首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Use of mesenchymal stem cells (MSCs) has emerged as a potential new treatment for various diseases but has generated marginally successful results. A consistent finding of most studies is massive death of transplanted cells. The present study examined the respective roles of glucose and continuous severe hypoxia on MSC viability and function with respect to bone tissue engineering. We hereby demonstrate for the first time that MSCs survive exposure to long‐term (12 days), severe (pO2 < 1.5 mmHg) hypoxia, provided glucose is available. To this end, an in vitro model that mimics the hypoxic environment and cell‐driven metabolic changes encountered by grafted sheep cells was established. In this model, the hallmarks of hypoxia (low pO2, hypoxia inducible factor‐1α expression and anaerobic metabolism) were present. When conditions switched from hypoxic (low pO2) to ischemic (low pO2 and glucose depletion), MSCs exhibited shrinking, decreased cell viability and ATP content due to complete exhaustion of glucose at day 6; these results provided evidence that ischemia led to the observed massive cell death. Moreover, MSCs exposed to severe, continuous hypoxia, but without any glucose shortage, remained viable and maintained both their in vitro proliferative ability after simulation with blood reperfusion at day 12 and their in vivo osteogenic ability. These findings challenge the traditional view according to which severe hypoxia per se is responsible for the massive MSC death observed upon transplantation of these cells and provide evidence that MSCs are able to withstand exposure to severe, continuous hypoxia provided that a glucose supply is available.  相似文献   

2.
Hematopoietic stem cells (HSCs) reside in hypoxic areas of the bone marrow. However, the role of hypoxia in the maintenance of HSCs has not been fully characterized. We performed xenotransplantation of human cord blood cells cultured in hypoxic or normoxic conditions into adult NOD/SCID/IL-2Rγnull (NOG) mice. Hypoxic culture (1% O2) for 6 days efficiently supported the maintenance of HSCs, although cell proliferation was suppressed compared to the normoxic culture. In contrast, hypoxia did not affect in vitro colony-forming ability. Upregulation of a cell cycle inhibitor, p21, was observed in hypoxic culture. Immunohistochemical analysis of recipient bone marrow revealed that engrafted CD34+CD38 cord blood HSCs were hypoxic. Taken together, these results demonstrate the significance of hypoxia in the maintenance of quiescent human cord blood HSCs.  相似文献   

3.
The aim of the study was to obtain the highest number of multipotent adipose-derived mesenchymal stem cells (ADMSCs) by using culture conditions which favour cell expansion without loss of mesenchymal stem cells (MSC)-like properties. Based on the assumption that stem cells reside in niches characterized by hypoxic condition, we investigated if the low oxygen tension may improve the proliferation and stemness of ADMSCs. Intact adipose tissue was resected from eight subjects, and the stromal vascular fraction was obtained by using type II collagenase. The heterogeneity of cellular lineages was confirmed by immunophenotypic analysis that showed the presence of leukocytes (CD45+), endothelial cells (CD34+), and pericytes (CD140+). The immunophenotype of confluent ADMSCs was similar to that of bone marrow-derived MSCs, except for the expression of CD34, which was variable (donor-dependent) and inversely correlated to the CD36 expression. ADMSCs showed a high clonal efficiency (94.5 ± 1 %) and were able to generate osteoblastic, chondrocytic and adipocytic lineages. ADMSCs were cultured under normoxic (21 % O2) and hypoxic (1 % O2) conditions, and we found that hypoxia significantly favoured ADMSC proliferation and preserved the expression of stemness genes, i.e. Nanog and Sox2. Since hypoxia reflects the microenvironment in which ADMSCs must proliferate and differentiate, the culture in hypoxic condition allows to better understand the biology of these cells and their regenerative potential. Low oxygen concentrations promote cell proliferation and stemness, thus enriching the pool of cells potentially able to differentiate into multi-lineages, and extending the possibility of a long-term expansion.  相似文献   

4.
Culture of mesenchymal stem cells (MSCs) under ambient conditions does not replicate the low oxygen environment of normal physiological or pathological states and can result in cellular impairment during culture. To overcome these limitations, we explored the effect of hypoxia (1 % O2) on the biological characteristics of MSCs over the course of different culture periods. The following biological characteristics were examined in human bone marrow-derived MSCs cultured under hypoxia for 8 weeks: proliferation rate, morphology, cell size, senescence, immunophenotypic characteristics, and the expression levels of stemness-associated factors and cytokine and chemokine genes. MSCs cultured under hypoxia for approximately 2 weeks showed increased proliferation and viability. During long-term culture, hypoxia delayed phenotypic changes in MSCs, such as increased cell volume, altered morphology, and the expression of senescence-associated-β-gal, without altering their characteristic immunophenotypic characteristics. Furthermore, hypoxia increased the expression of stemness and chemokine-related genes, including OCT4 and CXCR7, and did not decrease the expression of KLF4, C-MYC, CCL2, CXCL9, CXCL10, and CXCR4 compared with levels in cells cultured under normoxia. In conclusion, low oxygen tension improved the biological characteristics of MSCs during ex vivo expansion. These data suggest that hypoxic culture could be a useful method for increasing the efficacy of MSC cell therapies.  相似文献   

5.
This study aimed to examine the proliferative behavior and molecular mechanisms of rat bone marrow-derived MSCs (rBMSCs) cultured under three different oxygen concentrations. Passaged rBMSCs exhibited significantly greater proliferation rates at 1% O2 and 5% O2 than those at 18% O2 and the cells exposed to 1% O2 showed the highest proliferative potential, which was evidenced by the growth curves, colony-forming efficiencies, and CCK-8 absorbance values. The rBMSCs grown under hypoxic culture conditions (1% O2 and 5% O2) had the increased percentage of cells in S?+?G2/M-phase and the decreased apoptotic index, compared with normoxia (18% O2). It was revealed for the first time that there were more phosphohistone H3 (PHH3)-positive cells and higher expressions of proliferating cell nuclear antigen (PCNA) in the hypoxic cultures of rBMSCs than in the normoxic culture. Hypoxia upregulated the anti-apoptotic protein Bcl-2 and downregulated the pro-apoptotic proteins Bax and the cleaved caspase-3 in cultured rBMSCs. The levels of hypoxia-inducible factor-1α (HIF-1α) and phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2) were increased in the hypoxic-cultured rBMSCs. Nevertheless, no significant difference was observed in p53 level of rBMSCs between different oxygen concentrations. In conclusion, the hypoxia exerts a promoting effect on the in vitro expansion of rBMSCs via several signaling and molecular pathways involved in the control of cell cycle and apoptosis.  相似文献   

6.
Adipose tissue hypoxia occurs early in obesity and is associated with increased tissue macrophages and systemic inflammation that impacts muscle insulin responsiveness. We investigated how hypoxia interacted with adipocyte-macrophage crosstalk and inflammatory cytokine release, using co-culture and conditioned media (CM). Murine primary adipocytes from lean or obese mice were cultured under normoxic (21% O2) or hypoxic (1% O2) conditions. RAW264.7 macrophages were incubated under normoxic or hypoxic conditions with or without adipocyte conditioned media. Macrophage and adipocyte-macrophage co-culture CM were also collected. We found hypoxia did not elicit direct cytokine release from macrophages. However, adipocyte CM or adipocyte co-culture, synergistically stimulated TNFα and MCP-1 release from macrophages that was not further impacted by hypoxia. Exposure of muscle cells to elevated cytokines led to reduced insulin and muscle stress/inflammatory signaling. We conclude hypoxia or obesity induces release of inflammatory TNFα and MCP-1 from mice primary adipocytes but the two environmental conditions do not synergize to worsen macrophage signal transduction or insulin responsiveness.  相似文献   

7.
Li YZ  Liu XH  Cai LR 《生理学报》2007,59(2):221-226
低氧可以抑制内皮细胞增殖,但是其机理目前尚不清楚。串珠素在调节内皮细胞增殖中发挥着重要作用。为了探讨串珠素是否参与低氧对内皮细胞增殖的抑制,将大鼠心肌微血管内皮细胞在低氧或常氧状态下培养12 h后,用实时定量RT-PCR方法检测串珠素mRNA的表达。结果发现:低氧可以明显抑制串珠素mRNA的表达,与常氧状态下串珠素mRNA表达水平比较,差异显著(P〈0.05)。与此同时,低氧状态下或用串珠素抗体中和内源性串珠素,内皮细胞的增殖和对成纤维细胞生长因子的反应明显降低,粘着斑激酶(focal adhesion kinase,FAK)表达和细胞外信号调节激酶1/2(extracellular signal- regulated kinase,ERK1/2)活性明显下降。结果提示,串珠素表达下调可能通过抑制FAK介导的ERK1/2依赖的信号转导途径,参与低氧对大鼠心肌微血管内皮细胞增殖的抑制作用。  相似文献   

8.
9.

Background

Bone fracture initiates a series of cellular and molecular events including the expression of hypoxia-inducible factor (HIF)-1. HIF-1 is known to facilitate recruitment and differentiation of multipotent human mesenchymal stromal cells (hMSC). Therefore, we analyzed the impact of hypoxia and HIF-1 on the competitive differentiation potential of hMSCs towards adipogenic and osteogenic lineages.

Methodology/Principal Findings

Bone marrow derived primary hMSCs cultured for 2 weeks either under normoxic (app. 18% O2) or hypoxic (less than 2% O2) conditions were analyzed for the expression of MSC surface markers and for expression of the genes HIF1A, VEGFA, LDHA, PGK1, and GLUT1. Using conditioned medium, adipogenic or osteogenic differentiation as verified by Oil-Red-O or von-Kossa staining was induced in hMSCs under either normoxic or hypoxic conditions. The expression of HIF1A and VEGFA was measured by qPCR. A knockdown of HIF-1α by lentiviral transduction was performed, and the ability of the transduced hMSCs to differentiate into adipogenic and osteogenic lineages was analyzed. Hypoxia induced HIF-1α and HIF-1 target gene expression, but did not alter MSC phenotype or surface marker expression. Hypoxia (i) suppressed adipogenesis and associated HIF1A and PPARG gene expression in hMSCs and (ii) enhanced osteogenesis and associated HIF1A and RUNX2 gene expression. shRNA-mediated knockdown of HIF-1α enhanced adipogenesis under both normoxia and hypoxia, and suppressed hypoxia-induced osteogenesis.

Conclusions/Significance

Hypoxia promotes osteogenesis but suppresses adipogenesis of human MSCs in a competitive and HIF-1-dependent manner. We therefore conclude that the effects of hypoxia are crucial for effective bone healing, which may potentially lead to the development of novel therapeutic approaches.  相似文献   

10.

Background

The epidermal growth factor (EGF) receptors HER2 and HER4 and the ligands HB-EGF and NRG1 are crucial for heart development. The purpose of our study was to investigate the role of the complete EGF system in relation to hypoxia of the heart.

Methodology/Principal Findings

We examined the mRNA expression by real time PCR of the 4 receptors and 12 ligands from the EGF-system in paired normoxic and hypoxic biopsies isolated from human hearts during coronary artery bypass operation. Compared to normoxic biopsies, hypoxic samples showed down-regulation of HER2 (P = 0.0005) and NRG1 (both α (P = 0.02) and β (P = 0.03) isoforms). In contrast, HB-EGF (P = 0.0008), NRG2β (P = 0.01) and EGFR (P = 0.02) were up-regulated. As HER2 is essential for heart development and we find its expression reduced under hypoxia we investigated the effect of HER2 inhibition in hypoxic HL-1 cardiomyocytes by treatment with trastuzumab (20 nM). This resulted in inhibition of cardiomyocyte proliferation, but interestingly only in hypoxic cells. Co-treatment of HL-1 cells with HB-EGF (10 nM) but not with NRG-1 (5 ng/ml) rescued the cardiomyocytes from HER2 inhibition. HL-1 cardiomyocytes exposed to hypoxia revealed nuclear translocation of activated MAPK and the activity of this downstream signaling molecule was decreased by HER2 inhibition (20 nM trastuzumab), and re-established by HB-EGF (10 nM).

Conclusions/Significance

Hypoxia in the human heart alters the expression of the EGF system. Mimicking the HER2 down-regulation seen in the human heart in cultured cardiomyocytes inhibited their proliferation under hypoxic conditions. Interestingly, HB-EGF is induced in the hypoxic human hearts, and rescues hypoxic cardiomyocytes from the effect of HER2 inhibition in the in vitro model. The results have implications for future treatment strategies of patients with ischemic heart disease.  相似文献   

11.
12.
Senescence in stem cells, which occurs as a consequence of chronic responses to the environment, defines the capacity of stem cells for proliferation and differentiation as well as their potential for tissue regeneration and homeostasis maintenance. Although stem cells reside under low oxygen pressure and the availability of oxygen is known to be a crucial determinant in their fate, the key modulators in stem cell aging and the underlying mechanism have yet to be unraveled. Human placenta‐derived mesenchymal stem cells (hpMSCs) were cultured under hypoxia (3% O2) or normoxia (21% O2) to investigate the key factors that regulate stem cell senescence under hypoxic conditions. RNA sequencing results suggested that the expression of aminoacyl‐tRNA synthetase‐interacting multifunctional protein 3 (AIMP3, EEF1E1), an aging inducer, in the hpMSCs was dramatically repressed under hypoxia with concurrent suppression of the aging marker p16INK4a. The hpMSCs that overexpressed AIMP3 under hypoxic conditions displayed significantly decreased proliferation and fewer stem cell characteristics, whereas the downregulation of AIMP3 ameliorated the age‐related senescence of MSCs. Consistent with the results of the hpMSCs, MSCs isolated from the adipose tissue of AIMP3‐overexpressing mice exhibited decreased stem cell functions. Interestingly, AIMP3‐induced senescence is negatively regulated by hypoxia‐inducible factor 1α (HIF1α) and positively regulated by Notch3. Furthermore, we showed that AIMP3 enhanced mitochondrial respiration and suppressed autophagic activity, indicating that the AIMP3‐associated modulation of metabolism and autophagy is a key mechanism in the senescence of stem cells and further suggesting a novel target for interventions against aging.  相似文献   

13.
Low oxygen tension is a potent differentiation inducer of numerous cell types and an effective stimulus of many gene expressions. Here, we described that under 8% O(2), bone marrow stromal cells (MSCs) exhibited proliferative and morphologic changes. The level of differentiated antigen H-2Dd and the number of G(2)/S/M phase cells increased evidently under 8% O(2) condition. Also, the proportion of wide, flattened, and epithelial-like cells (which were alkaline phosphatase staining positive) in MSCs increased significantly. When cultured in adipogenic medium, there was a 5- to 6-fold increase in the number of lipid droplets under hypoxic conditions compared with that in normoxic culture. We also demonstrated the existence of MSC differentiation under hypoxic conditions by electron microscopy. Expression of Oct4 was inhibited under 8% O(2) condition, but after adipocyte differentiation in normoxic culture and hypoxia-mimicking agents cobalt chloride (CoCl(2)) and deferoxamine mesylate (DFX) treatments, Oct4 was still expressed in MSCs. These results indicate hypoxia accelerates MSC differentiation and hypoxia and hypoxia-mimicking agents exert different effects on MSC differentiation.  相似文献   

14.
Cells undergo replicative senescence during in vitro expansion, which is induced by the accumulation of cellular damage caused by excessive reactive oxygen species. In this study, we investigated whether long‐term‐cultured human bone marrow mesenchymal stromal cells (MSCs) are insensitive to apoptotic stimulation. To examine this, we established replicative senescent cells from long‐term cultures of human bone marrow MSCs. Senescent cells were identified based on declining population doublings, increased expression of senescence markers p16 and p53 and increased senescence‐associated β‐gal activity. In cell viability assays, replicative senescent MSCs in late passages (i.e. 15–19 passages) resisted damage induced by oxidative stress more than those in early passages did (i.e. 7–10 passages). This resistance occurred via caspase‐9 and caspase‐3 rather than via caspase‐8. The senescent cells are gradually accumulated during long‐term expansion. The oxidative stress‐sensitive proteins ataxia‐telangiectasia mutated and p53 were phosphorylated, and the expression of apoptosis molecules Bax increased, and Bcl‐2 decreased in early passage MSCs; however, the expression of the apoptotic molecules did less change in response to apoptotic stimulation in late‐passage MSCs, suggesting that the intrinsic apoptotic signalling pathway was not induced by oxidative stress in long‐term‐cultured MSCs. Based on these results, we propose that some replicative senescent cells may avoid apoptosis signalling via impairment of signalling molecules and accumulation during long‐term expansion. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Pulmonary vascular endothelial injury resulting from lipopolysaccharide (LPS) and oxygen toxicity contributes to vascular simplification seen in the lungs of premature infants with bronchopulmonary dysplasia. Whether the severity of endotoxin-induced endothelial injury is modulated by ambient oxygen tension (hypoxic intrauterine environment vs. hyperoxic postnatal environment) remains unknown. We posited that ovine fetal pulmonary artery endothelial cells (FPAEC) will be more resistant to LPS toxicity under hypoxic conditions (20–25 Torr) mimicking the fetal milieu. LPS (10 μg/ml) inhibited FPAEC proliferation and induced apoptosis under normoxic conditions (21% O2) in vitro. LPS-induced FPAEC apoptosis was attenuated in hypoxia (5% O2) and exacerbated by hyperoxia (55% O2). LPS increased intracellular superoxide formation, as measured by 2-hydroxyethidium (2-HE) formation, in FPAEC in normoxia and hypoxia. 2-HE formation in LPS-treated FPAEC increased in parallel with the severity of LPS-induced apoptosis in FPAEC, increasing from hypoxia to normoxia to hyperoxia. Differences in LPS-induced apoptosis between hypoxia and normoxia were abolished when LPS-treated FPAEC incubated in hypoxia were pretreated with menadione to increase superoxide production. Apocynin decreased 2-HE formation, and attenuated LPS-induced FPAEC apoptosis under normoxic conditions. We conclude that ambient oxygen concentration modulates the severity of LPS-mediated injury in FPAEC by regulating superoxide levels produced in response to LPS.  相似文献   

16.
BackgroundAdipose tissue-derived stem cells (ASCs) have been recently isolated from human subcutaneous adipose tissue. ASCs may be useful in regenerative medicine as an alternative to bone marrow-derived stem cells. Changes in the oxygen concentration influence physiological activities, such as stem cell proliferation. However, the effects of the oxygen concentration on ASCs remain unclear. In the present study, the effects of hypoxia on ASC proliferation were examined.MethodsNormal human adipose tissue was collected from the lower abdomen, and ASCs were prepared with collagenase treatment. The ASCs were cultured in hypoxic (1%) or normoxic (20%) conditions. Cell proliferation was investigated in the presence or absence of inhibitors of various potentially important kinases. Hypoxia inducible factor (HIF)-1α expression and MAP kinase phosphorylation in the hypoxic culture were determined with western blotting. In addition, the mRNA expression of vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF)-2 in hypoxic or normoxic conditions were determined with real-time RT-PCR. The effects of these growth factors on ASC proliferation were investigated. Chromatin immunoprecipitation (ChIP) of the HIF–1α-binding hypoxia responsive element in FGF–2 was performed. HIF–1α was knocked down by siRNA, and FGF–2 expression was investigated.ResultsASC proliferation was significantly enhanced in the hypoxic culture and was inhibited by ERK and Akt inhibitors. Hypoxia for 5–15 minutes stimulated the phosphorylation of ERK1/2 among MAP kinases and induced HIF–1α expression. The levels of VEGF and FGF–2 mRNA and protein in the ASCs were significantly enhanced in hypoxia, and FGF–2 increased ASC proliferation. The ChIP assay revealed an 8-fold increase in the binding of HIF–1α to FGF–2 in hypoxia. HIF–1α knockdown by siRNA partially inhibited the FGF–2 expression of ASCs induced by hypoxia.ConclusionASC proliferation was enhanced by hypoxia. HIF–1α activation, FGF–2 production, and the ERK1/2 and Akt pathway were involved in this regulatory mechanism.  相似文献   

17.
Stem cell-based therapies depend on the reliable expansion of patient-derived mesenchymal stem cells (MSCs) in vitro. The supplementation of cell culture media with serum is associated with several risks; accordingly, serum-free media are commercially available for cell culture. Furthermore, hypoxia is known to accelerate the expansion of MSCs. The present study aimed to characterize the properties of periodontal ligament-derived MSCs (PDLSCs) cultivated in serum-free and serum-containing media, under hypoxic and normoxic conditions. Cell growth, gene and protein expression, cytodifferentiation potential, genomic stability, cytotoxic response, and in vivo hard tissue generation of PDLSCs were examined. Our findings indicated that cultivation in serum-free medium does not affect the MSC phenotype or chromosomal stability of PDLSCs. PDLSCs expanded in serum-free medium exhibited more active growth than in fetal bovine serum-containing medium. We found that hypoxia does not alter the cell growth of PDLSCs under serum-free conditions, but inhibits their osteogenic and adipogenic cytodifferentiation while enabling maintenance of their multidifferentiation potential regardless of the presence of serum. PDLSCs expanded in serum-free medium were found to retain common MSC characteristics, including the capacity for hard tissue formation in vivo. However, PDLSCs cultured in serum-free culture conditions were more susceptible to damage following exposure to extrinsic cytotoxic stimuli than those cultured in medium supplemented with serum, suggesting that serum-free culture conditions do not exert protective effects against cytotoxicity on PDLSC cultures. The present work provides a comparative evaluation of cell culture in serum-free and serum-containing media, under hypoxic and normoxic conditions, for applications in regenerative medicine.  相似文献   

18.
Dermis isolated adult stem (DIAS) cells, a subpopulation of dermis cells capable of chondrogenic differentiation in the presence of cartilage extracellular matrix, are a promising source of autologous cells for tissue engineering. Hypoxia, through known mechanisms, has profound effects on in vitro chondrogenesis of mesenchymal stem cells and could be used to improve the expansion and differentiation processes for DIAS cells. The objective of this study was to build upon the mechanistic knowledge of hypoxia and translate it to tissue engineering applications to enhance chondrogenic differentiation of DIAS cells through exposure to hypoxic conditions (5% O2) during expansion and/or differentiation. DIAS cells were isolated and expanded in hypoxic (5% O2) or normoxic (20% O2) conditions, then differentiated for 2 weeks in micromass culture on chondroitin sulfate-coated surfaces in both environments. Monolayer cells were examined for proliferation rate and colony forming efficiency. Micromasses were assessed for cellular, biochemical, and histological properties. Differentiation in hypoxic conditions following normoxic expansion increased per cell production of collagen type II 2.3 fold and glycosaminoglycans 1.2 fold relative to continuous normoxic culture (p<0.0001). Groups expanded in hypoxia produced 51% more collagen and 23% more GAGs than those expanded in normoxia (p<0.0001). Hypoxia also limited cell proliferation in monolayer and in 3D culture. Collectively, these data show hypoxic differentiation following normoxic expansion significantly enhances chondrogenic differentiation of DIAS cells, improving the potential utility of these cells for cartilage engineering.  相似文献   

19.
Hypoxia is a hallmark of solid tumors, including breast cancer, and the extent of tumor hypoxia is associated with treatment resistance and poor prognosis. Considering the limited treatment of hypoxic tumor cells and hence a poor prognosis of breast cancer, the investigation of natural products as potential chemopreventive anti-angiogenic agents is of paramount interest. Rhein (4,5-dihydroxyanthraquinone-2-carboxylic acid), the primary anthraquinone in the roots of Cassia alata L., is a naturally occurring quinone which exhibits a variety of biologic activities including anti-cancer activity. However, the effect of rhein on endothelial or cancer cells under hypoxic conditions has never been delineated. Therefore, the aim of this study was to investigate whether rhein inhibits angiogenesis and the viability of hormone-dependent (MCF-7) or -independent (MDA-MB-435s) breast cancer cells in vitro under normoxic or hypoxic conditions. Rhein inhibited vascular endothelial growth factor (VEGF165)-stimulated human umbilical vein endothelial cell (HUVEC) tube formation, proliferation and migration under normoxic and hypoxic conditions. In addition, rhein inhibited in vitro angiogenesis by suppressing the activation of phosphatidylinositol 3-kinase (PI3K), phosphorylated-AKT (p-AKT) and phosphorylated extracellular signal-regulated kinase (p-ERK) but showed no inhibitory effects on total AKT or ERK. Rhein dose-dependently inhibited the viability of MCF-7 and MDA-MB-435s breast cancer cells under normoxic or hypoxic conditions, and inhibited cell cycle in both cell lines. Furthermore, Western blotting demonstrated that rhein inhibited heat shock protein 90alpha (Hsp90α) activity to induce degradation of Hsp90 client proteins including nuclear factor-kappa B (NF-κB), COX-2, and HER-2. Rhein also inhibited the expression of hypoxia-inducible factor-1 alpha (HIF-1α), vascular endothelial growth factor (VEGF165), epidermal growth factor (EGF), and the phosphorylation of inhibitor of NF-κB (I-κB) under normoxic or hypoxic conditions. Taken together, these data indicate that rhein is a promising anti-angiogenic compound for breast cancer cell viability and growth. Therefore, further studies including in vivo and pre-clinical need to be performed.  相似文献   

20.
IntroductionThe increased radioresistance of hypoxic cells compared to well-oxygenated cells is quantified by the oxygen enhancement ratio (OER). In this study we created a FLUKA Monte Carlo based tool for inclusion of both OER and relative biological effectiveness (RBE) in biologically weighted dose (ROWD) calculations in proton therapy and applied this to explore the impact of hypoxia.MethodsThe RBE-weighted dose was adapted for hypoxia by making RBE model parameters dependent on the OER, in addition to the linear energy transfer (LET). The OER depends on the partial oxygen pressure (pO2) and LET. To demonstrate model performance, calculations were done with spread-out Bragg peaks (SOBP) in water phantoms with pO2 ranging from strongly hypoxic to normoxic (0.01–30 mmHg) and with a head and neck cancer proton plan optimized with an RBE of 1.1 and pO2 estimated voxel-by-voxel using [18F]-EF5 PET. An RBE of 1.1 and the Rørvik RBE model were used for the ROWD calculations.ResultsThe SOBP in water had decreasing ROWD with decreasing pO2. In the plans accounting for oxygenation, the median target doses were approximately a factor 1.1 lower than the corresponding plans which did not consider the OER. Hypoxia adapted target ROWDs were considerably more heterogeneous than the RBE1.1-weighted doses.ConclusionWe realized a Monte Carlo based tool for calculating the ROWD. Read-in of patient pO2 and estimation of ROWD with flexibility in choice of RBE model was achieved, giving a tool that may be useful in future clinical applications of hypoxia-guided particle therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号