首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.

Background

Decrease in lacrimal gland secretory function is related to age-induced dry eye disease. Lactoferrin, the main glycoprotein component of tears, has multiple functions, including anti-inflammatory effects and the promotion of cell growth. We investigated how oral administration of lactoferrin affects age-related lacrimal dysfunction.

Methods and Findings

Twelve-month-old male C57BL/6Cr Slc mice were randomly divided into a control fed group and an oral lactoferrin treatment group. Tear function was measured at a 6-month time-point. After euthanasia, the lacrimal glands were subjected to histological examination with 8-hydroxy-2′-deoxyguanosine (8-OHdG) antibodies, and serum concentrations of 8-OHdG and hexanoyl-lysine adduct (HEL) were evaluated. Additionally, monocyte chemotactic protein-1(MCP-1) and tumor necrosis factor-α (TNF-α) gene expression levels were determined by real-time PCR. The volume of tear secretion was significantly larger in the treated group than in the control. Lactoferrin administration reduced inflammatory cell infiltration and the MCP-1 and TNF-α expression levels. Serum concentrations of 8-OHdG and HEL in the lactoferrin group were lower than those in the control group and were associated with attenuated 8-OHdG immunostaining of the lacrimal glands.

Conclusion

Oral lactoferrin administration preserves lacrimal gland function in aged mice by attenuating oxidative damage and suppressing subsequent gland inflammation.  相似文献   

2.
VEGF and NGF are known to modulate corneal healing, neovascularisation and tear secretion. While a VEGF-NGF cross talk has been recently shown to modulate corneal healing in rats, it is not known whether it also plays a role in the regulation of lacrimal function. In this study we aim to investigate the effects of anti-VEGF eye drop treatment on lacrimal gland function and on the local expression of VEGF and NGF in rats. Tear function was measured in 3 months old rats by modified Schirmer test at baseline and after 3 weeks of topical anti-VEGF eye drop treatment. Whole lacrimal glands from rats were removed after treatment and analysed by ELISA for VEGF and NGF levels. To investigate if the effects of anti-VEGF were mediated by changes in the NGF-pathway, we repeated the experiments in RCS rats, a strain with NGF-pathway impairment associated with decreased tear flow. After topical treatment with anti-VEGF eye drops, an increase in tear secretion was observed in both wild-type and RCS rats. A significant decrease of VEGF levels was also observed in lacrimal glands of both RCS and SD rats, accompanied by a significant increase in NGF levels. Inhibition of VEGF at the ocular surface in rats results in changes of tear function and lacrimal gland levels of VEGF and NGF. Further studies on the VEGF/NGF cross-talk at the ocular surface may expand our knowledge on the pathogenesis of several diseases characterized by tear dysfunction.  相似文献   

3.

Background

Dry eye has shown a marked increase due to visual display terminal (VDT) use. It remains unclear whether reduced blinking while focusing can have a direct deleterious impact on the lacrimal gland function. To address this issue that potentially affects the life quality, we conducted a large-scale epidemiological study of VDT users and an animal study.

Methodology/Principal Findings

Cross sectional survey carried out in Japan. A total of 1025 office workers who use VDT were enrolled. The association between VDT work duration and changes in tear film status, precorneal tear stability, lipid layer status and tear secretion were analyzed. For the animal model study, the rat VDT user model, placing rats onto a balance swing in combination with exposure to an evaporative environment was used to analyze lacrimal gland function. There was no positive relationship between VDT working duration and change in tear film stability and lipid layer status. The odds ratio for decrease in Schirmer score, index of tear secretion, were significantly increased with VDT working year (P = 0.012) and time (P = 0.005). The rat VDT user model, showed chronic reduction of tear secretion and was accompanied by an impairment of the lacrimal gland function and morphology. This dysfunction was recovered when rats were moved to resting conditions without the swing.

Conclusions/Significance

These data suggest that lacrimal gland hypofunction is associated with VDT use and may be a critical mechanism for VDT-associated dry eye. We believe this to be the first mechanistic link to the pathogenesis of dry eye in office workers.  相似文献   

4.
Oxidative damage and inflammation are proposed to be involved in an age-related functional decline of exocrine glands. However, the molecular mechanism of how oxidative stress affects the secretory function of exocrine glands is unclear. We developed a novel mev-1 conditional transgenic mouse model (Tet-mev-1) using a modified tetracycline system (Tet-On/Off system). This mouse model demonstrated decreased tear production with morphological changes including leukocytic infiltration and fibrosis. We found that the mev-1 gene encodes Cyt-1, which is the cytochrome b560 large subunit of succinate-ubiquinone oxidoreductase in complex II of mitochondria (homologous to succinate dehydrogenase C subunit (SDHC) in humans). The mev-1 gene induced excessive oxidative stress associated with ocular surface epithelial damage and a decrease in protein and aqueous secretory function. This new model provides evidence that mitochondrial oxidative damage in the lacrimal gland induces lacrimal dysfunction resulting in dry eye disease. Tear volume in Tet-mev-1 mice was lower than in wild type mice and histopathological analyses showed the hallmarks of lacrimal gland inflammation by intense mononuclear leukocytic infiltration and fibrosis in the lacrimal gland of Tet-mev-1 mice. These findings strongly suggest that oxidative stress can be a causative factor for the development of dry eye disease.  相似文献   

5.
Sjögren's syndrome, an inflammatory disease affecting the lacrimal and salivary glands, is the leading cause of aqueous tear‐deficient type of dry eye. We previously showed that interleukin‐1β (IL‐1β) protein is up regulated in the lacrimal gland of a murine model of Sjögren's syndrome and that exogenous addition of this cytokine inhibits neurotransmitter release and lacrimal gland protein secretion. In the present study we investigated the role of c‐Jun NH2‐terminal kinase (JNK) in IL‐1β‐mediated inhibition of lacrimal gland secretion and tear production. In vitro, IL‐1β induced a time‐dependent activation of JNK with a maximum 7.5‐fold at 30 min. SP600125, a JNK inhibitor, inhibited, in a concentration‐dependent manner, IL‐1β‐induced activation of JNK with a maximum of 87% at 10?4 m . In vivo, IL‐1β stimulated JNK and the expression of the inducible isoform of nitric oxide synthase (iNOS). IL‐1β inhibited high KCl and adrenergic agonist induced protein secretion by 85% and 66%, respectively. SP600125 alleviated the inhibitory effect of IL‐1β on KCl‐ and agonist‐induced protein secretion by 79% and 47%, respectively, and completely blocked the expression of iNOS. Treatment for 7 days with SP600125 increased tear production in a murine model of Sjögren's syndrome dry eye. We conclude that JNK plays a pivotal role in IL‐1β‐mediated inhibition of lacrimal gland secretion and subsequent dry eye.  相似文献   

6.
The ocular surface is always attacked by oxidative stress, and cornea epithelial cells are supposed to have their own recovery system against oxidative stress. Therefore we hypothesized that tears supply key molecules for preventing oxidative stress in cornea. The potential target key molecule we focused is selenoprotein P (SeP). SeP is a carrier of selenium, which is an essential trace element for many animals, for oxidative stress metabolism in the organism, and was extremely expressed in lacrimal gland. An experiment was performed with SeP eye drops in a rat dry eye model, prepared by removing the lacrimal glands. The anticipated improvement in corneal dry eye index and the suppression of oxidative stress markers were observed in SeP eye drop group. Furthermore, the concentration of SeP was significantly higher in dry eye patients compared with normal volunteers. Collectively, we concluded that tear SeP is a key molecule to protect the ocular surface cells against environmental oxidative stress.  相似文献   

7.
The objective of the current investigation was to explore the processes underlying the androgen control of tear IgA and to determine whether hormone exposure also modifies tear IgG content. In addition, studies evaluated the impact of diabetes on the androgen regulation of secretory immunity in the eye. Tears and lacrimal glands were collected from age-matched, adult male rats, which had undergone hypophysectomy, selective ablation of the anterior pituitary, streptozotocin-induced diabetes, sham-surgery and/or orchiectomy and had been exposed to vehicle or physiological amounts of testosterone for varying periods of time. Our findings demonstrated that testosterone administration selectively increased the accumulation of IgA, but not IgG, in tears and lacrimal glands of orchiectomized rats. This hormone effect was associated with a 2-fold enhancement of the IgA transfer from lacrimal tissue to tears; IgA movement was against a gradient. In contrast, androgen exposure had no significant influence on the lacrimal gland/tear transfer of IgG, which was down a 90-fold gradient. Testosterone action on the lacrimal gland appeared to involve an increase in IgA production, but not a consistent alteration in the total number of IgA-containing cells. Similarly, androgen exposure had no impact on the population of IgG-containing lymphocytes in lacrimal tissue. Of interest, ablation of the anterior or entire pituitary in orchiectomized rats, which procedure inhibits testosterone-induced stimulation of tear IgA levels, significantly reduced the total number of IgA-containing cells in the lacrimal gland. Induction of diabetes by streptozotocin injection to orchiectomized rats resulted in diminished tear IgA content and decreased numbers of lacrimal IgA-positive lymphocytes, but did not prevent the testosterone-associated rise in IgA antibody content. In summary, our findings demonstrate that androgens increase the lacrimal gland production and secretion of IgA, but not IgG.  相似文献   

8.
Present investigation evaluates the effect of daidzin in dry eye rat model through the suppression of inflammation and oxidative stress in the cornea. Briefly, electron spine resonance was used for the estimation of radical scavenging activity of daidzin and COX Fluorescent Activity Assay Kit was used for the estimation of PGS activity. Dry eye rat model was developed by removing the lacrimal gland and effect of daidzin was evaluated in dry eye rat model by estimating the fluorescein score, tear volume and expressions of heme oxigenase (HO-1), TNF α, Interlukin 6 (IL-6), matrix metallopeptidase 9 (MMP-9) and PGS-2. Result of the present study suggested that daidzin possess tyrosyl radical scavenging activity and thereby decreases the oxidative stress. Activity of PGS significantly increases in dry eye which was inhibited by daidzin treatment due to competitive inhibition of PGS. It also recovers the tear volume in dry eye rat model in which lacrimal gland was removed. Thus corneal erosion was improved by daidzin in dry eye rat model. Thus present study concludes that treatment with daidzin protects the cornea in dry eye rat model by suppression inflammation and oxidative stress.  相似文献   

9.
Tears are secreted from the lacrimal gland (LG), a dysfunction in which induces dry eye, resulting in ocular discomfort and visual impairment. Honey bee products are used as a nutritional source in daily life and medicine; however, little is known about their effects on dry eye. The aim of the present study was to investigate the effects of honey bee products on tear secretion capacity in dry eye. We selected raw honey, propolis, royal jelly (RJ), pollen, or larva from commercially available honey bee products. Tear secretion capacity was evaluated following the oral administration of each honey bee product in a rat blink-suppressed dry eye model. Changes in tear secretion, LG ATP content, and LG mitochondrial levels were measured. RJ restored the tear secretion capacity and decrease in LG ATP content and mitochondrial levels to the largest extent. Royal jelly can be used as a preventative intervention for dry eye by managing tear secretion capacity in the LG.  相似文献   

10.
The ocular surface is strongly affected by oxidative stress, and anti-oxidative systems are maintained in corneal epithelial cells and tear fluid. Dry eye is recognized as an oxidative stress-induced disease. Selenium compound eye drops are expected to be a candidate for the treatment of dry eye. We estimated the efficacy of several selenium compounds in the treatment of dry eye using a dry eye rat model. All of the studied selenium compounds were uptaken into corneal epithelial cells in vitro. However, when the selenium compounds were administered as eye drops in the dry eye rat model, most of the selenium compounds did not show effectiveness except for Se-lactoferrin. Se-lactoferrin is a lactoferrin that we prepared that binds selenium instead of iron. Se-lactoferrin eye drops suppressed the up-regulated expression of heme oxygenase-1, cyclooxygenase-2, matrix metallopeptidase-9, and interleukin-6 and also suppressed 8-OHdG production in the cornea induced by surgical removal of the lacrimal glands. Compared with Se-lactoferrin, apolactoferrin eye drops weakly improved dry eye in high dose. The effect of Se-lactoferrin eye drops on dry eye is possibly due to the effect of selenium and also the effect of apolactoferrin. Se-lactoferrin is a candidate for the treatment of dry eye via regulation of oxidative stress in the corneal epithelium.  相似文献   

11.
MUC16 in the lacrimal apparatus   总被引:2,自引:1,他引:1  
The aim of the present study was to determine the possible expression of the mucin MUC16 in the lacrimal apparatus. Expression and distribution of MUC16 in lacrimal gland, accessory lacrimal glands, and nasolacrimal ducts was monitored by RT-PCR and immunohistochemistry. MUC16 was expressed and detected in all tissues investigated. Comparable to conjunctiva and cornea it was membrane-anchored in accessory lacrimal glands whereas in lacrimal gland acinar cells and columnar cells of the nasolacrimal ducts it was stored in intracytoplasmic vesicles without membrane-association. Subepithelial serous glands of the nasolacrimal ducts revealed staining of the secretion product. Intracelluar production of MUC16 is present in lacrimal gland and epithelial cells of the nasolacrimal ducts but it is not clear whether this MUC16 is secreted. MUC16 seems to be shedded or secreted from the epithelial surface of subepithelial serous glands of the nasolacrimal ducts. Our results show that MUC16 is present in the whole lacrimal apparatus. Its distribution pattern suggests different physiological functions with regard to tear film physiology and tear outflow. Moreover, the results demonstrate the existence of so far not recognized qualitative differences in the secretion product of main lacrimal gland and accessory lacrimal glands (glands of Krause).  相似文献   

12.
To gain insight into the significance of alterations in the proteasome pathway for sarcopenia and its attenuation by calorie restriction, we examined protein oxidation and components of the proteasome pathway in plantaris muscle in 8-, 30-, and 35-mo-old ad libitum-fed (AL) rats; and in 8-, 35-, and 40-mo-old calorie-restricted (CR) rats. We hypothesized that CR rats would exhibit a lesser accumulation of protein carbonyls with aging and that this would be associated with a better maintenance of skeletal muscle proteasome activity and function with aging. Consistent with this view, whereas AL rats had a significant increase in protein carbonylation with aging, there was no such increase in CR rats. Protein levels of the ubiquitin ligases MuRF1 and MAFbx increased similarly with aging in both AL and CR rats. On the other hand, chymotrypsin-like activity of the proteasome increased with aging more gradually in CR rats, and this increase was paralleled by increases in the expression of the C2 subunit in both groups, suggesting that differences in activity were not related to differences in proteasome function with aging. Interestingly, the plot of muscle mass vs. proteasome activity showed that the oldest animals in both diets had a lower muscle mass than would be predicted by their proteasome activity, suggesting that other factors explain the acceleration of sarcopenia at advanced age. Since calorie restriction better protects skeletal muscle function than muscle mass with aging (Hepple RT, Baker DJ, Kaczor JJ, Krause DJ, FASEB J 19: 1320-1322, 2005), and our current results show that this protection of function is associated with a prevention of oxidative protein damage accumulation, we suggest that calorie restriction optimizes the proteasome pathway to preserve skeletal muscle function at the expense of modest muscle atrophy.  相似文献   

13.
The effect of long-term calorie restriction (CR) on metabolites, fatty acid profiles and energy substrate transporter expression in the brain was assessed in aged rats. Three groups of male Sprague–Dawley rats were studied: (i) a 2 month old ad libitum-fed (2AL group), (ii) a 19 month old ad libitum-fed (19AL group), and (iii) a 19 month old group subjected to 40% CR from the age of 7.5 to 19 months (19CR group). The diet contained high sucrose and low n-3 polyunsaturated fatty acids (PUFA) so as to imitate a Western-style diet. High resolution magic angle spinning-1H NMR showed an effect of aging on brain cortex metabolites compared to 2AL rats, the largest differences being for myo-inositol (+251% and +181%), lactate (+203% and +188%), β-hydroxybutyrate (+176% and +618%) and choline (+148% and +120%), in 19AL and 19 CR rats, respectively. However, brain metabolites did not differ between the 19AL and 19CR groups. Cortex fatty acid profiles showed that n-3 PUFA were 35–47% lower but monounsaturated fatty acids were 40–52% higher in 19AL and 19CR rats compared to 2AL rats. Brain microvessel glucose transporter (GLUT1) was 68% higher in 19AL rats than in 2AL rats, while the monocarboxylate transporter, MCT1, was 61% lower in 19CR rats compared to 19AL rats. We conclude that on a high-sucrose, low n-3 PUFA diet, the brain of aged AL rats had higher metabolites and microvessel GLUT1 expression compared to 2AL rats. However, long-term CR in aged rats did not markedly change brain metabolite or fatty acid profile, but did reduce brain microvessel MCT1 expression.  相似文献   

14.
Previous observations in a rat model of a non-Sjögren''s syndrome (non-SS) type of dry eye seen in users of visual display terminals (VDT) indicated that secretory vesicle (SV) accumulation in the lacrimal gland epithelia contributes to the condition. Here, to examine this possibility in humans, we compared the lacrimal gland histology and percent SV area in the cytoplasm of acinar epithelial cells using light microscopy and transmission electron microscopy, in patients with VDT work-related non-SS dry-eye (VDT group), SS-induced dry-eye, and autopsied normal controls. In addition, the VAMP8 (vesicle-associated membrane protein 8, an exocrine-pathway molecule) and Rab3D (mature vesicle marker) were histochemically examined in lacrimal gland tissue sections. The lacrimal gland acini were larger in the VDT group than in the SS group, and the percent SV area was significantly higher in the VDT group than in the normal controls (P = 0.021) or SS group (P = 0.004). Immunostaining revealed abnormal distributions of VAMP8 in the VDT and SS groups. Rab3D was more strongly expressed in the cytoplasm of acinar epithelial cells in the VDT group than in that of normal controls. The duration of VDT use was significantly longer in the VDT group than in the other groups. These findings suggest that excessive SV accumulation in the acinar epithelia may contribute to the reduced tear secretion in VDT users.  相似文献   

15.
Lacrimal glands provide the important function of lubricating and protecting the ocular surface. Failure of proper lacrimal gland function results in a number of debilitating dry eye diseases. Lacrimal glands secrete lipids, mucins, proteins, salts and water and these secretions are at least partially regulated by neurotransmitter-mediated cell signaling. The predominant signaling mechanism for lacrimal secretion involves activation of phospholipase C, generation of the Ca2+-mobilizing messenger, IP3, and release of Ca2+ stored in the endoplasmic reticulum. The loss of Ca2+ from the endoplasmic reticulum then triggers a process known as store-operated Ca2+ entry, involving a Ca2+ sensor in the endoplasmic reticulum, STIM1, which activates plasma membrane store-operated channels comprised of Orai subunits. Recent studies with deletions of the channel subunit, Orai1, confirm the important role of SOCE in both fluid and protein secretion in lacrimal glands, both in vivo and in vitro.  相似文献   

16.
Heat shock preconditioning (HSPC) is a promising strategy for providing ischemic tolerance. The objective of this study is to investigate the effectiveness of HSPC in preventing oxidative damage of cellular proteins and DNA during ischemia-reperfusion of the liver. Male Wistar rats were divided into a heat shock group (group HS) and control (group C). Forty-eight hours prior to ischemia, rats in group HS received HSPC at 42°C for 15 &#117 min. All rats received hepatic warm ischemia for 30 &#117 min and subsequent reperfusion. The formation of 8-hydroxy-2'-deoxyguanosine (8-OHdG), 4-hydroxy-2-nonenal (HNE) modified proteins in liver tissue, survival rate of the animals, and changes in biochemical and histological parameters were compared between groups. Heat shock protein 72 was produced only in group HS. The 7-day survival of rats was significantly better in group HS (10/10) than in group C (5/10) ( p <0.01). The serum release of alanine aminotransferase ( n =10, p <0.01) and the concentration of adenosine triphosphate in liver tissue ( n =10, p <0.01) 40 &#117 min after reperfusion was significantly better in group HS than in group C. The formation of 8-OHdG in liver tissue measured by high-performance liquid chromatography was suppressed in group HS ( p <0.01). The production of HNE-modified proteins as determined by Western-blot analysis was also decreased in group HS. These results were also confirmed by immunohistochemical analysis. As determined by levels of 8-OHdG and HNE-modified proteins produced during ischemia-reperfusion of the liver, HSPC reduced the oxidative injury of cellular proteins and DNA in the liver tissue.  相似文献   

17.
Current treatments for meibomian gland dysfunction have several limitations, creating a necessity for other advanced treatment options. The purpose of this study is to determine the effectiveness of focused ultrasound stimulation for the treatment of dry eye disease caused by meibomian gland dysfunction. An in vivo study of nine Dutch Belted rabbits was conducted with focused ultrasound stimulation of the meibomian glands. A customized line-focused ultrasonic transducer was designed for treatment. Fluorescein imaging, Schirmer’s test, and Lipiview II ocular interferometer were used to quantify outcomes from three aspects: safety, tear production, and lipid layer thickness. Both tear secretion and lipid layer thickness improved following ultrasound treatment. Five to 10 min after the ultrasound treatment, the mean values of lipid layer thickness increased from 55.33 ± 11.15 nm to 95.67 ± 22.77 nm (p < 0.05), while the mean values measured with the Schirmer’s test increased from 2.0 ± 2.3 to 7.2 ± 4.3 (p < 0.05). Positive effects lasted more than three weeks. Adverse events such as redness, swelling, and mild burn, occurred in two rabbits in preliminary experiments when the eyelids sustained a temperature higher than 42°C. No serious adverse events were found. The results suggest that ultrasound stimulation of meibomian glands can improve both tear production and lipid secretion. Ultimately, ultrasound stimulation has the potential to be an option for the treatment of evaporative dry eye disease caused by meibomian gland dysfunction.  相似文献   

18.
The molecular mechanism governing the regulated secretion of most exocrine tissues remains elusive, although VAMP8/endobrevin has recently been shown to be the major vesicular SNARE (v-SNARE) of zymogen granules of pancreatic exocrine acinar cells. In this article, we have characterized the role of VAMP8 in the entire exocrine system. Immunohistochemical studies showed that VAMP8 is expressed in all examined exocrine tissues such as salivary glands, lacrimal (tear) glands, sweat glands, sebaceous glands, mammary glands, and the prostate. Severe anomalies were observed in the salivary and lacrimal glands of VAMP8-null mice. Mutant salivary glands accumulated amylase and carbonic anhydrase VI. Electron microscopy revealed an accumulation of secretory granules in the acinar cells of mutant parotid and lacrimal glands. Pilocarpine-stimulated secretion of saliva proteins was compromised in the absence of VAMP8. Protein aggregates were observed in mutant lacrimal glands. VAMP8 may interact with syntaxin 4 and SNAP-23. These results suggest that VAMP8 may act as a v-SNARE for regulated secretion of the entire exocrine system.  相似文献   

19.
The lacrimal gland (LG) secretes aqueous tears necessary for maintaining the structure and function of the cornea, a transparent tissue essential for vision. In the human a single LG resides in the orbit above the lateral end of each eye delivering tears to the ocular surface through 3 - 5 ducts. The mouse has three pairs of major ocular glands, the most studied of which is the exorbital lacrimal gland (LG) located anterior and ventral to the ear. Similar to other glandular organs, the LG develops through the process of epithelial branching morphogenesis in which a single epithelial bud within a condensed mesenchyme undergoes multiple rounds of bud and duct formation to form an intricate interconnected network of secretory acini and ducts. This elaborate process has been well documented in many other epithelial organs such as the pancreas and salivary gland. However, the LG has been much less explored and the mechanisms controlling morphogenesis are poorly understood. We suspect that this under-representation as a model system is a consequence of the difficulties associated with finding, dissecting and culturing the LG. Thus, here we describe dissection techniques for harvesting embryonic and post-natal LG and methods for ex vivo culture of the tissue.  相似文献   

20.
Since the increased use of extended-wear contact lenses, Pseudomonas aeruginosa has emerged as a primary etiological agent of ulcerative keratitis. Clinical isolates have been classified into two types: cytotoxic and non-cytotoxic. This study revealed significant immune and neuro-enzymatic changes elicited by the two types of P. aeruginosa in the lacrimal gland of rats. The humoral immune response in the lacrimal gland to the non-cytotoxic strain was significantly lower than to the cytotoxic strain, possibly due to the immunogenicity of the extracellular toxin; however, the same effect was not seen in the serum. Choline acetyltransferase and acetylcholinesterase are known to be responsible for synthesis and degradation of acetylcholine, respectively, binding receptors on acini and plasma cells, modulating their activity, and constituting the principle regulator of tear secretion. Following infection, neuro-enzyme activities were significantly modified to reduce the concentration of acetylcholine and therefore potentially reduce secretion from the glands. The data lead to the hypothesis that P. aeruginosa may have the potential to reduce the protective barrier provided by the lacrimal gland to benefit pathogenicity. It was also observed that the neuro-enzyme response of the lacrimal glands of uninfected eyes of the test animals was the same as that of infected eyes, implying that the signal may be relayed by common lymphoidal tissue or the central nervous system and a measurable response returned to both eyes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号