首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Zhang XJ  Xu MY  Lv N 《生理学报》2005,57(1):66-70
本文研究了谷氨酸(glutamic acid,Glu)及其NMDA受体拮抗剂5-甲基二氢丙环庚烯亚胺马来酸(MK-801)对人鼠伏核(nucleus accumbens,NAc)痛兴奋神经元(pain-excitation neurons,PEN)痛诱发反应的影响。电刺激坐骨神经作为伤害性刺激,用玻璃微电极记录NAc的PEN放电,观察脑室内注射Glu和NAc内注射MK-801对大鼠NAc中PEN伤害性诱发活动的影响。结果显示,伤害性刺激可使NAc的PEN电活动增强;脑室内注射Glu(10nmol/10μl)可使NAc的PEN伤害性诱发放电频率增加;NAc内注射MK-801(1.0nmol/0.5μl)可阻断这种作用;MK-801本身也可部分抑制PEN伤害性诱发反应。上述结果表明,Glu对PEN伤害性反应的易化作用是通过NMDA受体介导的:Glu和NMDA受体参与NAc伤害性信息传递的调制。  相似文献   

2.
Droperidol causes the blockage of the dopamine receptors in the central nervous system that are involved in pain transmission. However, the mechanism of action of droperidol in pain-related neurons is not clear, and it is still unknown whether opioids are involved in the modulation of this processing. The present study examines the effect of droperidol on the pain-evoked response of pain-excitation neurons (PENs) and pain-inhibition neurons (PINs) in the caudate nucleus (Cd) of rats. The trains of electric impulses applied to the sciatic nerve were used as noxious stimulation. Our results revealed that droperidol decreased the frequency of PEN discharge, and increased the frequency PIN discharge evoked by the noxious stimulation in the Cd of normal rats, while administration of droperidol to morphine-dependent rats produced the opposite response. Those demonstrated that droperidol is involved in the modulation of nociceptive information transmission in Cd, and there were completely opposite responses to painful stimulation between normal and morphine-dependent rats after administration of droperidol.  相似文献   

3.
Dopamine regulates pain perception in some areas of the central nervous system. Previously, we have confirmed that dopamine potentiated the electric activities of the evoked discharges of pain-excited neurons (PENs) and inhibited those of pain-inhibited neurons (PINs) in the parafascicular nucleus (Pfn) of normal rats. The mechanism of action of dopamine on pain-related neurons in the Pfn of morphine-dependent rat is still unknown. The present study aimed to determine the effects of dopamine and its receptor antagonist droperidol on the pain-evoked responses of the PEN and PIN in the Pfn of morphine-dependent rats, and to compare the effects between the morphine-dependent rat and the normal rat. The trains of electric impulses applied to the sciatic nerve were used as noxious stimulation. The discharges of PEN or PIN in the Pfn were recorded by using a glass microelectrode. The results showed that intra-Pfn microinjection of dopamine decreased the frequency of noxious stimulation-induced discharges of PEN and increased the frequency of PIN. The intra-Pfn administration of droperidol produced an opposite effect. These results demonstrated that dopamine is involved in nociceptive modulation in the morphine-dependent rat, the responses to noxious stimulation between normal rat and morphine-dependent rat are completely opposite. The effect of dopamine is through the dopamine D2 receptor of PENs and PINs in Pfn. The results suggest that the dopamine system of the Pfn may become a therapeutic target for analgesia and the treatment of morphine dependence.  相似文献   

4.
Morphine is among the most effective analgesics. However, many evidences suggest that, besides the well-know analgesic activity, repeated opioids treatment can induce some side effects such as dependence, hyperalgesia and tolerance. The mechanism of noxious information transmission in the central nervous system after dependence is not clear. An important neurotransmitter, dopamine (DA) participates not only in the process of opioid dependence but also in pain modulation in the central nervous system. In the present study we observed changes of electrical activities of pain-excitation neurons (PENs) and pain-inhibition neurons (PINs) in the caudate nucleus (Cd) following the development of morphine dependence. We also observed the role of DA on these changes. Our results revealed that both the latency of PEN discharges and the inhibitory duration of PIN discharges decreased, and the net increased values of PEN and PIN discharges increased in the Cd of morphine dependent rats. Those demonstrated that electrical activities of both PENs and PINs increased in morphine dependent rats. DA inhibited the electrical activities of PENs and enhanced those of PINs in morphine dependent rats.  相似文献   

5.
Electroacupuncture (EA) has been successfully used to alleviate pain produced by various noxious stimulus. Cholecystokinin-8 (CCK-8) is a neuropeptide involved in the mediation of pain. We have previously shown that CCK-8 could antagonize the analgesic effects of EA on pain-excited neurons (PENs) and pain-inhibited neurons (PINs) in the nucleus parafascicularis (nPf). However, its mechanism of action is not clear. In the present study, we applied behavioral and neuroelectrophysiological methods to determine whether the mechanisms of CCK-8 antagonism to EA analgesia are mediated through the CCK-A receptors of PENs and PINs in the nPf of rats. We found that focusing radiant heat on the tail of rats caused a simultaneous increase in the evoked discharge of PENs or a decrease in the evoked discharge of PINs in the nPf and the tail-flick reflex. This showed that radiant heat could induce pain. EA stimulation at the bilateral ST 36 acupoints in rats for 15 min resulted in an inhibition of the electrical activity of PEN, potentiation of the electrical activity of PIN, and prolongation in tail-flick latency (TFL), i.e. EA stimulation produced an analgesic effect. The analgesic effect of EA was antagonized when CCK-8 was injected into the intracerebral ventricle of rats. The antagonistic effect of CCK-8 on EA analgesia was reversed by an injection of CCK-A receptor antagonist L-364,718 (100 ng/μl) into the nPf of rats. Our results suggest that the pain-related neurons in the nPf have an important role in mediating EA analgesia. L-364,718 potentiates EA analgesia through the CCK-A receptor of PENs and PINs in the nPf.  相似文献   

6.
Deep brain stimulation (DBS) of the nucleus accumbens (NAc) is a potential remedial therapy for drug craving and relapse, but the mechanism is poorly understood. We investigated changes in neurotransmitter levels during high frequency stimulation (HFS) of the unilateral NAc on morphine-induced rats. Sixty adult Wistar rats were randomized into five groups: the control group (administration of saline), the morphine-only group (systematic administration of morphine without electrode implantation), the morphine-sham-stimulation group (systematic administration of morphine with electrode implantation but not given stimulation), the morphine-stimulation group (systematic administration of morphine with electrode implantation and stimulation) and the saline-stimulation group (administration of saline with electrode implantation and stimulation). The stimulation electrode was stereotaxically implanted into the core of unilateral NAc and microdialysis probes were unilaterally lowered into the ipsilateral ventral tegmental area (VTA), NAc, and ventral pallidum (VP). Samples from microdialysis probes in the ipsilateral VTA, NAc, and VP were analyzed for glutamate (Glu) and γ-aminobutyric acid (GABA) by high-performance liquid chromatography (HPLC). The levels of Glu were increased in the ipsilateral NAc and VP of morphine-only group versus control group, whereas Glu levels were not significantly changed in the ipsilateral VTA. Furthermore, the levels of GABA decreased significantly in the ipsilateral NAc, VP, and VTA of morphine-only group when compared with control group. The profiles of increased Glu and reduced GABA in morphine-induced rats suggest that the presence of increased excitatory neurotransmission in these brain regions. The concentrations of the Glu significantly decreased while the levels of GABA increased in ipsilateral VTA, NAc, and VP in the morphine-stimulation group compared with the morphine-only group. No significant changes were seen in the morphine-sham stimulation group compared with the morphine-only group. These findings indicated that unilateral NAc stimulation inhibits the morphine-induced rats associated hyperactivation of excitatory neurotransmission in the mesocorticolimbic reward circuit.  相似文献   

7.
The effects of N-methyl-D-aspartate (NMDA) glutamate receptor antagonist (+)-MK-801 hydrogen maleate (MR801) on plasticity of different sensory inputs of the L-RPl1 command neurons were studied in Helix lucorum snail during nociceptive sensitization. Application of sensitizing stimulation onto the snail head or foot in the control semi-intact preparation initiated depression of neural responses evoked by tactile or chemical sensory stimulation during the short-term period of sensitization and significant facilitation of neural responses during the long-period of sensitization. Sensitizing stimulation of snail head against the background of MK-801 application (10-30 microM) produced a pronounced depression of neural responses to chemical stimulation of the head both in the short- and long-term sensitization periods. At the same time, sensitizing stimulation of the foot or head during the MK-801 application produced the same changes in neural responses to chemical stimulation of the foot and tactile stimulation of the foot or head as in the control preparation. It can be suggested that NMDA-like glutamate receptors are selectively involved in the mechanisms of plasticity induction in the synaptic inputs of the command LPl1 and RPl1 neurons, which process the information resulting from chemical excitation of the snail head (a specific receptor skin site for these neurons in Helix lucorum).  相似文献   

8.
Zuo DY  Zhang YH  Cao Y  Wu CF  Tanaka M  Wu YL 《Life sciences》2006,78(19):2172-2178
The present study was designed to investigate the effects of acute and chronic administration of MK-801 (0.6 mg/kg), a noncompetitive NMDA-receptor antagonist on extracellular glutamate (Glu) and ascorbic acid (AA) release in the prefrontal cortex (PFC) of freely moving mice using in vivo microdialysis with open-field behavior. In line with earlier studies, acute administration of MK-801 induced an increase of Glu in the PFC. We also observed single MK-801 treatment increased AA release in the PFC. In addition, our results indicated that the basal AA levels in the PFC after MK-801 administration for 7 consecutive days were significantly decreased, and basal Glu levels also had a decreased tendency. After chronic administration (0.6 mg/kg, 7 days), MK-801 (0.6 mg/kg) challenge significantly decreased dialysate levels of AA and Glu. Our study also found that both acute and chronic administration of MK-801 induced hyperactivity in mice, but the intensity of acute administration was more than that of chronic administration. Furthermore, in all acute treatment mice, individual changes in Glu dialysate concentrations and the numbers of locomotion were positively correlated. In conclusion, this study may provide new evidence that a single MK-801 administration induces increases of dialysate AA and Glu concentrations in the PFC of freely moving mice, which are opposite to those induced by repeated MK-801 administration, with an unknown mechanism. Our results suggested that redox-response might play an important role in the model of schizophrenic symptoms induced by MK-801.  相似文献   

9.
The N-methyl-D-aspartate (NMDA) ion channel blocker MK-801 administered systemically or as a nanoliter injection into the nucleus of the solitary tract (NTS), increases meal size. Furthermore, we have observed that ablation of the NTS abolishes increased meal size following systemic injection of dizocilpine (MK-801) and that MK-801-induced increases in intake are attenuated in rats pretreated with capsaicin to destroy small, unmyelinated, primary afferent neurons. These findings led us to hypothesize that NMDA receptors on central vagal afferent terminals or on higher-order NTS neurons innervated by these vagal afferents might mediate increased food intake. To evaluate this hypothesis, we examined 15% sucrose intake after 50-nl MK-801 injections ipsilateral or contralateral to unilateral nodose ganglion removal (ganglionectomy). On the side contralateral to ganglionectomy, vagal afferent terminals would be intact and functional, whereas ipsilateral to ganglionectomy vagal afferent terminals would be absent. Three additional control preparations also were included: 1) sham ganglionectomy and 2) subnodose vagotomy either contralateral or ipsilateral to NTS cannula placement. We found that rats with subnodose vagotomies increased their sucrose intake after injections of MK-801 compared with saline, regardless of whether injections were made contralateral (12.6 +/- 0.2 vs. 9.6 +/- 0.3 ml) or ipsilateral (14.2 +/- 0.6 vs. 9.7 +/- 0.4 ml) to vagotomy. Rats with NTS cannula placements contralateral to nodose ganglionectomy also increased their intake after MK-801 (12.2 +/- 0.9 and 9.2 +/- 1.1 ml for MK-801 and saline, respectively). However, rats with placements ipsilateral to ganglionectomy did not respond to MK-801 (8.0 +/- 0.5 ml) compared with saline (8.3 +/- 0.4 ml). We conclude that central vagal afferent terminals are necessary for increased food intake in response to NMDA ion channel blockade. The function of central vagal afferent processes or the activity of higher-order NTS neurons driven by vagal afferents may be modulated by NMDA receptors to control meal size.  相似文献   

10.
Chronic hypoxia increases the sensitivity of the central nervous system to afferent input from carotid body chemoreceptors. We hypothesized that this process involves N-methyl-D-aspartate (NMDA) receptor-mediated mechanisms and predicted that chronic hypoxia would change the effect of the NMDA receptor blocker dizocilpine (MK-801) on the poikilocapnic hypoxic ventilatory response (HVR). Male Sprague-Dawley rats were studied before and after acclimatization to hypoxia (70 Torr inspiratory Po(2) for 9 days). We measured ventilation (VI) and the HVR before and after systemic MK-801 treatment (3 mg/kg ip). MK-801 resulted in a constant respiratory frequency (approximately 175 min(-1)) during acute exposure to 10% and 30% O(2) before and after acclimatization. MK-801 had no effect on tidal volume (VT) before acclimatization, but it significantly decreased Vt when the animals were breathing 10% O(2) after acclimatization. The net effect of MK-801 was to eliminate the O(2) sensitivity of Vi before (via changes in respiratory frequency) and after (via changes in VT) acclimatization. Hence, chronic hypoxia altered the effect of MK-801 on the acute HVR, primarily because of increased effects on Vt. This indicates that changes in NMDA receptor-mediated neurotransmission may be involved in ventilatory acclimatization to hypoxia. However, further experiments are necessary to determine the precise location of such plasticity in the central nervous system.  相似文献   

11.
The effects of continuous infusion of NMDA receptor antagonist MK-801 on the modulation of NMDA receptor subunits NR1, NR2A, NR2B, and NR2C were investigated by using in situ hybridization study. Differential assembly of NMDA receptor subunits determines their functional characteristics. Continuous intracerebroventricular (i.c.v.) infusion with MK-801 (1 pmol/10 l/h) for 7 days resulted in significant modulations in the NR1, NR2A, and NR2B mRNA levels without producing stereotypic motor syndromes. The levels of NR1 mRNA were significantly increased (9-20%) in the cerebral cortex, striatum, septum, and CA1 of hippocampus in MK-801-infused rats. The levels of NR2A mRNA were significantly decreased (11-16%) in the CA3 and dentate gyrus of hippocampus in MK-801-infused rats. In contrast to NR2A, NR2B subunit mRNA levels were increased (10-14%) in the cerebral cortex, caudate putamen, and thalamus. However, no changes of NR2C subunits in cerebellar granule layer were observed. Using quantitative ligand autoradiography, the binding of NMDA receptor ligand [3H]MK-801 was increased (12-25%) significantly in almost all brain regions except in the thalamus and cerebellum after 7 days infusion with MK-801. These results suggest that region-specific changes of NMDA receptor subunit mRNA and [3H]MK-801 binding are involved in the MK-801-infused adult rats.  相似文献   

12.
13.
Abstract: We investigated the effect of chronically blocking NMDA receptor stimulation to examine changes in GABAA receptor expression and pharmacology in cerebellar granule cells at different stages of maturation. We have previously shown that NMDA-selective glutamate receptor stimulation alters GABAA receptor pharmacology in cerebellar granule neurons in vitro by altering the levels of selective subunits. When NMDA receptor stimulation is blocked with MK-801 during the first week in vitro, a decrease in the α1, γ2S, and γ2L receptor subunit mRNAs occurred. When present only during the second week, changes were limited to the α1 and γ2L mRNAs. Finally, if MK-801 was present during the first week and removed during the second week, these changes reversed. Whole-cell voltage-clamp recordings showed that treatment with MK-801 during either the first or second week increased the EC50 of the receptors for GABA and attenuated the potentiation mediated by flunitrazepam. Last, these properties were reversed if MK-801 was removed after the first week in vitro. Our results suggest that MK-801 reversibly inhibits GABAA receptor maturation by modulating receptor subunit expression and that the altered pharmacological responses appear to be dominated by changes in the levels of allosteric modulation mediated by the γ2 receptor subunit.  相似文献   

14.
15.
Striatal nitric oxide (NO) signaling plays a critical role in modulating neural processing and motor behavior. Nitrergic interneurons receive synaptic inputs from corticostriatal neurons and are activated via ionotropic glutamate receptor stimulation. However, the afferent regulation of NO signaling is poorly characterized. The role of frontal cortical afferents in regulating NO transmission was assessed in anesthetized rats using amperometric microsensor measurements of NO efflux and local field potential recordings. Low frequency (3 Hz) electrical stimulation of the ipsilateral cortex did not consistently evoke detectable changes in striatal NO efflux. In contrast, train stimulation (30 Hz) of frontal cortical afferents facilitated NO efflux in a stimulus intensity-dependent manner. Nitric oxide efflux evoked by train stimulation was transient, reproducible over time, and attenuated by systemic administration of either the NMDA receptor antagonist MK-801 or the neuronal NO synthase inhibitors 7-nitroindazole and NG-propyl-L-arginine. The interaction between NO efflux evoked via train stimulation and local striatal neuron activity was assessed using dual microsensor and local field potential recordings carried out concurrently in the contralateral and ipsilateral striatum, respectively. Systemic administration of the non-specific NO synthase inhibitor methylene blue attenuated both evoked NO efflux and the peak oscillation frequency (within the delta band) of local field potentials recorded immediately after train stimulation. Taken together, these observations indicate that feed-forward activation of neuronal NO signaling by phasic activation of frontal cortical afferents facilitates the synchronization of glutamate driven oscillations in striatal neurons. Thus, NO signaling may act to amplify coherent corticostriatal transmission and synchronize striatal output.  相似文献   

16.
Summary The putative role of non-NMDA excitatory amino acid (EAA) receptors in the ventral tegmental area (VTA) for the increase in dopamine (DA) release in the nucleus acumbens (NAC) and the behavioural stimulation induced by systemically administered dizocilpine (MK-801) was investigated. Microdialysis was utilized in rats with probes in the VTA and NAC. The VTA was perfused with the AMPA and kainate receptor antagonist CNQX (0.3 or 1.0 mM) or vehicle and dialysates from the NAC were analyzed with high-performance liquid chromatography for DA. Forty min after onset of CNQX or vehicle perfusion of the VTA MK-801 (0.1 mg/kg) was injected subcutaneously (sc). Subsequently, typical MK-801 induced behaviours were assessed. The MK-801 induced hyperlocomotion was associated with a 50% increase of DA levels in NAC dialysates. Both the MK-801 evoked hyperlocomotion and DA release in the NAC were effectively antagonized by CNQX perfusion of the VTA. However, by itself the CNQX or vehicle perusion of the VTA did not affect DA levels in NAC or the rated behaviours. The results indicate that MK-801 induced hyperlocomotion and increased DA release in the NAC are largely elicited within the VTA via activation of non-NMDA EAA receptors, tentatively caused by locally increased EAA release. In contrast, the enhanced DA output in the NAC induced by systemic nicotine (0.5 mg/kg sc) was not antagonized by intra VTA infusion of CNQX (0.3 or 1.0 mM), but instead by infusion of the NMDA receptor antagonist AP-5 (0.3 or 1.0 mM) into the VTA, which by itself did not alter DA levels in the NAC. Thus, the probably indirect, EAA mediated activation of the mesolimbic DA neurons in the VTA by MK-801 and nicotine, respectively, seems to be mediated via different glutamate receptor subtypes.  相似文献   

17.
In vivo microdialysis was used to sample extracellular concentrations of amino acids in the dorsal lumbar spinal cord of freely moving rats. Changes in the extracellular concentrations of amino acids were measured in response to infusion of veratridine (180 microM), a sodium channel activator, as well as during acute noxious stimulation by an injection of 5% formalin into the metatarsal region of the hindleg. Veratridine produced a tetrodotoxin (TTX)-sensitive increase in the extracellular concentration of Glu. Concentrations of Asp, taurine, Ala, Asn, and Gly were not significantly elevated following veratridine stimulation. Intradermal injection of formalin produced a TTX-sensitive increase in Asp concentration and a non-TTX-sensitive increase in Glu concentration. These data support the hypothesis that Glu and Asp are dorsal horn neurotransmitters involved in nociception.  相似文献   

18.
MK-801, also known as dizocilpine, is a noncompetitive N-methyl-D-aspartic acid (NMDA) receptor antagonist that induces schizophrenia-like symptoms. While astrocytes have been implicated in the pathophysiology of psychiatric disorders, including schizophrenia, astrocytic responses to MK-801 and their significance to schizotypic symptoms are unclear. Changes in the expression levels of glial fibrillary acid protein (GFAP), a marker of astrocyte activation in response to a variety of pathogenic stimuli, were examined in the hippocampus of rats treated with the repeated MK-801 injection (0.5 mg/10ml/kg body weight for 6 days) and in primary cultured hippocampal astrocytes incubated with MK-801 (5 or 20 μM for 24 h). Moreover, the expression levels of BDNF and its receptors TrkB and p75 were examined in MK-801-treated astrocyte cultures. MK-801 treatment enhanced GFAP expression in the rat hippocampus and also increased the levels of GFAP protein and mRNA in hippocampal astrocytes in vitro. Treatment of cultured hippocampal astrocytes with MK-801 enhanced protein and mRNA levels of BDNF, TrkB, and p75. Collectively, our results suggest that hippocampal astrocytes may contribute to the pathophysiology of schizophrenia symptoms associated with NMDA receptor hypofunction by reactive transformation and altered BDNF signaling.  相似文献   

19.
Systemic administration of the noncompetitive NMDA-receptor antagonist, MK-801, has been proposed to model cognitive deficits similar to those seen in patients with schizophrenia. The present work investigated the ability of a dopamine-binding DNA aptamer to regulate these MK-801-induced cognitive deficits when injected into the nucleus accumbens. Rats were trained to bar press for chocolate pellet rewards then randomly assigned to receive an intra-accumbens injection of a DNA aptamer (200 nM; n = 7), tris buffer (n = 6) or a randomized DNA oligonucleotide (n = 7). Animals were then treated systemically with MK-801 (0.1 mg/kg) and tested for their ability to extinguish their bar pressing response. Two control groups were also included that did not receive MK-801. Data revealed that injection of Tris buffer or the random oligonucleotide sequence into the nucleus accumbens prior to treatment with MK-801 did not reduce the MK-801-induced extinction deficit. Animals continued to press at a high rate over the entire course of the extinction session. Injection of the dopamine aptamer reversed this MK-801-induced elevation in lever pressing to levels as seen in rats not treated with MK-801. Tests for activity showed that the aptamer did not impair locomotor activity. Results demonstrate the in vivo utility of DNA aptamers as tools to investigate neurobiological processes in preclinical animal models of mental health disease.  相似文献   

20.
N-methyl-D-aspartate(NMDA) glutamate receptors mediate critical components ofcardiorespiratory control in anesthetized animals. The role of NMDAreceptors in the ventilatory responses to peripheral and centralchemoreceptor stimulation was investigated in conscious, freelybehaving rats. Minute ventilation(E)responses to 10% O2, 5%CO2, and increasing intravenousdoses of sodium cyanide were measured in intact rats before and afterintravenous administration of the NMDA receptor antagonist MK-801 (3 mg/kg). After MK-801, eupcapnic tidal volume(VT) decreased while frequencyincreased, resulting in a modest reduction inE.Inspiratory time (TI) decreased, whereas expiratory time remained unchanged. TheE responsesto hypercapnia were qualitatively similar in control and MK-801conditions, with slight reductions in respiratory drive (VT/TI)after MK-801. In contrast, responses to hypoxia were markedly attenuated after MK-801 and were primarily due to reduced frequency changes, whereas VT wasunaffected. Sodium cyanide doses associated with significantEincreases were 5 and 50 µg/kg before and after MK-801,respectively. Thus 1-log shift to the right of individual dose-responsecurves occurred with MK-801. Selective carotid body denervation reducedE duringhypoxia by 70%, and residual hypoxic ventilatory responses wereabolished after MK-801. These findings suggest that, in conscious rats,carotid and other peripheral chemoreceptor-mediated hypoxic ventilatoryresponses are critically dependent on NMDA receptor activation and thatNMDA receptor mechanisms are only modestly involved during hypercapnia.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号