首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Vasodilator-stimulated phosphoprotein (VASP), an important substrate of PKA, plays a critical role in remodeling of actin cytoskeleton and actin-based cell motility. However, how PKA accurately transfers extracellular signals to VASP and then how phosphorylation of VASP regulates endothelial cell migration have not been clearly defined. Protein kinase A anchoring proteins (AKAPs) are considered to regulate intracellular-specific signal targeting of PKA via AKAP-mediated PKA anchoring. Thus, our study investigated the relationship among AKAP anchoring of PKA, PKA activity, and VASP phosphorylation, which is to clarify the exact role of VASP and its upstream regulatory mechanism in PKA-dependent migration. Our results show that chemotactic factor PDGF activated PKA, increased phosphorylation of VASP at Ser157, and enhanced ECV304 endothelial cell migration. However, phosphorylation site-directed mutation of VASP at Ser157 attenuated the chemotactic effect of PDGF on endothelial cells, suggesting phosphorylation of VASP at Ser157 promotes PKA-mediated endothelial cell migration. Furthermore, disrupting PKA anchoring to AKAP or PKA activity significantly attenuated the PKA activity, VASP phosphorylation, and subsequent cell migration. Meanwhile, disrupting PKA anchoring to AKAP abolished PDGF-induced lamellipodia formation and special VASP accumulation at leading edge of lamellipodia. These results indicate that PKA activation and PKA-mediated substrate responses in VASP phosphorylation and localization depend on PKA anchoring via AKAP in PDGF-induced endothelial cell migration. In conclusion, AKAP anchoring of PKA is an essential upstream event in regulation of PKA-mediated VASP phosphorylation and subsequent endothelial cell migration, which contributes to explore new methods for controlling endothelial cell migration related diseases and angiogenesis.  相似文献   

2.
Increased pulmonary endothelial cGMP was shown to prevent endothelial barrier dysfunction through activation of protein kinase G (PKG(I)). Vasodilator-stimulated phosphoprotein (VASP) has been hypothesized to mediate PKG(I) barrier protection because VASP is a cytoskeletal phosphorylation target of PKG(I) expressed in cell-cell junctions. Unphosphorylated VASP was proposed to increase paracellular permeability through actin polymerization and stress fiber bundling, a process inhibited by PKG(I)-mediated phosphorylation of Ser(157) and Ser(239). To test this hypothesis, we examined the role of VASP in the transient barrier dysfunction caused by H(2)O(2) in human pulmonary artery endothelial cell (HPAEC) monolayers studied without and with PKG(I) expression introduced by adenoviral infection (Ad.PKG). In the absence of PKG(I) expression, H(2)O(2) (100-250 microM) caused a transient increased permeability and pSer(157)-VASP formation that were both attenuated by protein kinase C inhibition. Potentiation of VASP Ser(157) phosphorylation by either phosphatase 2B inhibition with cyclosporin or protein kinase A activation with forskolin prolonged, rather than inhibited, the increased permeability caused by H(2)O(2). With Ad.PKG infection, inhibition of VASP expression with small interfering RNA exacerbated H(2)O(2)-induced barrier dysfunction but had no effect on cGMP-mediated barrier protection. In addition, expression of a Ser-double phosphomimetic mutant VASP failed to reproduce the protective effects of activated PKG(I). Finally, expression of a Ser-double phosphorylation-resistant VASP failed to interfere with the ability of cGMP/PKG(I) to attenuate H(2)O(2)-induced disruption of VE-cadherin homotypic binding. Our results suggest that VASP phosphorylation does not explain the protective effect of cGMP/PKG(I) on H(2)O(2)-induced endothelial barrier dysfunction in HPAEC.  相似文献   

3.
Nitric oxide (NO) regulates the function of perivascular cells (pericytes), including hepatic stellate cells (HSC), mainly by activating cGMP and cGMP-dependent kinase (PKG) via NO/cGMP paracrine signaling. Although PKG is implicated in integrin-mediated cell adhesion to extracellular matrix, whether or how PKG signaling regulates the assembly of focal adhesion complexes (FA) and migration of HSC is not known. With the help of complementary molecular and cell biological approaches, we demonstrate here that activation of PKG signaling in HSC inhibits vascular tubulogenesis, migration/chemotaxis, and assembly of mature FA plaques, as assessed by vascular tubulogenesis assays and immunofluorescence localization of FA markers such as vinculin and vasodilator-stimulated phosphoprotein (VASP). To determine whether PKG inhibits FA assembly by phosphorylation of VASP at Ser-157, Ser-239, and Thr-278, we mutated these putative phosphorylation sites to alanine (VASP3A, phosphoresistant mutant) or aspartic acid (VASP3D, phosphomimetic), respectively. Data generated from these two mutants suggest that the effect of PKG on FA is independent of these three phosphorylation sites. In contrast, activation of PKG inhibits the activity of small GTPase Rac1 and its association with the effector protein IQGAP1. Moreover, PKG activation inhibits the formation of a trimeric protein complex containing Rac1, IQGAP1, and VASP. Finally, we found that expression of a constitutively active Rac1 mutant abolishes the inhibitory effects of PKG on FA formation. In summary, our data suggest that activation of PKG signaling in pericytes inhibits FA formation by inhibiting Rac1.  相似文献   

4.
Vasodilator-stimulated phosphoprotein (VASP) is an actin regulatory protein that functions in adhesion and migration. In epithelial cells, VASP participates in cell–cell adhesion. At the molecular level, VASP drives actin bundling and polymerization. VASP activity is primarily regulated by phosphorylation. Three physiologically relevant phosphorylation sites significantly reduce actin regulatory activity and are targeted by several kinases, most notable Abl and protein kinases A and G (PKA and PKG). AMP-dependent kinase (AMPK) is best characterized as a cellular sensor of ATP depletion, but also alters actin dynamics in epithelial cells and participates in cell polarity pathways downstream of LKB1. While little is known about how AMPK direct changes in actin dynamics, AMPK has been shown to phosphorylate VASP at one of these three well-characterized PKA/PKG phosphorylation sites. Here we show that phosphorylation of VASP by AMPK occurs at a novel site, serine 322, and that phosphorylation at this site alters actin filament binding. We also show that inhibition of AMPK activity results in the accumulation of VASP at cell–cell adhesions and a concomitant increase in cell–cell adhesion.  相似文献   

5.
Pan Y  Han J  Zhang Y  Li XJ 《生理科学进展》2010,41(6):413-416
波形蛋白(vimentin)是存在于间充质细胞中的一种中间丝蛋白,近些年研究显示vimentin与肿瘤发生、转移密切相关。波形蛋白调节细胞骨架蛋白、细胞粘附分子等蛋白间的相互作用,参与肿瘤细胞和肿瘤相关内皮细胞、巨噬细胞的粘附、迁移、侵袭和细胞信号转导。其高度动态的聚合解聚间的平衡和其复杂的磷酸化形式可能是vimentin参与肿瘤转移过程及细胞-细胞间相互作用的调节机制。Vimentin在肿瘤中的功能提示,其可能是抗肿瘤转移治疗药物研究的新靶点。  相似文献   

6.
Nitric oxide (NO)- and atrial natriuretic peptide (ANP)-initiated cGMP signaling cascades are important in the maintenance of cardiovascular homeostasis. The molecular signaling mechanisms downstream of cGMP are not well understood, however. We have used small interfering RNA (siRNA) approaches to specifically knock down a series of signaling proteins in bovine aortic endothelial cells, and we have combined biochemical analyses with physiological assays to investigate cGMP-mediated signal transduction pathways. Activation of particulate guanylate cyclase (GC-A) by ANP leads to a substantial, dose-dependent, rapid, and sustained increase in intracellular cGMP. In contrast, stimulation of soluble guanylate cyclase by NO yields only a weak and transient increase in cGMP. ANP-induced cGMP production is selectively suppressed by siRNA-mediated knockdown of GC-A. ANP greatly enhances the phosphorylation at Ser-239 of the vasodilator-stimulated phosphoprotein (VASP), a major substrate of cGMP-dependent protein kinase (PKG) that significantly influences actin dynamics. Moreover, the ANP-induced phosphorylation of VASP at Ser-239 is accompanied by increased actin stress fiber formation and enhanced endothelial tube formation. siRNA-mediated knockdown of GC-A, VASP, or PKG abolishes ANP-induced VASP Ser-239 phosphorylation, stress fiber formation, and endothelial tube formation. We have demonstrated similar findings in human umbilical vein endothelial cells, where ANP substantially enhances intracellular cGMP content, phosphorylation of VASP at Ser-239, and endothelial tube formation. Taken together, our findings suggest that ANP-mediated cGMP signal transduction pathways regulate PKG phosphorylation of VASP Ser-239 in endothelial cells, resulting in reorganization of the actin cytoskeleton and enhancement of angiogenesis.  相似文献   

7.
Vasodilators capable of elevating cAMP or cGMP inhibit the activation of human platelets and stimulate the phosphorylation of a 46-kDa protein (vasodilator-stimulated phosphoprotein, VASP) mediated by cAMP-dependent protein kinase (PKA) and cGMP-dependent protein kinase (PKG). The availability of purified proteins and specific antisera against VASP, PKG and the catalytic subunit of PKA enabled us to measure and estimate the concentration of these regulatory proteins in intact human platelets. In addition, the rate of PKA- and PKG-mediated VASP phosphorylation in intact human platelets was estimated. For these calculations, a homogeneous population of human platelets and a homogeneous intracellular distribution of proteins and second messengers was assumed. Unstimulated washed human platelets contain 4.4 microM cAMP and 3.1 microM catalytic subunit of PKA, which is equivalent to 6.2 microM cAMP-binding sites due to PKA. Unstimulated washed human platelets also contain 0.4 microM cGMP and 7.3 microM PKG monomer, equivalent to 14.6 microM cGMP-binding sites due to the PKG. The intracellular concentration of VASP in platelets was estimated to be 25 microM. Treatment of washed human platelets with 10 microM (or 10 mM) prostaglandin E1 (PGE1) elevated the intracellular cAMP concentration to 27 microM (10 microM with 10 nM PGE1) within 30 s, accompanied by a rapid, up to 55% (35%), conversion of VASP from the dephosphorylated form (46-kDa protein) to the phosphorylated form (50-kDa protein). Treatment of washed human platelets with 100 microM (or 1 microM) sodium nitroprusside elevated the platelet cGMP level to 4 microM (0.9 microM with 1 microM sodium nitroprusside) within 2 min, accompanied by a less-rapid VASP phosphorylation of 45% (27% with 1 microM sodium nitroprusside). PGE1 and sodium nitroprusside had no significant effect on human platelet cGMP or cAMP levels, respectively. The results suggest for human platelets that relatively small increase in cAMP levels are required for activation of most of PKA, whereas even several-fold increases in platelet cGMP levels are capable of stimulating only a small fraction of total PKG. This interpretation was also supported by phosphorylation experiments with purified VASP, PKG and catalytic subunit of PKA. The results also support the hypothesis that in human platelets both cAMP/PKA- and cGMP/PKG-regulated VASP phosphorylation are components of an efficient and sensitive signal-transduction pathway, most likely involved in the inhibition of platelet activation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
We previously reported that isolated endothelium-removed bovine pulmonary arteries (BPAs) contract to hypoxia associated with removal of peroxide- and cGMP-mediated relaxation. In contrast, bovine coronary arteries (BCAs) relax to hypoxia associated with cytosolic NADPH oxidation coordinating multiple relaxing mechanisms. Since we recently found that H(2)O(2) relaxes BPAs through PKG activation by both soluble guanylate cyclase (sGC)/cGMP-dependent and cGMP-independent thiol oxidation/subunit dimerization mechanisms, we investigated if these mechanisms participate in BPA contraction and BCA relaxation to hypoxia. The contraction of BPA (precontracted with 20 mM KCl) to hypoxia was associated with decreased PKG dimerization and PKG-mediated vasodilator-stimulated phosphoprotein (VASP) phosphorylation. In contrast, exposure of 20 mM KCl-precontracted endothelium-removed BCAs to hypoxia caused relaxation and increased dimerization and VASP phosphorylation. Depletion of sGC by organoid culture of BPAs with an oxidant of the sGC heme (10 μM 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one) increased aerobic force generation, decreased VASP phosphorylation, and inhibited further contraction to hypoxia and changes in VASP phosphorylation. Thiol reduction with dithiothreitol increased aerobic force in BPAs and decreased PKG dimerization, VASP phosphorylation, and the contraction to hypoxia. Furthermore, PKG-1α and sGC β(1)-subunit small interfering RNA-transfected BPAs demonstrated increased aerobic K(+) force and inhibition of further contraction to hypoxia, associated with an attenuation of H(2)O(2)-elicited relaxation and VASP phosphorylation. Thus, decreases in both a sGC/cGMP-dependent and a dimerization-dependent activation of PKG by H(2)O(2) appear to contribute to the contraction of BPAs elicited by hypoxia. In addition, stimulation of PKG activation by dimerization may be important in the relaxation of coronary arteries to hypoxia.  相似文献   

9.
Connexin 43 (Cx43) expression is associated with an increased cell migration and related changes of the actin cytoskeleton (enhanced filopodia formation). These effects are mediated by the C-terminal cytoplasmic part of Cx43 in a channel-independent manner. Since this part has been shown to interact with a variety of proteins and has multiple phosphorylation sites we analyzed here a potential role of the protein kinase A (PKA) for the Cx43 mediated increase in cell migration. Mutation of the PKA-phosphorylation site (substitution of three serines by alanine or glycine) resulted in a further increase in cell motility compared to wild-type Cx43, but with a loss of directionality. Likewise, cell motility was enhanced by PKA inhibition only in Cx43 expressing cells, while reduced in the presence of the PKA activator forskolin. In contrast, cell motility remained unaffected by stimulation with forskolin in cells expressing Cx43 with the mutated PKA phosphorylation site (Cx43-PKA) as well as in Cx-deficient cells. Moreover, PKA activation resulted in increased binding of PKA and VASP to Cx43 associated with an enhanced phosphorylation of VASP, an important regulatory protein of cell polarity and directed migration. Functionally, we could confirm these results in endothelial cells endogenously expressing Cx43. A Tat-Cx43 peptide containing the PKA phosphorylation site abolished the PKA dependent reduction in endothelial cell migration. Our results indicate that PKA dependent phosphorylation of Cx43 modulates cell motility and plays a pivotal role in regulating directed cell migration.  相似文献   

10.
11.
Nitric oxide (NO) is known to regulate contractility and proliferation of cells within the prostate, however, the mechanism by which this occurs is unknown. The cGMP-dependent protein kinase (PKG) signalling pathway may be involved, and recent work has shown that activation of this pathway can be assessed by analysis of phosphorylation of vasodilator-stimulated phosphoprotein (VASP). The aim of the current study is to characterise the expression of VASP in the human prostate and human cultured prostatic stromal cells (HCPSCs), and to investigate whether NO activates PKG in these cells. Our studies revealed that VASP is expressed, and that incubation of HCPSCs with PKG-activating cGMP-analogues or the NO-donor, SNP, caused a significant PKG-dependent increase in VASP serine-239 phosphorylation. In addition, SNP elicited a reduction in intracellular K(+) in a time frame consistent with the phosphorylation of VASP and activation of PKG. These data demonstrate that VASP can be used to assess the NO/cGMP/PKG signalling pathway in HCPSCs. In addition, we demonstrate for the first time that SNP, probably via NO release, leads to phosphorylation of VASP in a manner consistent with PKG activation.  相似文献   

12.
Endogenously produced nitric oxide synthase inhibitor, asymmetric methylarginine (ADMA) is associated with vascular dysfunction and endothelial leakage. We studied the role of ADMA, and the enzymes metabolizing it, dimethylarginine dimethylaminohydrolases (DDAH) in the regulation of endothelial barrier function in pulmonary macrovascular and microvascular cells in vitro and in lungs of genetically modified heterozygous DDAHI knockout mice in vivo. We show that ADMA increases pulmonary endothelial permeability in vitro and in in vivo and that this effect is mediated by nitric oxide (NO) acting via protein kinase G (PKG) and independent of reactive oxygen species formation. ADMA-induced remodeling of actin cytoskeleton and intercellular adherens junctions results from a decrease in PKG-mediated phosphorylation of vasodilator-stimulated phosphoprotein (VASP) and a subsequent down-regulation of Rac1 activity. The effects of ADMA on endothelial permeability, Rac1 activation and VASP phosphorylation are prevented by overexpression of active DDAHI and DDAHII, whereas inactive DDAH mutants have no effect. These findings demonstrate for the first time that ADMA metabolism critically determines pulmonary endothelial barrier function by modulating Rac1-mediated remodeling of the actin cytoskeleton and intercellular junctions.  相似文献   

13.
The 1,029 series of mammary epithelial cell lines (D6, GP+E, r3 and r3T) are progressively more transformed: the latter two by val(12)ras. These cell lines respond to TGFbeta by undergoing early events of epithelial-mesenchymal transition (EMT), including morphological changes and redistribution of E-cadherin. Tumors formed by r3T cells in the choroid of the eye express vimentin, a late marker of EMT, possibly in response to TGFbeta. In vitro, vimentin expression is induced in all the cell lines by TGFbeta treatment, whereas cytokeratin expression is only slightly affected. Surprisingly, ras transformation results in a 10-fold suppression of vimentin expression. Neither suppression of vimentin by ras transformation nor induction by TGFbeta is mediated by the vimentin promoter in r3T cells. In transient transfection assays, several human vimentin promoter constructs are more active in the low-expressing r3T cell line than in the vimentin-expressing mesenchymal cell line NIH3T3. In the r3T cells, there is no effect of TGFbeta treatment for 9 days on the activity of either promoter. Azacytidine treatment does not affect vimentin expression in either NIH3T3 or r3T, suggesting that promoter methylation is not the mechanism of suppression by ras. Finally, the half-life of the vimentin mRNA is similar in both the r3T cells and NIH3T3 cells. We conclude that the suppression of vimentin expression by ras, and the relief of this suppression by TGFbeta, occurs in a promoter-independent fashion, possibly through sequences in the first or second intron.  相似文献   

14.
As a gatekeeper of leukocyte trafficking the vasculature fulfills an essential immune function. We have recently shown that paracellular transendothelial lymphocyte migration is controlled by intercellular adhesion molecule 1 (ICAM-1)-mediated vascular endothelial cadherin (VEC) phosphorylation [Turowski et al., J. Cell Sci. 121, 29–37 (2008)]. Here we show that endothelial nitric oxide synthase (eNOS) is a critical regulator of this pathway. ICAM-1 stimulated eNOS by a mechanism that was clearly distinct from that utilized by insulin. In particular, phosphorylation of eNOS on S1177 in response to ICAM-1 activation was regulated by src family protein kinase, rho GTPase, Ca2+, CaMKK, and AMPK, but not Akt/PI3K. Functional neutralization of any component of this pathway or its downstream effector guanylyl cyclase significantly reduced lymphocyte diapedesis across the endothelial monolayer. In turn, activation of NO signaling promoted lymphocyte transmigration. The eNOS signaling pathway was required for T-cell transmigration across primary rat and human microvascular endothelial cells and also when shear flow was applied, suggesting that this pathway is ubiquitously used. These data reveal a novel and essential role of eNOS in basic immune function and provide a key link in the molecular network governing endothelial cell compliance to diapedesis.  相似文献   

15.
Recent studies point to a significant role of vasodilator‐stimulated phosphoprotein (VASP) in the maintenance of endothelial barrier functions in vivo and in vitro. Moreover, it has been reported that VASP is required for activation of the small GTPase Rac 1. However, little is known whether VASP is involved in the regulation of cell adhesion molecules that are critical for maintenance of the endothelial barrier. Here we demonstrate that impaired barrier properties in VASP‐deficient (VASP?/?) microvascular myocardial endothelial cells (MyEnd) correlated with both impaired integrin‐mediated adhesion as revealed by laser tweezer trapping and reduced integrin‐dependent cell migration. This was paralleled by reduction of focal adhesions at the cell periphery as well as of β1‐integrin and VE‐cadherin cytoskeletal anchorage. Incubation of MyEnd VASP wt with RGD peptide to block interaction of integrins with extracellular matrix (ECM) reduced barrier properties and Rac 1 activity in wt endothelial monolayers mimicking the situation in VASP (?/?) cells under resting conditions. Moreover, cAMP‐mediated Rac 1 activation was reduced under conditions of impaired integrin‐mediated adhesion in wt cells and cAMP‐induced increase in VE‐cadherin cytoskeletal anchorage was abolished in VASP (?/?) endothelium. In summary, these data indicate that VASP is required for integrin‐mediated adhesion which stabilizes endothelial barrier properties at least in part by facilitating Rac 1 activation. J. Cell. Physiol. 220: 357–366, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
Leukocyte transendothelial migration (TEM) has been modeled as a multistep process beginning with rolling adhesion, followed by firm adhesion, and ending with either transcellular or paracellular passage of the leukocyte across the endothelial monolayer. In the case of paracellular TEM, endothelial cell (EC) junctions are transiently disassembled to allow passage of leukocytes. Numerous lines of evidence demonstrate that tyrosine phosphorylation of adherens junction proteins, such as vascular endothelial cadherin (VE-cadherin) and beta-catenin, correlates with the disassembly of junctions. However, the role of tyrosine phosphorylation in the regulation of junctions during leukocyte TEM is not completely understood. Using human leukocytes and EC, we show that ICAM-1 engagement leads to activation of two tyrosine kinases, Src and Pyk2. Using phospho-specific Abs, we show that engagement of ICAM-1 induces phosphorylation of VE-cadherin on tyrosines 658 and 731, which correspond to the p120-catenin and beta-catenin binding sites, respectively. These phosphorylation events require the activity of both Src and Pyk2. We find that inhibition of endothelial Src with PP2 or SU6656 blocks neutrophil transmigration (71.1 +/- 3.8% and 48.6 +/- 3.8% reduction, respectively), whereas inhibition of endothelial Pyk2 also results in decreased neutrophil transmigration (25.5 +/- 6.0% reduction). Moreover, overexpression of the nonphosphorylatable Y658F or Y731F mutants of VE-cadherin impairs transmigration of neutrophils compared with overexpression of wild-type VE-cadherin (32.7 +/- 7.1% and 38.8 +/- 6.5% reduction, respectively). Our results demonstrate that engagement of ICAM-1 by leukocytes results in tyrosine phosphorylation of VE-cadherin, which is required for efficient neutrophil TEM.  相似文献   

17.
Nitric oxide (NO) is generated by tumor, stromal and endothelial cells and plays a multifaceted role in tumor biology. Many physiological functions of NO are mediated by soluble guanylyl cyclase (sGC) and NO/sGC signaling has been shown to promote proliferation and survival of ovarian cancer cells. However, how NO/sGC signaling is modulated in ovarian cancer cells has not been studied. The evolutionarily conserved Notch signaling pathway plays an oncogenic role in ovarian cancer. Here, we report that all three ovarian cancer cell lines we examined express a higher level of GUCY1B3 (the β subunit of sGC) compared to non-cancerous immortalized ovarian surface epithelial (IOSE) cell lines. Interestingly, the highest expression of GUCY1B3 in ovarian cancer OVCAR3 cells is concurrent with the expression of Notch3. In IOSE cells, forced activation of Notch3 increases the expression of GUCY1B3, NO-induced cGMP production, and the expression of cGMP-dependent protein kinase (PKG), thereby enhancing NO- and cGMP-induced phosphorylation of vasodilator-stimulated phosphoprotein (VASP, a direct PKG substrate protein). In contrast, inhibition of Notch by DAPT reduces GUCY1B3 expression and NO-induced cGMP production and VASP phosphorylation in OVCAR3 cells. Finally, we confirmed that inhibition of sGC by ODQ decreases growth of ovarian cancer cells. Together, our work demonstrates that Notch is a positive regulator of NO/sGC signaling in IOSE and ovarian cancer cells, providing the first evidence that Notch and NO signaling pathways interact in IOSE and ovarian cancer cells.  相似文献   

18.
波形蛋白是中间纤维蛋白的一种,参与细胞骨架与胞膜的形成。研究发现,波形蛋白在多种上皮癌中大量表达,如前列腺癌、乳腺癌及胃肠道肿瘤等,且参与这些肿瘤的发生发展过程,但是目前其具体作用机制尚不清楚。临床研究发现,波形蛋白能够作为肿瘤诊断与治疗的标志物,探讨波形蛋白分子机制研究及在肿瘤发生发展过程中的作用十分重要。本文主要就波形蛋白在几种肿瘤中的表达及其对肿瘤细胞增殖、迁移的作用进行综述。  相似文献   

19.
Anoikis is an essential process in which a loss of adhesion to the substratum alters intracellular signaling pathways that lead to apoptosis. Using phosphorylation of vasodilator stimulated phosphoprotein (VASP) as an indicator of cGMP-dependent protein kinase (PKG) activity in vivo, it was found that suspension of the colon epithelial cell line (CCD841) leads to rapid and transient activation of PKG that lasted several hours. The colon carcinoma lines SW480 and SW620 do not express endogenous PKG, but exogenously expressed PKG was similarly activated upon cell suspension. To determine whether PKG has a role in apoptosis following cell suspension, poly-ADP ribose polymerase (PARP) cleavage and propidium iodide staining were measured. After 24 h in suspension it was found that approximately 50% of CCD841 cells exhibited apoptosis, whereas apoptosis was not detected in either of the colon carcinoma cell lines. Inhibition of type 1 PKG by expression of a dominant negative PKG construct (G1alphaR-GFP), or by incubation with the PKG inhibitor peptide DT-2, blocked apoptosis in suspended CCD841 cells by approximately 50%. Furthermore, expression of exogenous PKG in SW620 and SW480 cells conferred partial sensitivity anoikis. Taken together these findings indicate that PKG has an important role in the induction of apoptosis following suspension of normal colon epithelial cells, and loss of PKG expression in colon tumor cells may contribute to resistance to anoikis.  相似文献   

20.
Vimentin is the major intermediate filament (IF) protein of mesenchymal cells. It shows dynamically altered expression patterns during different developmental stages and high sequence homology throughout all vertebrates, suggesting that the protein is physiologically important. Still, until recently, the real tasks of vimentin have been elusive, primarily because the vimentin-deficient mice were originally characterized as having a very mild phenotype. Recent studies have revealed several key functions for vimentin that were not obvious at first sight. Vimentin emerges as an organizer of a number of critical proteins involved in attachment, migration, and cell signaling. The highly dynamic and complex phosphorylation of vimentin seems to be a likely regulator mechanism for these functions. The implicated novel vimentin functions have broad ramifications into many different aspects of cell physiology, cellular interactions, and organ homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号