首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
MicroRNA is a novel class of small noncoding RNA that has been implicated in a variety of physiological and pathological processes, including glucose homeostasis and diabetes mellitus. So far, a few studies have reported that miRNAs may be an important regulator in glucose-stimulated insulin secretion (GSIS) pathway. However, the role of miRNAs in this process remains unclear. The levels of miRNAs in mouse islets and MIN6 cells were determined by quantitative RT-PCR. Concentration of insulin was determined by ELISA, and the expression of the target protein was determined with western blot assay. The overexpression and downregulation of miRNAs in MIN6 were conducted using cell transfection methods. And luciferase assay was used to measure the direct interaction between miRNAs and target messenger RNAs 3′UTR. miR-9 was screened out for it was downregulated under the effects of short-term high glucose, while long-term high glucose relatively increased miR-9 expression. The Stxbp1 expression was decreased with the overexpression of miR-9 in MIN6 cells and increased when miR-9 was downregulated. Moreover, it was verified by luciferase assay that miR-9 regulated Stxbp1 gene expression by directly targeting Stxbp1 messenger RNA 3′UTR. This study suggests that the pathway consisting of miR-9 and Stxbp1 plays a key role in β-cell function, thus contributing to the network of miRNA-insulin secretion and offering a new candidate for diabetes therapy.  相似文献   

3.
Low levels of intracellular antioxidant enzyme activities as well as glutathione (GSH) concentrations have been described in pancreatic beta cells. We examined the effects of intracellular GSH depletion on insulin secretion and the role of intracellular GSH in signal transduction in beta cell line, MIN6 cells. Anti-gamma-glutamylcysteine synthetase (gamma-GCS) heavy subunit ribozyme was stably transfected to MIN6 cells to reduce intracellular GSH concentration. In the presence of 10 mM glucose, ribozyme-transfected cells (RTC) increased insulin secretion from 0.58 microg/10(6) cells/h in control cells (CC) to 1.48 microg/10(6) cells/h. This was associated with increased intracellular Ca(2+) concentration in RTC, detected by fluo-3 staining. Our results demonstrated that intracellular GSH concentration might influence insulin secretion by MIN6 cells, and suggest that enhanced insulin secretion by beta cells conditioned by chronic depletion of GSH is mediated by increased intracellular Ca(2+) concentration.  相似文献   

4.
Glutamate dehydrogenase (GDH) catalyzes reversible oxidative deamination of l-glutamate to alpha-ketoglutarate. Enzyme activity is regulated by several allosteric effectors. Recognition of a new form of hyperinsulinemic hypoglycemia, hyperinsulinism/hyperammonemia (HI/HA) syndrome, which is caused by gain-of-function mutations in GDH, highlighted the importance of GDH in glucose homeostasis. GDH266C is a constitutively activated mutant enzyme we identified in a patient with HI/HA syndrome. By overexpressing GDH266C in MIN6 mouse insulinoma cells, we previously demonstrated unregulated elevation of GDH activity to render the cells responsive to glutamine in insulin secretion. Interestingly, at low glucose concentrations, basal insulin secretion was exaggerated in such cells. Herein, to clarify the role of GDH in the regulation of insulin secretion, we studied cellular glutamate metabolism using MIN6 cells overexpressing GDH266C (MIN6-GDH266C). Glutamine-stimulated insulin secretion was associated with increased glutamine oxidation and decreased intracellular glutamate content. Similarly, at 5 mmol/l glucose without glutamine, glutamine oxidation also increased, and glutamate content decreased with exaggerated insulin secretion. Glucose oxidation was not altered. Insulin secretion profiles from GDH266C-overexpressing isolated rat pancreatic islets were similar to those from MIN6-GDH266C, suggesting observation in MIN6 cells to be relevant in native beta-cells. These results demonstrate that, upon activation, GDH oxidizes glutamate to alpha-ketoglutarate, thereby stimulating insulin secretion by providing the TCA cycle with a substrate. No evidence was obtained supporting the hypothesis that activated GDH produced glutamate, a recently proposed second messenger of insulin secretion, by the reverse reaction, to stimulate insulin secretion.  相似文献   

5.
6.
7.
Type 2 diabetes is a metabolic disorder characterized by the inability of beta-cells to secrete enough insulin to maintain glucose homeostasis. MIN6 cells secrete insulin in response to glucose and other secretagogues, but high passage (HP) MIN6 cells lose their ability to secrete insulin in response to glucose. We hypothesized that metabolism of glucose and lipids were defective in HP MIN6 cells causing impaired glucose stimulated insulin secretion (GSIS). HP MIN6 cells had no first phase and impaired second phase GSIS indicative of global functional impairment. This was coupled with a markedly reduced ATP content at basal and glucose stimulated states. Glucose uptake and oxidation were higher at basal glucose but ATP content failed to increase with glucose. HP MIN6 cells had decreased basal lipid oxidation. This was accompanied by reduced expressions of Glut1, Gck, Pfk, Srebp1c, Ucp2, Sirt3, Nampt. MIN6 cells represent an important model of beta cells which, as passage numbers increased lost first phase but retained partial second phase GSIS, similar to patients early in type 2 diabetes onset. We believe a number of gene expression changes occurred to produce this defect, with emphasis on Sirt3 and Nampt, two genes that have been implicated in maintenance of glucose homeostasis.  相似文献   

8.
Neuronatin (Nnat) was initially identified as a selectively-expressed gene in neonatal brains, but its expression has been also identified in pancreatic beta-cells. Therefore, to investigate the possible functions that Nnat may serve in pancreatic beta-cells, two Nnat isotypes (alpha and beta) were expressed using adenoviruses in murine MIN6N8 pancreatic beta-cells, and the cellular fates and the effects of Nnat on insulin secretion, high glucose-induced apoptosis, and functional impairment were examined. Nnatalpha and Nnatbeta were primarily localized in the endoplasmic reticulum (ER), and their expressions increased insulin secretion by increasing intracellular calcium levels. However, under chronic high glucose conditions, the Nnatbeta to Nnatalpha ratio gradually increased in proportion to the length of exposure to high glucose levels. Moreover, adenovirally-expressed Nnatbeta was inclined to form aggresome-like structures, and we found that Nnatbeta aggregation inhibited the function of the proteasome. Therefore, when glucose is elevated, the expression of Nnatbeta sensitizes MIN6N8 cells to high glucose stress, which in turn, causes ER stress. As a result, expression of Nnatbeta increased hyperglycemia-induced apoptosis. In addition, the expression of Nnatbeta under high glucose conditions decreased the expression of genes important for beta-cell function, such as glucokinase (GCK), pancreas duodenum homeobox-1 (PDX-1), and insulin. Collectively, Nnat may play a critical factor in normal beta-cell function, as well as in the pathogenesis of type 2 diabetes.  相似文献   

9.
10.
Elucidating the regulation of glucose-stimulated insulin secretion (GSIS) in pancreatic islet β cells is important for understanding and treating diabetes. MIN6 cells, a transformed β-cell line derived from a mouse insulinoma, retain GSIS and are a popular in vitro model for insulin secretion. However, in long-term culture, MIN6 cells'' GSIS capacity is lost. We previously isolated a subclone, MIN6 clone 4, from the parental MIN6 cells, that shows well-regulated insulin secretion in response to glucose, glybenclamide, and KCl, even after prolonged culture. To investigate the molecular mechanisms responsible for preserving GSIS in this subclone, we compared four groups of MIN6 cells: Pr-LP (parental MIN6, low passage number), Pr-HP (parental MIN6, high passage number), C4-LP (MIN6 clone 4, low passage number), and C4-HP (MIN6 clone 4, high passage number). Based on their capacity for GSIS, we designated the Pr-LP, C4-LP, and C4-HP cells as “responder cells.” In a DNA microarray analysis, we identified a group of genes with high expression in responder cells (“responder genes”), but extremely low expression in the Pr-HP cells. Another group of genes (“non-responder genes”) was expressed at high levels in the Pr-HP cells, but at extremely low levels in the responder cells. Some of the responder genes were involved in secretory machinery or glucose metabolism, including Chrebp, Scgn, and Syt7. Among the non-responder genes were Car2, Maf, and Gcg, which are not normally expressed in islet β cells. Interestingly, we found a disproportionate number of known imprinted genes among the responder genes. Our findings suggest that the global expression profiling of GSIS-competent and GSIS-incompetent MIN6 cells will help delineate the gene regulatory networks for insulin secretion.  相似文献   

11.
12.
We have established two sublines derived from the insulin-secreting mouse pancreatic beta-cell line MIN6, designated m9 and m14. m9 Cells exhibit glucose-induced insulin secretion in a concentration-dependent manner, whereas m14 cells respond poorly to glucose. In m14 cells, glucose consumption and lactate production are enhanced, and ATP production is largely through nonoxidative pathways. Moreover, lactate dehydrogenase activity is increased, and hexokinase replaces glucokinase as a glucose-phosphorylating enzyme. The ATP-sensitive K(+) channel activity and voltage-dependent calcium channel activity in m14 cells are reduced, and the resting membrane potential is significantly higher than in m9 cells. Thus, in contrast to m9, a model for beta-cells with normal insulin response, m14 is a model for beta-cells with impaired glucose-induced insulin secretion. By mRNA differential display of these sublines, we found 10 genes to be expressed at markedly different levels. These newly established MIN6 cell sublines should be useful tools in the analysis of the genetic and molecular basis of impaired glucose-induced insulin secretion.  相似文献   

13.
Brenner JL  Kemp BJ  Abbott AL 《PloS one》2012,7(5):e37185
The mir-51 family of microRNAs (miRNAs) in C. elegans are part of the deeply conserved miR-99/100 family. While loss of all six family members (mir-51-56) in C. elegans results in embryonic lethality, loss of individual mir-51 family members results in a suppression of retarded developmental timing defects associated with the loss of alg-1. The mechanism of this suppression of developmental timing defects is unknown. To address this, we characterized the function of the mir-51 family in the developmental timing pathway. We performed genetic analysis and determined that mir-51 family members regulate the developmental timing pathway in the L2 stage upstream of hbl-1. Loss of the mir-51 family member, mir-52, suppressed retarded developmental timing defects associated with the loss of let-7 family members and lin-46. Enhancement of precocious defects was observed for mutations in lin-14, hbl-1, and mir-48(ve33), but not later acting developmental timing genes. Interestingly, mir-51 family members showed genetic interactions with additional miRNA-regulated pathways, which are regulated by the let-7 and mir-35 family miRNAs, lsy-6, miR-240/786, and miR-1. Loss of mir-52 likely does not suppress miRNA-regulated pathways through an increase in miRNA biogenesis or miRNA activity. We found no increase in the levels of four mature miRNAs, let-7, miR-58, miR-62 or miR-244, in mir-52 or mir-52/53/54/55/56 mutant worms. In addition, we observed no increase in the activity of ectopic lsy-6 in the repression of a downstream target in uterine cells in worms that lack mir-52. We propose that the mir-51 family functions broadly through the regulation of multiple targets, which have not yet been identified, in diverse regulatory pathways in C. elegans.  相似文献   

14.
The C57BL/6J mouse displays glucose intolerance and reduced insulin secretion. QTL mapping identified Nicotinamide Nucleotide Transhydrogenase (Nnt), a nuclear-encoded mitochondrial protein thought to be involved in free radical detoxification, as a candidate gene. To investigate its functional role, we used siRNA to knock down Nnt in insulin-secreting MIN6 cells. This produced a dramatic reduction in insulin secretion and the rise in [Ca2+]i evoked by glucose, but not tolbutamide. We identified two ENU-induced point mutations in Nnt (N68K, G745D). Nnt mutant mice were glucose intolerant and secreted less insulin during a glucose tolerance test. Isolated islets showed impaired insulin secretion in response to glucose, but not to tolbutamide, and glucose failed to enhance ATP levels. Glucose utilization and production of reactive oxygen species were increased in Nnt beta cells. We hypothesize that Nnt mutations/deletion uncouple beta cell mitochondrial metabolism leading to less ATP production, enhanced KATP channel activity, and consequently impaired insulin secretion.  相似文献   

15.
Although intracellular Ca(2+) in pancreatic beta-cells is the principal signal for insulin secretion, the effect of chronic elevation of the intracellular Ca(2+) concentration ([Ca(2+)](i)) on insulin secretion is poorly understood. We recently established two pancreatic beta-cell MIN6 cell lines that are glucose-responsive (MIN6-m9) and glucose-unresponsive (MIN6-m14). In the present study we have determined the cause of the glucose unresponsiveness in MIN6-m14. Initially, elevated [Ca(2+)](i) was observed in MIN6-m14, but normalization of the [Ca(2+)](i) by nifedipine, a Ca(2+) channel blocker, markedly improved the intracellular Ca(2+) response to glucose and the glucose-induced insulin secretion. The expression of subunits of ATP-sensitive K(+) channels and voltage-dependent Ca(2+) channels were increased at both mRNA and protein levels in MIN6-m14 treated with nifedipine. As a consequence, the functional expression of these channels at the cell surface, both of which are decreased in MIN6-m14 without nifedipine treatment, were increased significantly. Contrariwise, Bay K8644, a Ca(2+) channel agonist, caused severe impairment of glucose-induced insulin secretion in glucose-responsive MIN6-m9 due to decreased expression of the channel subunits. Chronically elevated [Ca(2+)](i), therefore, is responsible for the glucose unresponsiveness of MIN6-m14. The present study also suggests normalization of [Ca(2+)](i) in pancreatic beta-cells as a therapeutic strategy in treatment of impaired insulin secretion.  相似文献   

16.
Fine-tuning of insulin secretion from pancreatic beta-cells participates in blood glucose homeostasis. Defects in this process can lead to chronic hyperglycemia and diabetes mellitus. Several proteins controlling insulin exocytosis have been identified, but the mechanisms regulating their expression remain poorly understood. Here, we show that two non-coding microRNAs, miR124a and miR96, modulate the expression of proteins involved in insulin exocytosis and affect secretion of the beta-cell line MIN6B1. miR124a increases the levels of SNAP25, Rab3A and synapsin-1A and decreases those of Rab27A and Noc2. Inhibition of Rab27A expression is mediated by direct binding to the 3'-untranslated region of Rab27A mRNA. The effect on the other genes is indirect and linked to changes in mRNA levels. Over-expression of miR124a leads to exaggerated hormone release under basal conditions and a reduction in glucose-induced secretion. miR96 increases mRNA and protein levels of granuphilin, a negative modulator of insulin exocytosis, and decreases the expression of Noc2, resulting in lower capacity of MIN6B1 cells to respond to secretagogues. Our data identify miR124a and miR96 as novel regulators of the expression of proteins playing a critical role in insulin exocytosis and in the release of other hormones and neurotransmitters.  相似文献   

17.
18.
19.
Analysis of short RNAs in the malaria parasite and its red blood cell host   总被引:4,自引:0,他引:4  
Rathjen T  Nicol C  McConkey G  Dalmay T 《FEBS letters》2006,580(22):5185-5188
RNA interference (RNAi) is an RNA degradation process that involves short, double-stranded RNAs (dsRNA) as sequence specificity factors. The natural function of the RNAi machinery is to generate endogenous short double-stranded RNAs to regulate gene expression. It has been shown that treatment of Plasmodium falciparum, the etiologic agent of malaria, with dsRNA induces degradation of the corresponding microRNA (miRNA), yet typical RNAi-associated genes have not been identifiable in the parasite genome. To clarify this discrepancy we set out to clone short RNAs from P. falciparum-infected red blood cells and from purified parasites. We did not find any short RNA that was not a rRNA or tRNA fragment. Indeed, only known human miRNAs were isolated in parasite preparations indicating that very few if any short RNAs exist in P. falciparum. This suggests a different mechanism than classical RNAi in observations of dsRNA-mediated degradation. Of the human miRNAs identified, the human miRNA mir-451 accumulates at a very high level in both infected and healthy red blood cells. Interestingly, mir-451 was not detectable in a series of immortalised cell lines representing progenitor stages of all major blood lineages, suggesting that mir-451 may play a role in the differentiation of erythroid cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号