首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Six mutant xylanases were obtained by in vitro mutagenesis of a xylanase gene from the extremely thermophilic bacterium Caldocellum saccharolyticum. The temperature stability of all enzymes was affected by mutation to various degrees and one of the xylanases had an altered temperature optimum. The mutations had no effect on the pH optimum. The C. saccharolyticum xylanase showed strong homology to several thermophilic and mesophilic xylanases, and comparison of primary sequences allowed the localization of probable active sites and residues involved in thermostability. Offprint requests to: P. L. Bergquist  相似文献   

2.
Bacterial elongation factor Tu (EF-Tu) is a model monomeric G protein composed of three covalently linked domains. Previously, we evaluated the contributions of individual domains to the thermostability of EF-Tu from the thermophilic bacterium Bacillus stearothermophilus. We showed that domain 1 (G-domain) sets up the basal level of thermostability for the whole protein. Here we chose to locate the thermostability determinants distinguishing the thermophilic domain 1 from a mesophilic domain 1. By an approach of systematically swapping protein regions differing between G-domains from mesophilic Bacillus subtilis and thermophilic B. stearothermophilus, we demonstrate that a small portion of the protein, the N-terminal 12 amino acid residues, plays a key role in the thermostability of this domain. We suggest that the thermostabilizing effect of the N-terminal region could be mediated by stabilizing the functionally important effector region. Finally, we demonstrate that the effect of the N-terminal region is significant also for the thermostability of the full-length EF-Tu.  相似文献   

3.
Zhou XX  Wang YB  Pan YJ  Li WF 《Amino acids》2008,34(1):25-33
Summary. Thermophilic proteins show substantially higher intrinsic thermal stability than their mesophilic counterparts. Amino acid composition is believed to alter the intrinsic stability of proteins. Several investigations and mutagenesis experiment have been carried out to understand the amino acid composition for the thermostability of proteins. This review presents some generalized features of amino acid composition found in thermophilic proteins, including an increase in residue hydrophobicity, a decrease in uncharged polar residues, an increase in charged residues, an increase in aromatic residues, certain amino acid coupling patterns and amino acid preferences for thermophilic proteins. The differences of amino acids composition between thermophilic and mesophilic proteins are related to some properties of amino acids. These features provide guidelines for engineering mesophilic protein to thermophilic protein. Authors’ addresses: Yuan-Jiang Pan, Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Zhejiang University Road 38, Hangzhou 310027, China; Wei-Fen Li, Microbiology Division, College of Animal Science, Zhejiang University, Hangzhou 310029, China  相似文献   

4.
The incorporation of the structural elements of thermostable enzymes into their less stable counterparts is generally used to improve enzyme thermostability. However, the process of engineering enzymes with both high thermostability and high activity remains an important challenge. Here, we report that the thermostability and activity of a thermophilic subtilase were simultaneously improved by incorporating structural elements of a psychrophilic subtilase. There were 64 variable regions/residues (VRs) in the alignment of the thermophilic WF146 protease, mesophilic sphericase, and psychrophilic S41. The WF146 protease was subjected to systematic mutagenesis, in which each of its VRs was replaced with those from S41 and sphericase. After successive rounds of combination and screening, we constructed the variant PBL5X with eight amino acid residues from S41. The half-life of PBL5X at 85°C (57.1 min) was approximately 9-fold longer than that of the wild-type (WT) WF146 protease (6.3 min). The substitutions also led to an increase in the apparent thermal denaturation midpoint temperature (Tm) of the enzyme by 5.5°C, as determined by differential scanning calorimetry. Compared to the WT, PBL5X exhibited high caseinolytic activity (25 to 95°C) and high values of Km and kcat (25 to 80°C). Our study may provide a rational basis for developing highly stable and active enzymes, which are highly desired in industrial applications.  相似文献   

5.
Xylanase I is a thermostable xylanase from the fungus Thermoascus aurantiacus, which belongs to family 10 in the current classification of glycosyl hydrolases. We have determined the three-dimensional X-ray structure of this enzyme to near atomic resolution (1.14 A) by molecular replacement, and thereby corrected the chemically determined sequence previously published. Among the five members of family 10 enzymes for which the structure has been determined, Xylanase I from T. aurantiacus and Xylanase Z from C. thermocellum are from thermophilic organisms. A comparison with the three other available structures of the family 10 xylanases from mesophilic organisms suggests that thermostability is effected mainly by improvement of the hydrophobic packing, favorable interactions of charged side chains with the helix dipoles and introduction of prolines at the N-terminus of helices. In contrast to other classes of proteins, there is very little evidence for a contribution of salt bridges to thermostability in the family 10 xylanases from thermophiles. Further analysis of the structures of other proteins from thermophiles with eight-fold (beta)alpha-barrel architecture suggests that favorable interactions of charged side chains with the helix dipoles may be a common way in which thermophilic proteins with this fold are stabilized. As this is the most common type of protein architecture, this finding may provide a useful guide for site-directed mutagenesis aimed to improve the thermostability of (beta)alpha-barrel proteins. Proteins 1999;36:295-306.  相似文献   

6.
残基相互作用网络是体现蛋白质中残基与残基之间协同和制约关系的重要形式。残基相互作用网络的拓扑性质以及社团结构与蛋白质的功能和性质有密切的关系。本文在构建一系列耐热木聚糖酶和常温木聚糖酶的残基相互作用网络后,通过计算网络的度、聚类系数、连接强度、特征路径长度、接近中心性、介数中心性等拓扑参数来确定网络拓扑结构与木聚糖酶耐热性的关系。识别残基相互作用网络的hub点,分析hub点的亲疏水性、带电性以及各种氨基酸在hub点中所占的比例。进一步使用GA-Net算法对网络进行社团划分,并计算社团的规模、直径和密度。网络的高平均度、高连接强度、以及更短的最短路径等表明耐热木聚糖酶残基相互作用网络的结构更加紧密;耐热木聚糖酶网络中的hub节点比常温木聚糖酶网络hub节点具有更多的疏水性残基,hub点中Phe、Ile、Val的占比更高。社团检测后发现,耐热木聚糖酶网络拥有更大的社团规模、较小的社团直径和较大的社团密度。社团规模越大表明耐热木聚糖酶的氨基酸残基更倾向于形成大的社团,而较小的社团直径和较大的社团密度则表明社团内部氨基酸残基的相互作用比常温木聚糖酶更强。  相似文献   

7.
To improve the temperature characteristics of a mesophilic glycoside hydrolase family (GHF) 11 xylanase AoXyn11A from Aspergillus oryzae, both introduction of a disulfide bridge and the substitution of a specific amino acid were carried out by in silico design and site-directed mutagenesis. Based on the analysis of a known crystal structure of thermophilic xylanase TlXynA from Thermomyces lanuginosus, and the alignment of primary structures between AoXyn11A and TlXynA, one mutant AoXyn11AM with a disulfide bridge (Cys108–Cys152) was designed by replacing the Ser108 and Asn152 of AoXyn11A with Cys residues, respectively. Additionally, based on the analysis of amino acid B-factor values, another mutant AoXyn11AM-G22A was predicted by substituting Gly22 of AoXyn11AM (having the maximum B-factor value of 69.25 Å, with the corresponding Ala23 of TlXynA. Thereafter, two mutant xylanase-encoding genes, Aoxyn11A M and Aoxyn11A M-G22A, were constructed by site-directed mutagenesis. Aoxyn11A and two mutant genes were expressed in E. coli BL21(DE3) respectively, and three expressed recombinant xylanases, reAoXyn11A, reAoXyn11AM and reAoXyn11AM-G22A, were purified to homogeneity. The temperature optima of reAoXyn11AM and reAoXyn11AM-G22A were 60 and 65°C, respectively, being 5 and 10°C higher than that of reAoXyn11A. Their thermal inactivation half-lives at 50°C were 1.8- and 8.4-folds longer than that of reAoXyn11A. There were no obvious alterations after mutations in specific activity and enzymatic properties, except for the temperature characteristics.  相似文献   

8.
Two thermophilic xylanases (xylanase II from Thielavia terrestris 255B and the 32-kDa xylanase from Thermoascus crustaceus 235E) were studied to determine if they had different and complementary modes of action when they hydrolysed various types of xylans. Partial amino acid sequencing showed that these two enzymes belonged to different families of -1,4-glycanases. Xylanase II achieved faster solubilization of insoluble xylan whereas the 32-kDa xylanase was more effective in producing xylose and short xylooligomers. An assessment of the combined hydrolytic action of the two xylanases did not reveal any co-operative action. The sugars released when the two thermophilic xylanases were used together were almost identical to those released when the 32-kDa xylanase acted alone. The two xylanases were able to remove about 12% of the xylan remaining in an aspen kraft pulp. This indicated that either one of these thermophilic enzymes may be useful for enhancing the bleaching of kraft pulps. Correspondence to: J. N. Saddler  相似文献   

9.
残基相互作用网络是体现蛋白质中残基与残基之间协同和制约关系的重要形式。残基相互作用网络的拓扑性质以及社团结构与蛋白质的功能和性质有密切的关系。本文在构建一系列耐热木聚糖酶和常温木聚糖酶的残基相互作用网络后,通过计算网络的度、聚类系数、连接强度、特征路径长度、接近中心性、介数中心性等拓扑参数来确定网络拓扑结构与木聚糖酶耐热性的关系。识别残基相互作用网络的hub点,分析hub点的亲疏水性、带电性以及各种氨基酸在hub点中所占的比例。进一步使用GA-Net算法对网络进行社团划分,并计算社团的规模、直径和密度。网络的高平均度、高连接强度、以及更短的最短路径等表明耐热木聚糖酶残基相互作用网络的结构更加紧密;耐热木聚糖酶网络中的hub节点比常温木聚糖酶网络hub节点具有更多的疏水性残基,hub点中Phe、Ile、Val的占比更高。社团检测后发现,耐热木聚糖酶网络拥有更大的社团规模、较小的社团直径和较大的社团密度。社团规模越大表明耐热木聚糖酶的氨基酸残基更倾向于形成大的社团,而较小的社团直径和较大的社团密度则表明社团内部氨基酸残基的相互作用比常温木聚糖酶更强。  相似文献   

10.
Two exposed amino acid residues confer thermostability on a cold shock protein   总被引:14,自引:0,他引:14  
Thermophilic organisms produce proteins of exceptional stability. To understand protein thermostability at the molecular level we studied a pair of cold shock proteins, one of mesophilic and one of thermophilic origin, by systematic mutagenesis. Although the two proteins differ in sequence at 12 positions, two surface-exposed residues are responsible for the increase in stability of the thermophilic protein (by 15.8 kJ mol-1 at 70 degrees C). 11.5 kJ mol-1 originate from a predominantly electrostatic contribution of Arg 3 and 5.2 kJ mol-1 from hydrophobic interactions of Leu 66 at the carboxy terminus. The mesophilic protein could be converted to a highly thermostable form by changing the Glu residues at positions 3 and 66 to Arg and Leu, respectively. The variation of surface residues may thus provide a simple and powerful approach for increasing the thermostability of a protein.  相似文献   

11.
Based on the hyperthermostable family 11 xylanase (EvXyn11TS) gene sequence (EU591743), the gene Syxyn11 encoding a thermophilic xylanase SyXyn11 was synthesized with synonymous codons biasing towards Pichia pastoris. The homology alignment of primary structures among family 11 xylanases revealed that, at their N-termini, only SyXyn11 contains a disulfide bridge (Cys5–Cys32). This to some extent implied the significance of the disulfide bridge of SyXyn11 to its thermostability. To confirm the correlation between the N-terminal disulfide bridge and thermostability, a SyXyn11C5T-encoding gene, Syxyn11 C5T, was constructed by mutating the Cys5 codon of Syxyn11 to Thr5. Then, the genes for the recombinant xylanases, reSyXyn11 and reSyXyn11C5T, were expressed in P. pastoris GS115, yielding xylanase activity of about 35 U per ml cell culture. Both xylanases were purified to homogeneity with specific activities of 363 and 344 U/mg, respectively. The temperature optimum and stability of reSyXyn11C5T decreased to 70 and 50°C from 85 and 80°C of reSyXyn11, respectively. There was no obvious change in pH characteristics.  相似文献   

12.
Directed evolution has been used to enhance the catalytic activity and alkaline pH stability of Thermobifida fusca xylanase A, which is one of the most thermostable xylanases. Under triple screened traits of activity, alkaline pH stability and thermostability, through two rounds of random mutagenesis using DNA shuffling, a mutant 2TfxA98 with approximately 12-fold increased k cat/K m and 4.5-fold decreased K m compared with its parent was obtained. Moreover, the alkaline pH stability of 2TfxA98 is increased significantly, with a thermostability slightly lower than that of its parent. Five amino acid substitutions (T21A, G25P, V87P, I91T, and G217L), three of them are near the catalytic active site, were identified by sequencing the genes encoding this evolved enzyme. The activity and stabilizing effects of each amino acid mutation in the evolved enzyme were evaluated by site-directed mutagenesis. This study shows a useful approach to improve the catalytic activity and alkaline pH stability of T. fusca xylanase A toward the hydrolysis of xylan.  相似文献   

13.
Two novel genes, xyn5 and xyn6, coding for family 11 xylanases, were isolated from the thermotolerant filamentous fungus, Acrophialophora nainiana, by PCR using degenerate primers. The xyn6 gene was further expressed in Trichoderma reesei. DNA sequence analysis of xyn6 revealed an open reading frame (ORF) of 708 bp, interrupted by an intron of 58 bp. The xyn6 ORF encodes a predicted protein of 236 amino acid residues. The mature recombinant XynVI protein had a molecular mass of about 19 kDa, as estimated by gel electrophoresis. Analysis of the predicted amino acid sequence of XynVI paves the way for rational protein engineering by site-directed mutagenesis aiming to increase the thermostability of the heterologously-expressed xylanase.  相似文献   

14.

Background

Xylanases have drawn much attention owing to possessing great potential in various industrial applications. However, the applicability of xylanases, exemplified by the production of bioethanol and xylooligosaccharides (XOSs), was bottlenecked by their low stabilities at higher temperatures. The main purpose of this work was to improve the thermostability of AuXyn11A, a mesophilic glycoside hydrolase (GH) family 11 xylanase from Aspergillus usamii E001, by N-terminus replacement.

Results

A hybrid xylanase with high thermostability, named AEXynM, was predicted by computational methods, and constructed by substituting the N-terminal 33 amino acids of AuXyn11A with the corresponding 38 ones of EvXyn11TS, a hyperthermostable family 11 xylanase. Two AuXyn11A- and AEXynM-encoding genes, Auxyn11A and AExynM, were then highly expressed in Pichia pastoris GS115, respectively. The specific activities of two recombinant xylanases (reAuXyn11A and reAEXynM) were 10,437 and 9,529 U mg-1. The temperature optimum and stability of reAEXynM reached 70 and 75°C, respectively, much higher than those (50 and 45°C) of reAuXyn11A. The melting temperature (T m) of reAEXynM, measured using the Protein Thermal Shift (PTS) method, increased by 34.0°C as compared with that of reAuXyn11A. Analyzed by HPLC, xylobiose and xylotriose as the major hydrolytic products were excised from corncob xylan by reAEXynM. Additionally, three single mutant genes from AExynM (AExynM C5T, AExynM P9S, and AExynM H14N) were constructed by site-directed mutagenesis as designed theoretically, and expressed in P. pastoris GS115, respectively. The thermostabilities of three recombinant mutants clearly decreased as compared with that of reAEXynM, which demonstrated that the three amino acids (Cys5, Pro9, and His14) in the replaced N-terminus contributed mainly to the high thermostability of AEXynM.

Conclusions

This work highly enhanced the thermostability of AuXyn11A by N-terminus replacement, and further verified, by site-directed mutagenesis, that Cys5, Pro9, and His14 contributed mainly to the improved thermostability. It will provide an effective strategy for improving the thermostabilities of other enzymes.  相似文献   

15.
Site saturation mutagenesis library is a recently developed technique, in which any one out of all amino acid residues in a target region is substituted into other 19 amino acid residues. In this study, we used this technique to increase the thermostability of a GH10 xylanase, XynR, from Bacillus sp. strain TAR-1. We hypothesized that the substrate binding region of XynR is flexible, and that the thermostability of XynR will increase if the flexibility of the substrate binding region is decreased without impairing the substrate binding ability. Site saturation mutagenesis libraries of amino acid residues Tyr43–Lys115 and Ala300–Asn325 of XynR were constructed. By screening 480 clones, S92E was selected as the most thermostable one, exhibiting the residual activity of 80% after heat treatment at 80°C for 15 min in the hydrolysis of Remazol Brilliant Blue-xylan. Our results suggest that this strategy is effective for stabilization of GH10 xylanase.

Abbreviations: DNS: 3,5-dinitrosalicylic acid; RBB-xylan: Remazol Brilliant Blue-xylan  相似文献   


16.
Xylanase from the psychrophilic yeast Cryptococcus adeliae   总被引:7,自引:0,他引:7  
A xylanase belonging to family 10 is produced by Cryptococcus adeliae, an Antarctic yeast that exhibits optimal growth at low temperature. The mature glycosylated xylanase secreted by C. adeliae is composed of 338 amino acid residues and 26 ± 3 osidic residues, and shares 84% identity with its mesophilic counterpart from C. albidus. The xylanase from C. adeliae is less thermostable than its mesophilic homologue when the residual activities are compared, and this difference was confirmed by differential scanning calorimetry experiments. In the range 0°–20°C, the cold-adapted xylanase displays a lower activation energy and a higher catalytic efficiency. All these observations suggest a less compact, more flexible molecular structure. Analysis of computerized molecular models built up for both psychrophilic and mesophilic xylanases indicates that the adaptation to cold consists of discrete changes in the tridimensional structure: of 53 substitutions, 22 are presumably involved in the adaptation process. These changes lead mainly to a less compact hydrophobic packing, to the loss of one salt bridge, and to a destabilization of the macrodipoles of the helices. Received: April 20, 1999 / Accepted: January 13, 2000  相似文献   

17.
The extreme process condition of high temperature and high alkali limits the applications of most of natural xylanases in pulp and paper industry. Recently, various methods of protein engineering have been used to improve the thermal and alkalic tolerance of xylanases. In this work, directed evolution and site-directed mutagenesis were performed to obtain a mutant xylanase improved both on alkali stability and thermostability from the native Paenibacillus campinasensis Family-11 xylanase (XynG1-1). Mutant XynG1-1B43 (V90R/P172H) with two units increased in the optimum pH (pH 7.0–pH 9.0) and significant improvement on alkali stability was selected from the second round of epPCR library. And the further thermoduric mutant XynG1-1B43cc16 (V90R/P172H/T84C-T182C/D16Y) with 10 °C increased in the optimum temperature (60–70 °C) was then obtained by introducing a disulfide bridge (T84C-T182C) and a single amino acid substitution (D16Y) to XynG1-1B43 using site-directed mutagenesis. XynG1-1B43cc16 also showed higher thermostability and catalytic efficiency (k cat /K m ) than that of wild-type (XynG1-1) and XynG1-1B43. The attractive improved properties make XynG1-1B43cc16 more suitable for bioleaching of cotton stalk pulp under the extreme process condition of high temperature (70 °C) and high alkali (pH 9.0).  相似文献   

18.
Based on primary structure comparison between four highly homologous DNA-binding proteins (HUs) displaying differential thermostability, we have employed in vitro site-directed mutagenesis to decipher their thermostability mechanism at the molecular level. The contribution of the 11 amino acids that differ between the thermophilic HUBst from Bacillus stearothermophilus (Tm = 61.6 degrees C) and the mesophilic HUBsu from Bacillus subtilis (Tm = 39.7 degrees C) was evaluated by replacing these amino acids in HUBst with their mesophilic counterparts. Among 11 amino acids, three residues, Gly-15, Glu-34, and Val-42, which are highly conserved in the thermophilic HUs, have been found to be responsible for the thermostability of HUBst. These amino acids in combination (HUBst-G15E/E34D/V42I) reduce the thermostability of the protein (Tm = 45.1 degrees C) at the level of its mesophilic homologue HUBsu. By replacing these amino acids in HUBsu with their thermophilic counterparts, the HUBsu-E15G/D34E/142V mutant was generated with thermostability (Tm = 57.8 degrees C) at the level of thermophilic HUBst. Employing the same strategy, we generated several mutants in the extremely thermophilic HUTmar from Thermotoga maritima (Tm = 80.5 degrees C), and obtained data consistent with the previous results. The triplet mutant HUTmar-G15E/E34D/V421 (Tm = 35.9 degrees C) converted the extremely thermophilic protein HUTmar to mesophilic. The various forms of HU proteins were overproduced in Escherichia coli, highly purified, and the thermostability of the mutants confirmed by circular dichroism spectroscopy. The results presented here were elucidated on the basis of the X-ray structure of HUBst and HUTmar (our unpublished results), and their mechanism was proposed at the molecular level. The results clearly show that three individual local interactions located at the helix-turn-helix part of the protein are responsible for the stability of HU proteins by acting cooperatively in a common mechanism for thermostability.  相似文献   

19.
Low thermostability often hampers the applications of xylanases in industrial processes operated at high temperature, such as degradation of biomass or pulp bleaching. Thermostability of enzymes can be improved by the optimization of unstable residues via protein engineering. In this study, computational modeling instead of random mutagenesis was used to optimize unstable residues of Bacillus circulans xylanase (Bcx). The thermal fluctuations of unstable residues known as important to the thermal unfolding of Bcx were investigated by the molecular dynamics (MD) simulations at 300 K and 330 K to identify promising residues. The N52 site in unstable regions showed the highest thermal fluctuations. Subsequently, computational design was conducted to predict the optimal sequences of unstable residues. Five optimal single mutants were predicted by the computational design, and the N52Y mutation showed the thermostabilization effect. The N52 residue is conserved in Bacillus species xylanases and the structure analysis revealed that the N52Y mutation introduced more hydrophobic clusters for thermostability, as well as a more favorable aromatic stacking environment for substrate binding. We confirm that flexible residues at high temperature in unstable regions can be promising targets to improve thermostability of enzymes.  相似文献   

20.
MOTIVATION: Understanding the basis of protein stability in thermophilic organisms raises a general question: what structural properties of proteins are responsible for the higher thermostability of proteins from thermophilic organisms compared to proteins from mesophilic organisms? RESULTS: A unique database of 373 structurally well-aligned protein pairs from thermophilic and mesophilic organisms is constructed. Comparison of proteins from thermophilic and mesophilic organisms has shown that the external, water-accessible residues of the first group are more closely packed than those of the second. Packing of interior parts of proteins (residues inaccessible to water molecules) is the same in both cases. The analysis of amino acid composition of external residues of proteins from thermophilic organisms revealed an increased fraction of such amino acids as Lys, Arg and Glu, and a decreased fraction of Ala, Asp, Asn, Gln, Thr, Ser and His. Our theoretical investigation of folding/unfolding behavior confirms the experimental observations that the interactions that differ in thermophilic and mesophilic proteins form only after the passing of the transition state during folding. Thus, different packing of external residues can explain differences in thermostability of proteins from thermophilic and mesophilic organisms. AVAILABILITY: The database of 373 structurally well-aligned protein pairs is available at http://phys.protres.ru/resources/termo_meso_base.html. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号