首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The non-structural protein (NS1) of influenza A viruses (IAV) performs multiple functions during viral infection. NS1 contains two nuclear localization signals (NLS): NLS1 and NLS2. The NS1 protein is located predominantly in the nucleus during the early stages of infection and subsequently exported to the cytoplasm. A nonsense mutation that results in a large deletion in the carboxy-terminal region of the NS1 protein that contains the NLS2 domain was found in some IAV subtypes, including highly pathogenic avian influenza (HPAI) H7N9 and H5N1 viruses. We introduced different mutations into the NLS domains of NS1 proteins in various strains of IAV, and demonstrated that mutation of the NLS2 region in the NS1 protein of HPAI H5N1 viruses severely affects its nuclear localization pattern. H5N1 viruses expressing NS1 protein that is unable to localize to the nucleus are less potent in antagonizing cellular antiviral responses than viruses expressing wild-type NS1. However, no significant difference was observed with respect to viral replication and pathogenesis. In contrast, the replication and antiviral defenses of H1N1 viruses are greatly attenuated when nuclear localization of the NS1 protein is blocked. Our data reveals a novel functional plasticity for NS1 proteins among different IAV subtypes.  相似文献   

2.
The isolation of an H5N1 influenza A virus from a tree sparrow (Passer montanus) captured in East Java, Indonesia in 2010 is reported here. Its hemagglutinin and neuraminidase were genetically similar to those of human isolates from 2006-2007 in Indonesia. The finding of a tree sparrow H5N1 virus that possesses genetically similar surface molecules to those of human viruses highlights the importance of monitoring resident wild birds, as well as migratory birds, for pandemic preparedness.  相似文献   

3.
雍玮  乔梦凯  石利民  王璇  何敏  丁洁 《微生物学通报》2019,46(11):3058-3069
【背景】H5N1禽流感病毒可以感染人类导致重症呼吸道感染,致死率高。【目的】研究我中心确认的一例人感染高致病性禽流感H5N1病毒A/Nanjing/1/2015的可能起源及基因组分子特征。【方法】对病人痰液样本中的H5N1病毒进行全基因组测序,使用CLC Genomics Workbench 9.0对序列进行拼接,使用BLAST和MEGA 5.22软件进行同源性比对和各片段分子特征分析。【结果】该株禽流感病毒属于H5亚型的2.3.2.1c家系,其8个片段均与江浙地区禽类中分离的病毒高度同源,未发现有明显的重配。分子特征显示,该病毒血凝素(Hemagglutinin,HA)蛋白裂解位点为PQRERRRR/G,受体结合位点呈现禽类受体特点,但出现D94N、S133A和T188I氨基酸置换增强了病毒对人类受体的亲和性。神经氨酸酶(Neuraminidase,NA)蛋白颈部在49-68位缺失20个氨基酸,非结构蛋白1 (Non-structure protein,NS1)存在P42S置换和80-84位氨基酸的缺失。其他蛋白中也存在多个增强病毒致病力和对人类细胞亲和力的氨基酸突变。对耐药位点分析发现存在对奥司他韦的耐药突变H_274Y,病毒对金刚烷胺仍旧敏感。【结论】人感染高致病性禽流感H5N1病毒A/Nanjing/1/2015属于2.3.2.1c家系,禽类来源,关键位点较保守,但仍出现了多个氨基酸的进化与变异使其更利于感染人类。H5N1禽流感病毒进化活跃,持续动态监测不能放松。  相似文献   

4.
Higher and prolonged viral replication is critical for the increased pathogenesis of the highly pathogenic avian influenza (HPAI) subtype of H5N1 influenza A virus (IAV) over the lowly pathogenic H1N1 IAV strain. Recent studies highlighted the considerable roles of cellular miRNAs in host defence against viral infection. In this report, using a 3′UTR reporter system, we identified several putative miRNA target sites buried in the H5N1 virus genome. We found two miRNAs, miR‐584‐5p and miR‐1249, that matched with the PB2 binding sequence. Moreover, we showed that these miRNAs dramatically down‐regulated PB2 expression, and inhibited replication of H5N1 and H1N1 IAVs in A549 cells. Intriguingly, these miRNAs expression was differently regulated in A549 cells infected with the H5N1 and H1N1 viruses. Furthermore, transfection of miR‐1249 inhibitor enhanced the PB2 expression and promoted the replication of H5N1 and H1N1 IAVs. These results suggest that H5N1 virus may have evolved a mechanism to escape host‐mediated inhibition of viral replication through down‐regulation of cellular miRNAs, which target its viral genome.  相似文献   

5.
A proper vaccination against avian influenza viruses in chicken can significantly reduce the risk of human infection. Egypt has the highest number of recorded humans highly pathogenic avian influenza (HPAI)-H5N1 infections worldwide despite the widespread use of homologous vaccines in poultry. Enhancing H5N1 vaccine efficacy is ultimately required to better control HPAI-H5N1. The aim of this study is to boost chicken immunity by combined with inactivated HPAI-H5N1 with selenium nanoparticles (SeNPs). The chickens groups 1–3 were fed diets supplemented with SeNPs concentrations (0.25, 0.5, and 1 mg/kg) for 3 weeks and then vaccinated (inactivated HPAI-H5N1). while groups 4,5 and 6 were fed with SeNPs free diets and administered with 0.5 ml of the vaccine combined with 0.02, 0.06, and 0.1 mg/dose of SeNPs and then all groups were challenged with homologous virus 3 weeks post-vaccination (WPV). Group 7, 8 were used as control positive and negative respectively. At 4, 5, and 6 WPV, antibody titer was considerably higher in the group fed a meal supplemented with 1 mg SeNPs/kg. In contrast, both methods of SeNPs supplementation significantly increased the Interleukin 2 (IL2), Interleukin 6 (IL6), and Interferon γ (IFNγ) expressions in the blood cells in a dose-dependent manner, with a higher expression observed in the group that was vaccinated with 0.1 mg/dose. After the challenge, all groups that received SeNPs via diet or vaccines dose showed significant reduction in viral shedding and milder inflammation in lung, trachea, spleen, and liver in addition to higher expression of IL2, IL6, and IFNγ, with the highest expression observed in the group that was vaccinated with 0.1 mg/dose compared the plain vaccinated group. The groups of 1 mg SeNPs/kg and combined vaccinated with 0.1 mg/dose showed the best vaccine efficacy. However, the group vaccinated with 0.1 mg/dose showed the earliest reduction in viral shedding. Overall, SeNPs supplementation in the diet and the administration of the vaccine formula with SeNPs could enhance vaccine efficacy and provide better protection against HPAI-H5N1 in chickens by enhancing cellular immunity and reducing inflammation. We recommend using SeNPs as a vaccine combination or feeding with diet to increase the immunity and vaccine efficacy against H5N1.  相似文献   

6.
由H5N1流感病毒引起的高致病性禽流感,在禽类之间广泛传播。当人类接触这些禽类时,可能会被感染并产生严重的呼吸道症状,且死亡率高达60%。血凝素(hemagglutinin,HA)是H5N1病毒中和抗体的主要抗原,为了便于对病毒的HA突变进行研究,根据HA遗传基因的差异远近,所有的H5病毒株都被划分在20个分支内。对于H5N1病毒进化的研究在禽流感疫苗的研制、禽流感大流行的预防等方面均具有重要意义。现对禽流感、H5N1病毒特征、血凝素的结构功能、H5N1病毒的分支以及病毒进化的研究进行概述。  相似文献   

7.
H5N8亚型高致病性禽流感病毒(highly pathogenic avian influenza virus,HPAIV)随候鸟的迁徙活动及商业贸易活动现已蔓延至亚洲、欧洲、非洲、美洲等国家和地区.2014-2015和2016-2019年H5N8亚型HPAIV已引发两波全球疫情,现正经历第三波疫情,导致家禽及野生鸟类...  相似文献   

8.
H5N1 avian influenza virus (AIV) has caused widespread infections in poultry and wild birds, and has the potential to emerge as a pandemic threat to human. In order to explore novel approaches to inhibiting highly pathogenic H5N1 influenza virus infection, we have developed short RNA oligonucleotides, specific for conserved regions of the non-structural protein gene (NS1) of AIV. In vitro the hemagglutination (HA) titers in RNA oligonucleotide-treated cells were at least 5-fold lower than that of the control. In vivo, the treatment with three doses of RNA oligonucleotides protected the infected chickens from H5N1 virus-induced death at a rate of up to 87.5%. Plaque assay and real-time PCR analysis showed a significant reduction of the PFU and viral RNA level in the lung tissues of the infected animals treated with the mixed RNA oligonucleotides targeting the NS1 gene. Together, our findings revealed that the RNA oligonucleotides targeting at the AIV NS1 gene could potently inhibit avian H5N1 influenza virus reproduction and present a rationale for the further development of the RNA oligonucleotides as prophylaxis and therapy for highly pathogenic H5N1 influenza virus infection in humans.  相似文献   

9.
Since the first human case of H5N1 avian influenza virus infection was reported in 1997, this highly pathogenic virus has infected hundreds of people around the world and resulted in many deaths. The ability of H5N1 to cross species boundaries, and the presence of polymorphisms that enhance virulence, present challenges to developing clear strategies to prevent the pandemic spread of this highly pathogenic avian influenza (HPAI) virus. This review summarizes the current understanding of, and recent research on, the avian influenza H5N1 virus, including transmission, virulence, pathogenesis, clinical characteristics, treatment and prevention.  相似文献   

10.
In early 2014, a novel subclade (2.3.4.4) of the highly pathogenic avian influenza (HPAI) A(H5N8) virus caused the first outbreak in domestic ducks and migratory birds in South Korea. Since then, it has spread to 44 countries and regions. To date, no human infections with A(H5N8) virus have been reported, but the possibility cannot be excluded. By analyzing the genomic signatures of A(H5N8) strains, we found that among the 47 species-associated signature positions, three positions exhibited human-like signatures (HLS), including PA-404S, PB2-613I and PB2-702R and that mutation trend of host signatures of avian A(H5N8) is different before and after 2014. About 82% of A(H5N8) isolates collected after January of 2014 carried the 3 HLS (PA-404S/PB2-613I/PB2-702R) in combination, while none of isolates collected before 2014 had this combination. Furthermore, the HA protein had S137A and S227R substitutions in the receptor-binding site and A160T in the glycosylation site, potentially increasing viral ability to bind human-type receptors. Based on these findings, the newly emerged HPAI A(H5N8) isolates show an evolutionary trend toward gaining more HLS and, along with it, the potential for bird-to-human transmissibility. Therefore, more extensive surveillance of this rapidly spreading HPAI A(H5N8) and preparedness against its potential pandemic are urgently needed.  相似文献   

11.
Highly pathogenic H5N1 influenza virus causes coagulopathy in chickens   总被引:3,自引:0,他引:3  
Severe hemorrhage at multiple organs is frequently observed in chickens infected with highly pathogenic avian influenza (HPAI) A viruses. In this study we examined whether HPAI virus infection leads to coagulation disorder in chickens. Pathological examinations showed that the fibrin thrombi were formed in arterioles at the lung, associated with the viral antigens in endothelial cells of chickens infected intravenously with HPAI virus. Hematological analyses of peripheral blood collected from the chickens revealed that coagulopathy was initiated at early stage of infection when viral antigens were detected only in the endothelial cells and monocytes/macrophages. Furthermore, gene expression of the tissue factor, the main initiator of blood coagulation, was upregulated in the spleen, lung, and brain of HPAI virus-infected chickens. These results suggest that dysfunction of endothelial cells and monocytes/macrophages upon HPAI virus infection may induce hemostasis abnormalities represented by the excessive blood coagulation and consumptive coagulopathy in chickens.  相似文献   

12.
【目的】研究血液通路在H5N1高致病性禽流感病毒入侵小鼠中枢神经系统中的作用。【方法】用3株H5N1病毒滴鼻感染BALB/c小鼠,研究小鼠肺、脑、血中的病毒在感染后不同时间点的复制动态及病理进展,通过免疫组化和免疫荧光染色显示病毒在脑部血管内皮细胞及血管周围神经组织的感染情况。【结果】小鼠感染后病毒迅速在肺中高效复制,随即形成病毒血症;感染后第6天病毒在肺中的滴度和在血液样本中的检出率达到峰值,此时小鼠脑部才开始检测到病毒;小鼠脑内血管内皮细胞、脑血管周围神经组织的神经元和神经胶质细胞中可检测到流感病毒NP蛋白。【结论】血液播散可能是高致病性H5N1禽流感病毒进入中枢神经系统的途径之一。  相似文献   

13.
Long-term endemicity of avian H5N1 influenza virus in poultry and continuous sporadic human infections in several countries has raised the concern of another potential pandemic influenza. Suspicion of the avian origin of the previous pandemics results in the close investigation of the mechanism of interspecies transmission. Entry and fusion is the first step for the H5N1 influenza virus to get into the host cells affecting the host ranges. Therefore receptor usage study has been a major focus for the last few years. We now know the difference of the sialic acid structures and distributions in different species, even in the different parts of the same host. Many host factors interacting with the influenza virus component proteins have been identified and their role in the host range expansion and interspecies transmission is under detailed scrutiny. Here we review current progress in the receptor usage and host factors. Supported by the National Basic Research Program of China (Grant Nos. 2005CB523001, 2005CB523002), National Key Technologies Research & Development Program (Grant 2006BAD06A01/2006BAD06A04); US National Institutes of Health (NIH) (Grant 3 U19 AI051915-05S1), the National Natural Science Foundation of China (Grant 30599434). GAO FG is a distinguished young investigator of the NSFC (Grant No. 30525010).  相似文献   

14.
The role of wild birds in the spread of influenza H5N1 virus remains speculative and the ecology of influenza A viruses in nature is largely unstudied. There is an urgent need for multidisciplinary studies to explore the ecology of avian influenza viruses in wild birds and the environment to support ecological interpretation of the source of disease outbreaks in poultry.  相似文献   

15.
Highly pathogenic H5N1 avian influenza viruses pose a debilitating pandemic threat. Thus, understanding mechanisms of antibody-mediated viral inhibition and neutralization escape is critical. Here, a robust yeast display system for fine epitope mapping of viral surface hemagglutinin (HA)-specific antibodies is demonstrated. The full-length H5 subtype HA (HA0) was expressed on the yeast surface in a correctly folded conformation, determined by binding of a panel of extensively characterized neutralizing human monoclonal antibodies (mAbs). These mAbs target conformationally-dependent epitopes of influenza A HA, which are highly conserved across H5 clades and group 1 serotypes. By separately displaying HA1 and HA2 subunits on yeast, domain mapping of two anti-H5 mAbs, NR2728 and H5-2A, localized their epitopes to HA1. These anti-H5 mAb epitopes were further fine mapped by using a library of yeast-displayed HA1 mutants and selecting for loss of binding without prior knowledge of potential contact residues. By overlaying key mutant residues that impacted binding onto a crystal structure of HA, the NR2728 mAb was found to interact with a fully surface-exposed contiguous patch of residues at the receptor binding site (RBS), giving insight into the mechanism underlying its potent inhibition of virus binding. The non-neutralizing H5-2A mAb was similarly mapped to a highly conserved H5 strain-specific but poorly accessible location on a loop at the trimer HA interface. These data further augment our toolchest for studying HA antigenicity, epitope diversity and accessibility in response to natural and experimental influenza infection and vaccines.  相似文献   

16.
Highly pathogenic influenza A (H5N1) virus causes a widespread poultry deaths worldwide. The first human H5N1 infected case was reported in Hong Kong Special Administrative Region of China in 1997. Since then, the virus re-emerged in 2003 and continues to infect people worldwide. Currently, over 400 human infections have been reported in more than 15 countries and mortality rate is greater than 60%. H5N1 viruses still pose a potential pandemic threat in the future because of the continuing global spread and evolution. Here, we summarize the epidemiological, clinical and virological characteristics of human H5N1 infection in China monitored and identified by our national surveillance systems. Chinese Nature Science Foundation Key Project (Grant No. 30599433), Chinese Basic Science Research Program (973)Key Project (Grant No. 2005CB523006)  相似文献   

17.
On 15 April and 17 April 2009, novel swineorigin influenza A (H1N1) virus was identifi ed in specimens obtained from two epidemiologically unlinked patients in the United States. The ongoing outbreak of novel H1N1 2009 influenza (swine influenza) has caused more than 3,99,232 laboratory confi rmed cases of pandemic influenza H1N1 and over 4735 deaths globally. This novel 2009 influenza virus designated as H1N1 A/swine/California/04/2009 virus is not zoonotic swine flu and is transmitted from person to person and has higher transmissibility then that of seasonal influenza viruses. In India the novel H1N1 virus infection has been reported from all over the country. A total of 68,919 samples from clinically suspected persons have been tested for influenza A H1N1 across the country and 13,330 (18.9%) of them have been found positive with 427 deaths. At the All India Institute of Medical Sciences, New Delhi India, we tested 1096 clinical samples for the presence of novel H1N1 influenza virus and seasonal influenza viruses. Of these 1096 samples, 194 samples (17.7%) were positive for novel H1N1 influenza virus and 197 samples (18%) were positive for seasonal influenza viruses. During outbreaks of emerging infectious diseases accurate and rapid diagnosis is critical for minimizing further spread through timely implementation of appropriate vaccines and antiviral treatment. Since the symptoms of novel H1N1 influenza infection are not specifi c, laboratory confi rmation of suspected cases is of prime importance.  相似文献   

18.
为明确广东地区分离的一株禽流感病毒H5N1的遗传背景,建立流感病毒反向遗传的平台。对该株禽流感病毒进行了空斑纯化与组织细胞培养,检测其在MDCK细胞中的增殖特性;利用H5N1病毒通用引物,通过RT-PCR对该病毒全基因组的8条片段进行全长克隆及测序分析;将H5N1的8条全长基因组片段分别插入反向遗传通用载体中,构建禽流感病毒H5N1的感染性克隆。结果表明,该H5N1毒株在MDCK细胞中可不依赖胰酶进行有效增殖与复制,可使MDCK细胞出现典型细胞病变,具有高致病性禽流感病毒的细胞增殖特征。RT-PCR克隆得到该H5N1毒株的PB2、PB1、PA、HA、NP、NA、M和NS八条全长片段,经测序分析确认该毒株的基因序列,其内部编码序列出现多处突变,其中HA连接肽为多个连续碱性氨基酸,表明该毒株可不依赖胰酶进行有效复制,与细胞培养结果一致,未出现抗药性的遗传突变。PCR与测序证明,插入H5N1八个全长基因组片段的载体序列完全正确,表明成功构建了该毒株的感染性克隆。为明确病毒遗传信息,建立流感病毒反向遗传的平台,为进一步研究禽流感病毒相关疫苗提供了研究基础。  相似文献   

19.
DC-SIGN, a C-type lectin receptor expressed in dendritic cells (DCs), has been identified as a receptor for human immunodeficiency virus type 1, hepatitis C virus, Ebola virus, cytomegalovirus, dengue virus, and the SARS coronavirus. We used H5N1 pseudotyped and reverse-genetics (RG) virus particles to study their ability to bind with DC-SIGN. Electronic microscopy and functional assay results indicate that pseudotyped viruses containing both HA and NA proteins express hemagglutination and are capable of infecting cells expressing α-2,3-linked sialic acid receptors. Results from a capture assay show that DC-SIGN-expressing cells (including B-THP-1/DC-SIGN and T-THP-1/DC-SIGN) and peripheral blood dendritic cells are capable of transferring H5N1 pseudotyped and RG virus particles to target cells; this action can be blocked by anti-DC-SIGN monoclonal antibodies. In summary, (a) DC-SIGN acts as a capture or attachment molecule for avian H5N1 virus, and (b) DC-SIGN mediates infections in cis and in trans.  相似文献   

20.
Since the 1997 H5N1 influenza virus outbreak in humans and poultry in Hong Kong, the emergence of closely related viruses in poultry has raised concerns that additional zoonotic transmissions of influenza viruses from poultry to humans may occur. In May 2001, an avian H5N1 influenza A virus was isolated from duck meat that had been imported to South Korea from China. Phylogenetic analysis of the hemagglutinin (HA) gene of A/Duck/Anyang/AVL-1/01 showed that the virus clustered with the H5 Goose/Guandong/1/96 lineage and 1997 Hong Kong human isolates and possessed an HA cleavage site sequence identical to these isolates. Following intravenous or intranasal inoculation, this virus was highly pathogenic and replicated to high titers in chickens. The pathogenesis of DK/Anyang/AVL-1/01 virus in Pekin ducks was further characterized and compared with a recent H5N1 isolate, A/Chicken/Hong Kong/317.5/01, and an H5N1 1997 chicken isolate, A/Chicken/Hong Kong/220/97. Although no clinical signs of disease were observed in H5N1 virus-inoculated ducks, infectious virus could be detected in lung tissue, cloacal, and oropharyngeal swabs. The DK/Anyang/AVL-1/01 virus was unique among the H5N1 isolates in that infectious virus and viral antigen could also be detected in muscle and brain tissue of ducks. The pathogenesis of DK/Anyang/AVL-1/01 virus was characterized in BALB/c mice and compared with the other H5N1 isolates. All viruses replicated in mice, but in contrast to the highly lethal CK/HK/220/97 virus, DK/Anyang/AVL-1/01 and CK/HK/317.5/01 viruses remained localized to the respiratory tract. DK/Anyang/AVL-1/01 virus caused weight loss and resulted in 22 to 33% mortality, whereas CK/HK/317.5/01-infected mice exhibited no morbidity or mortality. The isolation of a highly pathogenic H5N1 influenza virus from poultry indicates that such viruses are still circulating in China and may present a risk for transmission of the virus to humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号