutamines (??3Q) from a stretch of five glutamines, in the C-terminal peptide that is normally cleaved and substituted by a GPI anchor. We verified that AChEs from B. oleae and other Dipterans are actually GPI-anchored, although this is not predicted by the “big-PI” algorithm. The ??3Q mutation shortens the unusually long hydrophilic spacer that follows the predicted GPI attachment site and may thus improve the efficiency of GPI anchor addition. We expressed the wild type B. oleae AChE, the natural mutant ??3Q and a constructed mutant lacking all 5 consecutive glutamines (??5Q) in COS cells and compared their kinetic properties. All constructs presented identical Km and kcat values, in agreement with the fact that the mutations did not affect the catalytic domain of the enzyme. In contrast, the mutants produced higher AChE activity, suggesting that a higher proportion of the precursor protein becomes GPI-anchored. An increase in the number of GPI-anchored molecules in the synaptic cleft may reduce the sensitivity to insecticides.  相似文献   

5.
Glycosylphosphatidylinositol (GPI) anchoring plays key roles in many biological processes by targeting proteins to the cell wall; however, its roles are largely unknown in plant pathogenic fungi. Here, we reveal the roles of the GPI anchoring in Magnaporthe oryzae during plant infection. The GPI-anchored proteins were found to highly accumulate in appressoria and invasive hyphae. Disruption of GPI7, a GPI anchor-pathway gene, led to a significant reduction in virulence. The Δgpi7 mutant showed significant defects in penetration and invasive growth. This mutant also displayed defects of the cell wall architecture, suggesting GPI7 is required for cell wall biogenesis. Removal of GPI-anchored proteins in the wild-type strain by hydrofluoric acid (HF) pyridine treatment exposed both the chitin and β-1,3-glucans to the host immune system. Exposure of the chitin and β-1,3-glucans was also observed in the Δgpi7 mutant, indicating GPI-anchored proteins are required for immune evasion. The GPI anchoring can regulate subcellular localization of the Gel proteins in the cell wall for appressorial penetration and abundance of which for invasive growth. Our results indicate the GPI anchoring facilitates the penetration of M. oryzae into host cells by affecting the cell wall integrity and the evasion of host immune recognition.  相似文献   

6.
Biosynthesis of glycosylphosphatidylinositol (GPI)-anchored proteins involves the action of a GPI trans-amidase, which replaces the C-terminal GPI signal sequence (GPI-SS) of the primary translation product with a preformed GPI lipid. The transamidation depends on a complex of four proteins, Gaa1p, Gpi8p, Gpi16p and Gpi17p. Although the GPI anchoring pathway is conserved throughout the eukaryotic kingdom, it has been reported recently that the GPI-SS of human placental alkaline phosphatase (hPLAP) is not recognized by the yeast transamidase, but is recognized in yeast that contain the human Gpi8p homologue. This finding suggests that Gpi8p is intimately involved in the recognition of GPI precursor proteins and may also be responsible for the subtle taxon-specific differences in transamidase specificity that sometimes prevent the efficient GPI anchoring of heterologously expressed GPI proteins. Here, we confirm that the GPI signal sequence of hPLAP is indeed not recognized by the yeast GPI-anchoring machinery. However, in our hands, GPI attachment cannot be restored by the co-expression of human Gpi8p in yeast cells under any circumstances.  相似文献   

7.
Prion diseases are a group of transmissible, invariably fatal neurodegenerative diseases that affect both humans and animals. According to the protein-only hypothesis, the infectious agent is a prion (proteinaceous infectious particle) that is composed primarily of PrPSc, the disease-associated isoform of the cellular prion protein, PrP. PrPSc arises from the conformational change of the normal, glycosylphosphatidylinositol (GPI)-anchored protein, PrPC. The mechanism by which this process occurs, however, remains enigmatic. Rabbits are one of a small number of mammalian species reported to be resistant to prion infection. Sequence analysis of rabbit PrP revealed that its C-terminal amino acids differ from those of PrP from other mammals and may affect the anchoring of rabbit PrP through its GPI anchor. Using a cell culture model, this study investigated the effect of the rabbit PrP-specific C-terminal amino acids on the addition of the GPI anchor to PrPC, PrPC localization, and PrPSc formation. The incorporation of rabbit-specific C-terminal PrP residues into mouse PrP did not affect the addition of a GPI anchor or the localization of PrP. However, these residues did inhibit PrPSc formation, suggesting that these rabbit-specific residues interfere with a C-terminal PrPSc interaction site.Prion diseases, traditionally known as transmissible spongiform encephalopathies (TSE), are a group of invariably fatal neurodegenerative diseases that affect both humans and animals. According to the protein-only hypothesis, an abnormal isoform of the host-encoded prion protein (PrPC), referred to as PrPSc, is the sole or major component of the infectious agent causing these diseases (33). These disorders affect a wide range of mammals and include diseases such as Creutzfeldt-Jakob disease (CJD), variant CJD, Gerstmann-Straüssler-Scheinker (GSS) syndrome, kuru, and fatal familial insomnia (FFI) in humans, scrapie in sheep and goats, chronic wasting disease (CWD) in cervids, and bovine spongiform encephalopathy (BSE) in cattle. The term “prion” was first used to describe the unique infectious agent and was derived from “proteinaceous infectious particle” to distinguish it from conventional pathogens such as bacteria and viruses (33).To date, rabbits are one of the few mammalian species reported to be resistant to prion infection. Rabbits do not develop clinical disease after inoculation with brain tissue from individuals affected by the human prion diseases CJD and kuru, or by a number of animal forms of the disease, including scrapie and transmissible mink encephalopathy (TME) (12). In addition, mouse neuroblastoma (MNB) cells overexpressing rabbit PrP are also resistant to prion infection (45). Evidence that rabbit cells per se have the correct cellular machinery to support prion propagation has come from studies using the rabbit kidney epithelial cell line RK13. Upon transfection with appropriate PrP-expressing transgenes, these cells are a highly efficient and robust model of prion infection (6, 25, 41, 43). RK13 cells do not have detectable levels of endogenous rabbit PrPC and are therefore ideal for studying exogenous PrPC and the propagation of prions from different species (6). Originally, it was shown that RK13 cells overexpressing ovine PrP became susceptible to infection with scrapie (43), and more recently, RK13 cells expressing rodent PrPC, from either the mouse or the bank vole, were readily infected by prions adapted to and propagated in these two species (6, 41). RK13 cells expressing human PrPC, however, were resistant to infection with human prions derived directly from a patient with sporadic CJD (25). Since RK13 cells overexpressing PrP are a well-established model of prion propagation, we can therefore conclude that while these cells apparently have the appropriate cellular machinery to support prion propagation, it may be a characteristic of the rabbit prion protein itself that results in the resistance of this species to prion infection. However, the loss of a cellular cofactor may also be a contributing factor.Analysis of the rabbit PrP amino acid sequence shows that it has all the features previously described for members of the PrP protein family, including an N-terminal signal peptide, an octapeptide repeat region, and a C-terminal signal sequence (26). While amino acid sequence comparison of both mouse and rabbit PrP species reveals 87% sequence homology, there are 22 amino acid differences between the two, and several of these reside in regions of PrP known to be important in PrPSc formation. In scrapie-infected MNB cells, the residues Gly99 and Met108 within the N terminus, Ser173 within the central region, and Ile214 within the C terminus of rabbit PrP were shown to inhibit PrPSc generation when incorporated into mouse PrP, suggesting that multiple amino acid residues in rabbit PrP inhibit PrPSc formation (45). Approximately one-third (9/33 residues in the immature sequence) of the amino acid difference between mouse and rabbit PrPs was shown to occur at the glycosylphosphatidylinositol (GPI) anchor attachment site (see Fig. S1 in the supplemental material). As yet, studies involving this region of rabbit PrP have not been performed. Therefore, this region of rabbit PrP may provide further insight into the resistance of rabbits to prion infection.GPI anchor addition occurs via a transamination reaction in the endoplasmic reticulum (ER) following cleavage of the C-terminal signal sequence (39). There is no consensus sequence with which to identify the C-terminal cleavage site, but there are three key C-terminal elements: (i) the cleavage site, or ω site, where the GPI anchor attaches to the COOH group of the ω amino acid; (ii) a hydrophilic spacer region of 8 to 12 amino acids (ω + 1 up to ω + 10); and (iii) a hydrophobic region of 10 to 20 amino acids (ω + 11 onwards) (9). Analysis of known GPI-anchored proteins has given rise to sequence motifs in the C-terminal signal peptide allowing the prediction of the ω site of proteins. Due to the complexity of experimentally determining the ω site of GPI-anchored proteins, relatively few of the many known GPI-anchored proteins have had their ω sites determined (36 of 340 proteins in 2008) (32) The ω site of hamster PrP was determined experimentally to be at amino acid 231 (34) and is predicted to be at the same site for PrPs from all mammals, based on amino acid sequence comparison. Amino acid substitutions near the ω site of mouse PrP revealed that mouse PrP has an ω site at residue 230 (17). It was also shown that single amino acid substitutions at and near the ω site of mouse PrP affect the anchoring and conversion efficiency of PrP (17). It is therefore possible that the amino acids at the C terminus and within the GPI anchor signal sequence of rabbit PrP lead to the resistance to prion infection.To date, no protein structures containing a GPI anchor have been determined by X-ray crystallography, and although the nuclear magnetic resonance (NMR) structures of mouse and rabbit PrP have been solved, they do not contain any structural information for the residues immediately preceding the GPI anchor. We therefore created a mutant mouse PrP model containing rabbit PrP-specific amino acids at the ω site to investigate whether these residues are involved in rabbit resistance to prion infection. Here we demonstrate that the GPI anchor attachment site is an important site that controls the ability of PrP to be converted into PrPSc and that residues ω and ω + 1 of PrP are important modulators of this pathogenic process.  相似文献   

8.
Glycosylphosphatidylinositol (GPI)-anchored cell wall proteins play an important role in the structure and function of the cell wall in yeast and other fungi. Although the majority of characterized fungal GPI-anchored proteins do in fact localize to the cell wall, some are believed to reside at the plasma membrane and not to traffic significantly to the cell wall. There is evidence suggesting that the amino acids immediately upstream of the site of GPI anchor addition (the omega site) serve as the signal determining whether a GPI protein localizes to the cell wall or to the plasma membrane, although this remains controversial. Here, we examine in detail the functional and biochemical differences between the GPI anchor addition signals of putative cell wall (CW) and plasma membrane (PM) GPI proteins. We find strong evidence for the existence of PM-class and CW-class GPI proteins. We show that the biological function of a GPI-CWP is strongly compromised by changing the GPI anchor signal from a CW-class signal to a PM-class signal. Biochemically, this abrogation of function corresponds to a change in the protein from a cell wall form to a membrane form. To understand better the basis for the difference between the two classes of proteins, we mutated the amino acids upstream of the omega site in a GPI-PM protein and selected mutant proteins that were now localized to the cell wall. We were also able to design simple amino acid mutations in a GPI-CW protein that efficiently redirected the protein to the plasma membrane. These studies make clear that different GPI anchor sequences can have dramatic effects on localization of the proteins and help to define the GPI anchor addition signal sequences that distinguish the PM-class and CW-class GPI proteins.  相似文献   

9.
Every protein fated to receive the glycophosphatidylinositol (GPI) anchor post-translational modification has a C-terminal GPI-anchor attachment signal sequence. This signal peptide varies with respect to length, content, and hydrophobicity. With the exception of predictions based on an upstream amino acid triplet termed omega-->omega + 2 which designates the site of GPI uptake, there is no information on how the efficiencies of different native signal sequences compare in the transamidation reaction that catalyzes the substitution of the GPI anchor for the C-terminal peptide. In this study we utilized the placental alkaline phosphatase (PLAP) minigene, miniPLAP, and replaced its native 3' end-sequence encoding omega-2 to the C-terminus with the corresponding C-terminal sequences of nine other human GPI-anchored proteins. The resulting chimeras then were fed into an in vitro processing microsomal system where the cleavages leading to mature product from the nascent preproprotein could be followed by resolution on an SDS-PAGE system after immunoprecipitation. The results showed that the native signal of each protein differed markedly with respect to transamidation efficiency, with the signals of three proteins out-performing the others in GPI-anchor addition and those of two proteins being poorer substrates for the GPI transamidase. The data additionally indicated that the hierarchical order of efficiency of transamidation did not depend solely on the combination of permissible residues at omega-->omega + 2.  相似文献   

10.
We have investigated the intracellular traffic of PrP(c), a glycosylphosphatidylinositol (GPI)-anchored protein implicated in spongiform encephalopathies. A fluorescent functional green fluorescent protein (GFP)-tagged version of PrP(c) is found at the cell surface and in intracellular compartments in SN56 cells. Confocal microscopy and organelle-specific markers suggest that the protein is found in both the Golgi and the recycling endosomal compartment. Perturbation of endocytosis with a dynamin I-K44A dominant-negative mutant altered the steady-state distribution of the GFP-PrP(c), leading to the accumulation of fluorescence in unfissioned endocytic intermediates. These pre-endocytic intermediates did not seem to accumulate GFP-GPI, a minimum GPI-anchored protein, suggesting that PrP(c) trafficking does not depend solely on the GPI anchor. We found that internalized GFP-PrP(c) accumulates in Rab5-positive endosomes and that a Rab5 mutant alters the steady-state distribution of GFP-PrP(c) but not that of GFP-GPI between the plasma membrane and early endosomes. Therefore, we conclude that PrP(c) internalizes via a dynamin-dependent endocytic pathway and that the protein is targeted to the recycling endosomal compartment via Rab5-positive early endosomes. These observations indicate that traffic of GFP-PrP(c) is not determined predominantly by the GPI anchor and that, different from other GPI-anchored proteins, PrP(c) is delivered to classic endosomes after internalization.  相似文献   

11.
All known glycophosphatidylinositol (GPI)-anchored membrane proteins contain a COOH-terminal hydrophobic domain necessary for signalling anchor attachment. To examine the requirement that this signal be at the COOH terminus of the protein, we constructed a chimeric protein, DAFhGH, in which human growth hormone (hGH) was fused to the COOH terminus of decay accelerating factor (DAF) (a GPI-anchored protein), thereby placing the GPI signal in the middle of the chimeric protein. We show that the fusion protein appears to be processed at the normal DAF processing site in COS cells, producing GPI-anchored DAF on the cell surface. This result indicates that the GPI signal does not have to be at the COOH terminus to direct anchor addition, suggesting that the absence of a hydrophilic COOH-terminal extension (beyond the hydrophobic domain) is not a necessary requirement for GPI anchoring. A similar DAFhGH fusion, containing an internal GPI signal in which the DAF hydrophobic domain was replaced with the signal peptide of hGH, also produced GPI-anchored cell surface DAF. The signal for GPI attachment thus exhibits neither position specificity nor sequence specificity. In addition, mutant DAF or DAFhGH constructs lacking an NH2-terminal signal peptide failed to produce GPI-anchored protein, suggesting that membrane translocation is necessary for anchor addition.  相似文献   

12.
Using mutational and proteomic approaches, we have demonstrated the importance of the glycosylphosphatidylinositol (GPI) anchor pathway for cell wall synthesis and integrity and for the overall morphology of the filamentous fungus Neurospora crassa. Mutants affected in the gpig-1, gpip-1, gpip-2, gpip-3, and gpit-1 genes, which encode components of the N. crassa GPI anchor biosynthetic pathway, have been characterized. GPI anchor mutants exhibit colonial morphologies, significantly reduced rates of growth, altered hyphal growth patterns, considerable cellular lysis, and an abnormal "cell-within-a-cell" phenotype. The mutants are deficient in the production of GPI-anchored proteins, verifying the requirement of each altered gene for the process of GPI-anchoring. The mutant cell walls are abnormally weak, contain reduced amounts of protein, and have an altered carbohydrate composition. The mutant cell walls lack a number of GPI-anchored proteins, putatively involved in cell wall biogenesis and remodeling. From these studies, we conclude that the GPI anchor pathway is critical for proper cell wall structure and function in N. crassa.  相似文献   

13.
After infection with RML murine scrapie agent, transgenic (tg) mice expressing prion protein (PrP) without its glycophosphatidylinositol (GPI) membrane anchor (GPI(-/-) PrP tg mice) continue to make abundant amounts of the abnormally folded disease-associated PrPres but have a normal life span. In contrast, all age-, sex-, and genetically matched mice with a GPI-anchored PrP become moribund and die due to a chronic progressive neurodegenerative disease by 160 days after RML scrapie agent infection. We report here that infected GPI(-/-) PrP tg mice, although free from progressive neurodegenerative disease of the cerebellum and extrapyramidal and pyramidal systems, nevertheless suffer defects in learning and memory, long-term potentiation, and neuronal excitability. Such dysfunction increases over time and is associated with an increase in gamma aminobutyric acid (GABA) inhibition but not loss of excitatory glutamate/N-methyl-d-aspartic acid. Enhanced deposition of abnormally folded infectious PrP (PrPsc or PrPres) in the central nervous system (CNS) localizes with GABAA receptors. This occurs with minimal evidence of CNS spongiosis or apoptosis of neurons. The use of monoclonal antibodies reveals an association of PrPres with GABAA receptors. Thus, the clinical defects of learning and memory loss in vivo in GPI(-/-) PrP tg mice infected with scrapie agent may likely involve the GABAergic pathway.  相似文献   

14.
Glycosylphosphatidylinositol (GPI) anchoring is important for the function of several proteins in the context of their membrane trafficking pathways. We have shown previously that endocytosed GPI-anchored proteins (GPI-APs) are recycled to the plasma membrane three times more slowly than other membrane components. Recently, we found that GPI-APs are delivered to endocytic organelles, devoid of markers of the clathrin-mediated pathway, prior to their delivery to a common recycling endosomal compartment (REC). Here we show that the rate-limiting step in the recycling of GPI-APs is their slow exit from the REC; replacement of the GPI anchor with a transmembrane protein sequence abolishes retention in this compartment. Depletion of endogenous sphingolipid levels using sphingolipid synthesis inhibitors or in a sphingolipid-synthesis mutant cell line specifically enhances the rate of endocytic recycling of GPI-APs to that of other membrane components. We have shown previously that endocytic retention of GPI-APs is also relieved by cholesterol depletion. These findings strongly suggest that functional retention of GPI-APs in the REC occurs via their association with sphingolipid and cholesterol-enriched sorting platforms or 'rafts'.  相似文献   

15.
Glycosylphosphatidylinositol (GPI), covalently attached to many eukaryotic proteins, not only acts as a membrane anchor but is also thought to be a sorting signal for GPI-anchored proteins that are associated with sphingolipid and sterol-enriched domains. GPI anchors contain a core structure conserved among all species. The core structure is synthesized in two topologically distinct stages on the leaflets of the endoplasmic reticulum (ER). Early GPI intermediates are assembled on the cytoplasmic side of the ER and then are flipped into the ER lumen where a complete GPI precursor is synthesized and transferred to protein. The flipping process is predicted to be mediated by a protein referred as flippase; however, its existence has not been proven. Here we show that yeast Arv1p is an important protein required for the delivery of an early GPI intermediate, GlcN-acylPI, to the first mannosyltransferase of GPI synthesis in the ER lumen. We also provide evidence that ARV1 deletion and mutations in other proteins involved in GPI anchor synthesis affect inositol phosphorylceramide synthesis as well as the intracellular distribution and amounts of sterols, suggesting a role of GPI anchor synthesis in lipid flow from the ER.  相似文献   

16.
Many eukaryotic cell surface proteins are bound to the membrane via the glycosylphosphatidylinositol (GPI) anchor that is covalently linked to their carboxy-terminus. The GPI anchor precursor is synthesized in the endoplasmic reticulum (ER) and post-translationally linked to protein. We cloned a human gene termed PIG-B (phosphatidylinositol glycan of complementation class B) that is involved in transferring the third mannose. PIG-B encodes a 554 amino acid, ER transmembrane protein with an amino-terminal portion of approximately 60 amino acids on the cytoplasmic side and a large carboxy-terminal portion of 470 amino acids within the ER lumen. A mutant PIG-B lacking the cytoplasmic portion remains active, indicating that the functional site of PIG-B resides on the lumenal side of the ER membrane. The PIG-B gene was localized to chromosome 15 at q21-q22. This autosomal location would explain why PIG-B is not involved in the defective GPI anchor synthesis in paroxysmal nocturnal hemoglobinuria, which is always caused by a somatic mutation of the X-linked PIG-A gene.  相似文献   

17.
Exchanging the glycophosphatidylinositol (GPI) anchor signal sequence of neural cell adhesion molecule (NCAM) for the signal sequence of carcinoembryonic antigen (CEA) generates a mature protein with NCAM external domains but CEA-like tumorigenic activity. We hypothesized that this resulted from the presence of a functional specificity signal within this sequence and generated CEA/NCAM chimeras to identify this signal. Replacing the residues (GLSAG) 6-10 amino acids downstream of the CEA anchor addition site with the corresponding NCAM residues resulted in GPI-anchored proteins lacking the CEA-like biological functions of integrin modulation and differentiation blockage. Transferring this region from CEA into NCAM in conjunction with the upstream proline (PGLSAG) was sufficient to specify the addition of the CEA anchor. Therefore, this study identifies a novel specificity signal consisting of six amino acids located within the GPI anchor attachment signal, which is necessary and sufficient to specify the addition of a particular functional GPI anchor and, thereby, the ultimate function of the mature protein.  相似文献   

18.
Prion protein protects human neurons against Bax-mediated apoptosis   总被引:14,自引:0,他引:14  
The function of the cellular prion protein (PrP) is still poorly understood. We present here an unprecedented role for PrP against Bax-mediated neuronal apoptosis and show that PrP potently inhibits Bax-induced cell death in human primary neurons. Deletion of four octapeptide repeats of PrP (PrPDeltaOR) and familial D178N and T183A PrP mutations completely or partially eliminate the neuroprotective effect of PrP. PrP remains anti-apoptotic despite truncation of the glycosylphosphatidylinositol (GPI) anchor signal peptide, indicating that the neuroprotective form of PrP does not require the abundant cell surface GPI-anchored PrP. Our results implicate PrP as a potent and novel anti-apoptotic protein against Bax-mediated cell death.  相似文献   

19.
Normal cellular prion protein (PrP(C)) and decay-accelerating factor (DAF) are glycoproteins linked to the cell surface by glycosylphosphatidylinositol (GPI) anchors. Both PrP(C) and DAF reside in detergent insoluble complex that can be isolated from human peripheral blood mononuclear cells. However, these two GPI-anchored proteins possess different cell biological properties. The GPI anchor of DAF is markedly more sensitive to cleavage by phosphatidylinositol-specific phospholipase C (PI-PLC) than that of PrP(C). Conversely, PrP(C) has a shorter cell surface half-life than DAF, possibly due to the fact that PrP(C) but not DAF is shed from the cell surface. This is the first demonstration that on the surface of the same cell type two GPI-anchored proteins differ in their cell biological properties.  相似文献   

20.
Glycosyl phosphatidylinositols (GPIs) are usedto anchor many proteins to the cell surface membrane and are utilizedin all eukaryotic cells. GPI anchoring units are attached to proteins via a transamidase reaction mediated by a GPI transamidase complex. Weisolated one of the components of this complex,mGPAA1 (murine GPI anchor attachment), by the signalsequence trap method. mGPAA1 cDNA is about 2 kb in lengthand encodes a putative 621 amino acid protein. The mGPAA1gene has 12 small exons and 11 small introns. mGPAA1 mRNA isubiquitously expressed in mammalian cells, and in situ hybridizationanalysis revealed that it is abundant in the choroid plexus, skeletalmuscle, osteoblasts of rib, and occipital bone in mouse embryos. Itsexpression levels and transamidation efficiency decreased withdifferentiation of embryonic stem cells. The 3T3 cell lines expressingantisense mGPAA1 failed to express GPI-anchored proteins onthe cell surface membrane.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号