首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thioredoxin (Trx) is a protein disulfide reductase that, together with nicotinamide adenine dinucleotide phosphate (NADPH) and thioredoxin reductase (TrxR), controls oxidative stress or redox signaling via thiol redox control. Human cytosolic Trx1 has Cys32 and Cys35 as the active site and three additional cysteine residues (Cys62, Cys69, and Cys73), which by oxidation generates inactive Cys62 to Cys69 two-disulfide Trx. This, combined with TrxR with a broad substrate specificity, complicates assays of mammalian Trx and TrxR. We sought to understand the autoregulation of Trx and TrxR and to generate new methods for quantification of Trx and TrxR. We optimized the synthesis of two fluorescent substrates, di-eosin–glutathione disulfide (Di-E–GSSG) and fluorescein isothiocyanate-labeled insulin (FiTC–insulin), which displayed higher fluorescence on disulfide reduction. Di-E–GSSG showed a very large increase in fluorescence quantum yield but had a relatively low affinity for Trx and was also a weak direct substrate for TrxR, in contrast to GSSG. FiTC–insulin was used to develop highly sensitive assays for TrxR and Trx. Reproducible conditions were developed for reactivation of modified Trx, commonly present in frozen or oxidized samples. Trx in cell extracts and tissue samples, including plasma and serum, were subsequently analyzed, showing highly reproducible results and allowing measurement of trace amounts of Trx.  相似文献   

2.
The thioredoxin system consists of thioredoxin (Trx), thioredoxin reductase (TrxR) and NADPH, which plays several key roles in maintaining the redox environment of the cell. In Acidithiobacillus ferrooxidans, thioredoxin system may play important functions in the activity regulation of periplasmic proteins and energy metabolism. Here, we cloned thioredoxin (trx) and thioredoxin reductase (trxR) genes from Acidithiobacillus ferrooxidans, and expressed the genes in Escherichia coli. His-Trx and His-TrxR were purified to homogeneity with one-step Ni-NTA affinity column chromatography. Site-directed mutagenesis results confirmed that Cys33, Cys36 of thioredoxin, and Cys142, Cys145 of thioredoxin reductase were active-site residues.  相似文献   

3.
Thioredoxin reductase 1 (TrxR1) in cytosol is the only known reductant of oxidized thioredoxin 1 (Trx1) in vivo so far. We and others found that aurothioglucose (ATG), a well known active-site inhibitor of TrxR1, inhibited TrxR1 activity in HeLa cell cytosol but had no effect on the viability of the cells. Using a redox Western blot analysis, no change was observed in redox state of Trx1, which was mainly fully reduced with five sulfhydryl groups. In contrast, auranofin killed cells and oxidized Trx1, also targeting mitochondrial TrxR2 and Trx2. Combining ATG with ebselen gave a strong synergistic effect, leading to Trx1 oxidation, reactive oxygen species accumulation, and cell death. We hypothesized that there should exist a backup system to reduce Trx1 when only TrxR1 activity was lost. Our results showed that physiological concentrations of glutathione, NADPH, and glutathione reductase reduced Trx1 in vitro and that the reaction was strongly stimulated by glutaredoxin1. Simultaneous depletion of TrxR activity by ATG and glutathione by buthionine sulfoximine led to overoxidation of Trx1 and loss of HeLa cell viability. In conclusion, the glutaredoxin system and glutathione have a backup role to keep Trx1 reduced in cells with loss of TrxR1 activity. Monitoring the redox state of Trx1 shows that cell death occurs when Trx1 is oxidized, followed by general protein oxidation catalyzed by the disulfide form of thioredoxin.  相似文献   

4.
Thioredoxin systems, composed of thioredoxin reductase (TrxR), thioredoxin (Trx) and NADPH, play important roles in maintaining cellular redox homeostasis and redox signaling. Recently the cytosolic Trx1 system has been shown to be a cellular target of arsenic containing compounds. To elucidate the relationship of the structure of arsenic compounds with their ability of inhibiting TrxR1 and Trx1, and cytotoxicity, we have investigated the reaction of Trx1 system with seven arsenic trithiolates: As(Cys)3, As(GS)3, As(Penicillamine)3, As(Mercaptoethanesulfonate)3, As(Mercaptopurine)3, As(2-mercaptopyridine)3 and As(2-mercaptopyridine N-oxide)3. The cytotoxicity of these arsenicals was consistent with their ability to inhibit TrxR1 in vitro and in cells. Unlike other arsenicals, As(Mercaptopurine)3 which did not show inhibitory effects on TrxR1 had very weak cytotoxicity, indicating that TrxR1 is a reliable drug target for arsenicals. Moreover, the two aromatic compounds As(2-mercaptopyridine)3 and As(2-mercaptopyridine N-oxide)3 showed stronger cytotoxicity than the others. As(2-mercaptopyridine)3 which selectively oxidized two structural cysteines (Cys62 and Cys69) in Trx1 showed mild improvement in cytotoxicity. As(2-mercaptopyridine N-oxide)3 oxidized all the Cys residues in Trx1, exhibiting the strongest cytotoxicity. Oxidation of Trx1 by As(2-mercaptopyridine)3 and As(2-mercaptopyridine N-oxide)3 affected electron transfer from NADPH and TrxR1 to peroxiredoxin 1 (Prx1), which could result in the reactive oxygen species elevation and trigger cell death process. These results suggest that oxidation of structural cysteine residues in Trx1 by aromatic group in TrxR1-targeting drugs may sensitize tumor cells to cell death, providing a novel approach to regulate cellular redox signaling and also a basis for rational design of new anticancer agents.  相似文献   

5.
6.
The mammalian cytosolic thioredoxin system, comprising thioredoxin (Trx), Trx reductase, and NADPH, is the major protein-disulfide reductase of the cell and has numerous functions. Besides the active site thiols, human Trx1 contains three non-active site cysteine residues at positions 62, 69, and 73. A two-disulfide form of Trx1, containing an active site disulfide between Cys-32 and Cys-35 and a non-active site disulfide between Cys-62 and Cys-69, is inactive either as a disulfide reductase or as a substrate for Trx reductase. This could possibly provide a structural switch affecting Trx1 function during oxidative stress and redox signaling. We found that two-disulfide Trx1 was generated in A549 cells under oxidative stress. In vitro data showed that two-disulfide Trx1 was generated from oxidation of Trx1 catalyzed by peroxiredoxin 1 in the presence of H2O2. The redox Western blot data indicated that the glutaredoxin system protected Trx1 in HeLa cells from oxidation caused by ebselen, a superfast oxidant for Trx1. Our results also showed that physiological concentrations of glutathione, NADPH, and glutathione reductase reduced the non-active site disulfide in vitro. This reaction was stimulated by glutaredoxin 1 via the so-called monothiol mechanism. In conclusion, reversible oxidation of the non-active site disulfide of Trx1 is suggested to play an important role in redox regulation and cell signaling via temporal inhibition of its protein-disulfide reductase activity for the transmission of oxidative signals under oxidative stress.  相似文献   

7.
The mammalian cytosolic/nuclear thioredoxin system, comprising thioredoxin (Trx), selenoenzyme thioredoxin reductase (TrxR), and NADPH, is the major protein-disulfide reductase of the cell and has numerous functions. The active site of reduced Trx comprises Cys(32)-Gly-Pro-Cys(35) thiols that catalyze target disulfide reduction, generating a disulfide. Human Trx1 has also three structural Cys residues in positions 62, 69, and 73 that upon diamide oxidation induce a second Cys(62)-Cys(69) disulfide as well as dimers and multimers. We have discovered that after incubation with H(2)O(2) only monomeric two-disulfide molecules are generated, and they are inactive but able to regain full activity in an autocatalytic process in the presence of NADPH and TrxR. There are conflicting results regarding the effects of S-nitrosylation on Trx antioxidant functions and which residues are involved. We found that S-nitrosoglutathione-mediated S-nitrosylation at physiological pH is critically dependent on the redox state of Trx. Starting from fully reduced human Trx, both Cys(69) and Cys(73) were nitrosylated, and the active site formed a disulfide; the nitrosylated Trx was not a substrate for TrxR but regained activity after a lag phase consistent with autoactivation. Treatment of a two-disulfide form of Trx1 with S-nitrosoglutathione resulted in nitrosylation of Cys(73), which can act as a trans-nitrosylating agent as observed by others to control caspase 3 activity (Mitchell, D. A., and Marletta, M. A. (2005) Nat. Chem. Biol. 1, 154-158). The reversible inhibition of human Trx1 activity by H(2)O(2) and NO donors is suggested to act in cell signaling via temporal control of reduction for the transmission of oxidative and/or nitrosative signals in thiol redox control.  相似文献   

8.
曾昭定  戴爱国  蒋永亮 《生物磁学》2014,(9):1769-1771,1708
硫氧还蛋白系统是由硫氧还蛋白(thioredoxin,Trx),硫氧还蛋白还原酶(thioredoxinreductase,TrxR)和还原型辅酶Ⅱ(NADPH)组成的多功能小分子蛋白系统,广泛表达的硫氧还蛋白作为蛋白质二硫键的还原酶,它参与很多生理过程,并发挥重要生物学功能,包括调节机体的氧化还原反应、抑制细胞凋亡、调节转录因子DNA结合活性以及免疫应答等,其中一重要作用是参与调节细胞氧化还原状态以对抗氧化应激。因此在一些炎症性疾病如慢性阻塞性肺疾病、急性呼吸窘迫综合征、肺间质疾病、哮喘、肺结节病等的发生发展中扮演重要角色,本文对硫氧还蛋白系统在慢性阻塞性肺疾病中的抗氧化作用作一综述。  相似文献   

9.
Thioredoxin (Trx) inhibited tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 activity with an approximate IC50 of 0.3 microM, matrix metalloproteinase (MMP)-2 activity with an approximate IC50 of 2 microM but did not inhibit MMP-9 activity. This differential capacity of Trx to inhibit TIMP and MMP activity resulted in the promotion of MMP-2 and MMP-9 activity in the presence of molar TIMP excess. Inhibition of TIMP and MMP-2 activity by Trx was dependent upon thioredoxin reductase (TrxR), was abolished by Trx catalytic site mutation and did not result from TIMP or MMP-2 degradation. HepG2 hepatocellular carcinoma cells induced to secrete Trx inhibited TIMP activity in the presence of TrxR. SK-N-SH neuroblastoma cells secreted TrxR, which inhibited TIMP and MMP-2 activity in the presence of Trx. Trx stimulated SK-N-SH invasive capacity in vitro in the absence of exogenous TrxR. This study therefore identifies a novel extracellular role for the thioredoxin/thioredoxin reductase redox system in the differential inhibition of TIMP and MMP activity and provides a novel mechanism for altering the TIMP/MMP balance that is of potential relevance to tumor invasion.  相似文献   

10.
The active site of thioredoxin-1 (Trx1) is oxidized in cells with increased reactive oxygen species (ROS) and is reduced by thioredoxin reductase-1 (TrxR1). The purpose of the present study was to determine the extent to which the redox state of Trx1 is sensitive to changes in these opposing reactions. Trx1 redox state and ROS generation were measured in cells exposed to the TrxR1 inhibitors aurothioglucose (ATG) and monomethylarsonous acid (MMA(III)) and in cells depleted of TrxR1 activity by siRNA knock down. The results showed that all three treatments inhibited TrxR1 activity to similar extents (90% inhibition), but that only MMA(III) exposure resulted in oxidation of Trx1. Similarly, ROS levels were elevated in response to MMA(III), but not in response to ATG or TrxR1 siRNA. Therefore, TrxR1 inhibition alone was not sufficient to oxidize Trx1, suggesting that Trx1-independent pathways should be considered when evaluating pharmacological and toxicological mechanisms involving TrxR1 inhibition.  相似文献   

11.
Several studies have demonstrated a correlation between cellular toxicity of cis-diamminedichloroplatinum (II) (cisplatin, CDDP) and inhibited intracellular activity of the thioredoxin system, i.e., thioredoxin (Trx), thioredoxin reductase (TrxR), and NADPH. Conversely, increased cellular activity of the Trx system confers resistance to CDDP. In this study, we have analyzed the interaction of CDDP with Trx and TrxR in order to clarify the mechanism. The inhibition with time-dependent kinetics by CDDP of NADPH-reduced (but not oxidized) TrxR was irreversible, strongly suggesting covalent modification of the reduced selenocysteine-containing active site. Assuming second order kinetics, the rate constant of TrxR inhibition by CDDP was 21 +/- 3 M(-1) x s(-1). Transplatin was found to be an even more efficient inhibitor, with a second order rate constant of 84 +/- 22 M(-1) x s(-1), whereas carboplatin (up to 1 mM) gave no inhibition of the enzyme under the same conditions. Escherichia coli Trx or human or bacterial glutaredoxin (Grx) activities were in comparison only slightly or not at all inhibited by either CDDP, transplatin, or carboplatin. However, glutaredoxins were found to be inhibited by the purified glutathione adduct of cisplatin, bis-(glutathionato)platinum(II) (GS-Platinum complex, GS-Pt), with an IC50 = 350 microM in the standard beta-hydroxyethyl disulfide-coupled assay for human Grx. Also the mammalian Trx system was inhibited by GS-Pt with similar efficiency (IC(50) = 325 microM), whereas neither the E. coli Trx system nor glutathione reductase were inhibited. Formation of GS-Pt is a major route for cellular elimination of CDDP. The fact that GS-Pt inhibits the mammalian Trx as well as Grx systems shows that CDDP may exert effects at several stages of its metabolism, including after conjugation with GSH, which are intimately linked with the cellular disulfide/dithiol redox regulatory systems.  相似文献   

12.
Cellular redox balance is maintained by various antioxidative systems. Among those is the thioredoxin system, consisting of thioredoxin, thioredoxin reductase, and NADPH. In the present study, we examined the effects of caloric restriction (2 mo) on the expression of the cytosolic and mitochondrial thioredoxin system in skeletal muscle and heart of senescent and young rats. Mitochondrial thioredoxin reductase (TrxR2) is significantly reduced in aging skeletal and cardiac muscle and renormalized after caloric restriction, while the cytosolic isoform remains unchanged. Thioredoxins (mitochondrial Trx2, cytosolic Trx1) are not influenced by caloric restriction. In skeletal and cardiac muscle of young rats, caloric restriction has no effect on the expression of thioredoxins or thioredoxin reductases. Enforced reduction of TrxR2 (small interfering RNA) in myoblasts under exposure to ceramide or TNF-alpha causes a dramatic enhancement of nucleosomal DNA cleavage, caspase 9 activation, and mitochondrial reactive oxygen species release, together with reduced cell viability, while this TrxR2 reduction is without effect in unstimulated myoblasts under basal conditions. Oxidative stress in vitro (H2O2 in C2C12 myoblasts and myotubes) results in different changes: TrxR2, Trx2, and Trx1 are induced without alterations in the cytosolic thioredoxin reductase isoforms. Thus aging is associated with a TrxR2 reduction in skeletal muscle and heart, which enhances susceptibility to apoptotic stimuli but is renormalized after short-term caloric restriction. Exogenous oxidative stress does not result in these age-related changes of TrxR2.  相似文献   

13.
Respiring mitochondria produce H(2)O(2) continuously. When production exceeds scavenging, H(2)O(2) emission occurs, endangering cell functions. The mitochondrial peroxidase peroxiredoxin-3 reduces H(2)O(2) to water using reducing equivalents from NADPH supplied by thioredoxin-2 (Trx2) and, ultimately, thioredoxin reductase-2 (TrxR2). Here, the contribution of this mitochondrial thioredoxin system to the control of H(2)O(2) emission was studied in isolated mitochondria and cardiomyocytes from mouse or guinea pig heart. Energization of mitochondria by the addition of glutamate/malate resulted in a 10-fold decrease in the ratio of oxidized to reduced Trx2. This shift in redox state was accompanied by an increase in NAD(P)H and was dependent on TrxR2 activity. Inhibition of TrxR2 in isolated mitochondria by auranofin resulted in increased H(2)O(2) emission, an effect that was seen under both forward and reverse electron transport. This effect was independent of changes in NAD(P)H or membrane potential. The effects of auranofin were reproduced in cardiomyocytes; superoxide and H(2)O(2) levels increased, but similarly, there was no effect on NAD(P)H or membrane potential. These data show that energization of mitochondria increases the antioxidant potential of the TrxR2/Trx2 system and that inhibition of TrxR2 results in increased H(2)O(2) emission through a mechanism that is independent of changes in other redox couples.  相似文献   

14.
Alopecia areata (AA) is a common disease of patchy hair loss on the scalp that can progress to cover the entire scalp and eventually the entire body. Intralesional injection of corticosteroids is the first-line therapy for adult patients, however some patients do not respond to glucocorticoid treatment effectively. To delineate the molecular mechanism underlying glucocorticoid insensitivity, we examined the expression of glucocorticoid receptor (GR) and thioredoxin reductase 1 (TrxR1). In some case of glucocorticoid-resistant AA patients, the expression of TrxR1 was decreased in outer root sheath (ORS). We then investigated the effect of TrxR1 on GR activity using recombinant adenoviruses. Overexpression of TrxR1 markedly increased GR activity in ORS cells cultured in vitro. In addition, TrxR1 protected GR activity against H(2)O(2). Finally, TrxR1-enhanced GR activity was significantly inhibited by the overexpression of dominant negative form of Trx (Trx(C32S/C35S)). These results suggest that decreased TrxR1 may be one putative cause for glucocorticoid resistance in AA, through the impact on intracellular redox system.  相似文献   

15.
The mammalian thioredoxin (Trx) system, composed of Trx, Trx reductase (TrxR), and NADPH, is the most important thiol system involved in the redox control of signaling and regulatory proteins in apoptosis and cell proliferation. Here we addressed the inhibition of the Trx system by 13-hydroxy-15-oxo-zoapatlin (OZ), a nor-kaurane diterpene previously shown to possess proapoptotic potential and to cause cell cycle arrest in leukemia cells. OZ was found, by both biochemical and mass spectrometry-based approaches, to target Trx1 and TrxR in a cell-free system. In particular, the formation of reversible OZ adducts to Trx1 Cys35, Cys62, and Cys73 was demonstrated. We next showed that OZ efficiently inhibited Trx and TrxR catalytic activity in Molt4 cells. The occurrence of oxidative modifications of Trx molecules was assessed by "redox Western blot" analyses. OZ-mediated Trx oxidation resulted in apoptosis signaling kinase-1 release and activation of downstream JNK and p38 pathways. By means of specific inhibitors of these two stress-activated protein kinases, we demonstrated that the JNK pathway plays a major role in determining the apoptotic fate of OZ-exposed cells, whereas p38 activation seems to be involved mainly in OZ-induced G2/M block.  相似文献   

16.
We have identified and characterized a 14-kDa human thioredoxin (Trx)-related protein designated TRP14. This cytosolic protein was expressed in all tissues and cell types examined, generally in smaller amounts than Trx1. Although TRP14 contains five cysteines, only the two Cys residues in its WCPDC motif were exposed and redox sensitive. Unlike Trx1, which was an equally good substrate for both Trx reductase 1 (TrxR1) and TrxR2, oxidized TRP14 was reduced by TrxR1 but not by TrxR2. Biochemical characterization of TRP14 suggested that, like Trx1, TRP14 is a disulfide reductase; its active site cysteine is sufficiently nucleophilic with the pK(a) value of 6.1; and its redox potential (-257 mV) is similar to those of other cellular thiol reductants. However, although TRP14 reduced small disulfide-containing peptides, it did not reduce the disulfides of known Trx1 substrates, ribonucleotide reductase, peroxiredoxin, and methionine sulfoxide reductase. These results suggest that TRP14 and Trx1 might act on distinct substrate proteins.  相似文献   

17.
Selenium (Se) is a crucial element exerting antioxidant and neuroprotective effects in different toxic models. It has been suggested that Se acts through selenoproteins, of which thioredoxin reductase (TrxR) is relevant for reduction of harmful hydroperoxides and maintenance of thioredoxin (Trx) redox activity. Of note, the Trx/TrxR system remains poorly studied in toxic models of degenerative disorders. Despite previous reports of our group have demonstrated a protective role of Se in the excitotoxic/pro-oxidant model induced by quinolinic acid (QUIN) in the rat striatum (Santamaría et al., 2003, 2005), the precise mechanism(s) by which Se is inducing protection remains unclear. In this work, we characterized the time course of protective events elicited by Se as pretreatment (Na(2)SO(3), 0.625 mg/kg/day, i.p., administered for 5 consecutive days) in the toxic pattern produced by a single infusion of QUIN (240 nmol/μl) in the rat striatum, to further explore whether TrxR is involved in the Se-induced protection and how is regulated. Se attenuated the QUIN-induced early reactive oxygen species formation, lipid peroxidation, oxidative damage to DNA, loss of mitochondrial reductive capacity and morphological alterations in the striatum. Our results also revealed a novel pattern in which QUIN transiently stimulated an early TrxR cellular localization/distribution (at 30 min and 2 h post-lesion, evidenced by immunohistochemistry), to further stimulate a delayed protein activation (at 24 h) in a manner likely representing a compensatory response to the oxidative damage in course. In turn, Se induced an early stimulation of TrxR activity and expression in a time course that "matches" with the reduction of the QUIN-induced oxidative damage, suggesting that the Trx/TrxR system contributes to the resistance of nerve tissue to QUIN toxicity.  相似文献   

18.
Although the etiology of sporadic Parkinson disease (PD) is unknown, it is well established that oxidative stress plays an important role in the pathogenic mechanism. The thioredoxin (Trx) and glutaredoxin (Grx) systems are two central systems upholding the sulfhydryl homeostasis by reducing disulfides and mixed disulfides within the cell and thereby protecting against oxidative stress. By examining the expression of redox proteins in human postmortem PD brains, we found the levels of Trx1 and thioredoxin reductase 1 (TrxR1) to be significantly decreased. The human neuroblastoma cell line SH-SY5Y and the nematode Caenorhabditis elegans were used as model systems to explore the potential protective effects of the redox proteins against 6-hydroxydopamine (6-OHDA)-induced cytotoxicity. 6-OHDA is highly prone to oxidation, resulting in the formation of the quinone of 6-OHDA, a highly reactive species and powerful neurotoxin. Treatment of human cells with 6-OHDA resulted in an increased expression of Trx1, TrxR1, Grx1, and Grx2, and small interfering RNA for these genes significantly increased the cytotoxic effects exerted by the 6-OHDA neurotoxin. Evaluation of the dopaminergic neurons in C. elegans revealed that nematodes lacking trxr-1 were significantly more sensitive to 6-OHDA, with significantly increased neuronal degradation. Importantly, both the Trx and the Grx systems were also found to directly mediate reduction of the 6-OHDA-quinone in vitro and thus render its cytotoxic effects. In conclusion, our results suggest that the two redox systems are important for neuronal survival in dopamine-induced cell death.  相似文献   

19.
20.
The thiol-disulfide redox metabolism in platyhelminth parasites depends entirely on a single selenocysteine (Sec) containing flavoenzyme, thioredoxin glutathione reductase (TGR) that links the classical thioredoxin (Trx) and glutathione (GSH) systems. In the present study, we investigated the catalytic and structural properties of different variants of Fasciola gigantica TGR to understand the role of Sec. The recombinant full-length Sec containing TGR (FgTGRsec), TGR without Sec (FgTGR) and TGRsec without the N-terminal glutaredoxin (Grx) domain (?NTD-FgTGRsec) were purified to homogeneity. Biochemical studies revealed that Sec597 is responsible for higher thioredoxin reductase (TrxR) and glutathione reductase (GR) activity of FgTGRsec. The N-terminal Grx domain was found to positively regulate the DTNB-based TrxR activity of FgTGRsec. The FgTGRsec was highly sensitive to inhibition by auranofin (AF). The structure of FgTGR was modeled, and the inhibitor AF was docked, and binding sites were identified. Unfolding studies suggest that all three proteins are highly cooperative molecules since during GdnHCl-induced denaturation, a monophasic unfolding of the proteins without stabilization of any intermediate is observed. The Cm for GdnHCl induced unfolding of FgTGR was higher than FgTGRsec and ?NTD-FgTGRsec suggesting that FgTGR without Sec was more stable in solution than the other protein variants. The free energy of stabilization for the proteins was also determined. To our knowledge, this is also the first report on unfolding and stability analysis of any TGR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号